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Abstract

A fooling-set matrix has nonzero diagonal, but at least one in every pair of diagonally

opposite entries is 0. Dietzfelbinger et al. ’96 proved that the rank of such a matrix is at

least
√
n. It is known that the bound is tight (up to a multiplicative constant).

We ask for the typical minimum rank of a fooling-set matrix: For a fooling-set zero-

nonzero pattern chosen at random, is the minimum rank of a matrix with that zero-nonzero

pattern over a field F closer to its lower bound
√
n or to its upper bound n? We study random

patterns with a given density p, and prove an Ω(n) bound for the cases when

(a) p tends to 0 quickly enough;

(b) p tends to 0 slowly, and |F| = O(1);
(c) p ∈ ]0, 1] is a constant.

We have to leave open the case when p → 0 slowly and F is a large or infinite field (e.g.,

F = GF(2n), F = R).

1 Introduction

Let f : X × Y → {0, 1} be a function. A fooling set of size n is a family (x1, y1), . . . , (xn, yn) ∈
X × Y such that f(xi, yi) = 1 for all i, and for i 6= j, at least one of f(xi, yj) of f(yi, yj) is 0.

Sizes of fooling sets are important lower bounds in Communication Complexity (see, e.g.,

[13, 12]) and the study of extended formulations (e.g., [4, 1]).

There is an a priori upper bound on the size of fooling sets due to Dietzfelbinger et al. [3],

based on the rank of a matrix associated with f . Let F be an arbitrary field. The following is

a slight generalization of the result in [3] (see the appendix for a proof).

Lemma 1. No fooling set in f is larger than the square of minA rkF(A), where the minimum

ranges1 over all X × Y -matrices A over F with Ax,y = 0 iff f(x, y) = 0.

It is known that, for fields F with nonzero characteristic, this upper bound is asymptoti-

cally attained [6], and for all fields, it is attained up to a multiplicative constant [5]. These

results, however, require sophisticated constructions. In this paper, we ask how useful that

upper bound is for typical functions f .

Put differently, a fooling-set pattern of size n is a matrix R with entries in {0, 1} ⊆ F with

Rk,k = 1 for all k and Rk,ℓRℓ,k = 0 whenever k 6= ℓ. We say that a fooling-set pattern of size n

∗Supported by the Estonian Research Council, ETAG (Eesti Teadusagentuur), through PUT Exploratory Grant

#620, and by the European Regional Development Fund through the Estonian Center of Excellence in Computer
Science, EXCS.

1This concept of minimum rank differs from the definition used in the context of index coding [10, 8]. It is

closer to the minimum rank of a graph, but there the matrix A has to be symmetric while the diagonal entries are
unconstrained.
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has density p ∈ ]0, 1], if it has exactly ⌈p
(

n
2

)

⌉ off-diagonal 1-entries. So, the density is roughly

the quotient (|R|−n)/
(

n
2

)

, where |·| denotes the Hamming weight, i.e., the number of nonzero

entries. The densest possible fooling-set pattern has
(

n
2

)

off-diagonal ones (density p = 1).

For any field F and y ∈ F, let σ(y) := 0, if y = 0, and σ(y) := 1, otherwise. For a matrix (or

vector, in case n = 1) M ∈ F
m×n, define the zero-nonzero pattern of M , σ(M), as the matrix

in {0, 1}m×n which results from applying σ to every entry of M .

This paper deals with the following question: For a fooling-set pattern chosen at random,

is the minimum rank of closer to its lower bound
√
n or to its trivial upper bound n? The

question turns out to be surprisingly difficult. We give partial results, but we must leave

some cases open. The distributions we study are the following:

Q(n) denotes a fooling-set pattern drawn uniformly at random from all fooling-set patterns

of size n;

R(n, p) denotes a fooling-set patterns drawn uniformly at random from all fooling-set pat-

terns of size n with density p.

We allow that the density depends on the size of the matrix: p = p(n). From now on, Q = Q(n)
and R = R(n, p) will denote these random fooling-set patterns.

Our first result is the following. As customary, we use the terminology “asymptotically

almost surely, a.a.s.,” to stand for “with probability tending to 1 as n tends to infinity”.

Theorem 2. (a) For every field F, if p = O(1/n), then, a.a.s., the minimum rank of a matrix

with zero-nonzero pattern R(n, p) is Ω(1).
(b) Let F be a finite field and F := |F|. (We allow F to grow with n.) If 100max(1, ln lnF )/n ≤

p ≤ 1, then the minimum rank of a matrix over F with zero-nonzero pattern R(n, p) is

Ω
( log(1/p)

log(1/p) + log(F )
n
)

= Ω(n/ log(F )).

(c) For every field F, if p ∈ ]0, 1] is a constant, then the minimum rank of a matrix with

zero-nonzero pattern R(n, p) is Ω(1). (The same is true for zero-nonzero pattern Q(n).)

Since the constant in the big-Ω in Thereom 2(c) tends to 0 with p → 0, the proof technique

used for constant p does not work for p = o(1); moreover, the bound in (b) does not give an

Ω(n) lower bound for infinite fields, or for large finite fields, e.g., GF(2n). We conjecture that

the bound is still true (see Lemma 4 for a lower bound):

Conjecture 3. For every field F and for all p = p(n), the minimum rank of a fooling-set

matrix with random zero-nonzero pattern R(n, p) is Ω(n).

The bound in Thereom 2(b) is similar to that in [8], but it is better by roughly a factor

of logn if p is (constant or) slowly decreasing, e.g., p = 1/ logn. (Their minrank definition

gives a lower bound to fooling-set pattern minimum rank.)

The next three sections hold the proofs for Theorem 2.

Acknowledgments. The second author would like to thank Kaveh Khoshkhah for discus-

sions on the subject.

2 Proof of Theorem 2(a)

It is quite easy to see (using, e.g., Turán’s theorem) that in the region p = O(1/n), R(n, p)
contains a triangular submatrix with nonzero diagonal entries of order Ω(n), thus lower

bounding the rank over any field. Here, we prove the following stronger result, which also

gives a lower bound (for arbitrary fields) for more slowly decreasing p.
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Lemma 4. For p(n) = d(n)/n = o(1), if d(n) > C for some constant C, then zero-nonzero

pattern R(n, p) contains a triangular submatrix with nonzero diagonal entries of size

Ω

(

ln d

d
· n

)

.

We prove the lemma by using the following theorem about the independence number of

random graphs in the Erdős-Rényi model. Let Gn,q denote the random graph with vertex

set [n] where each edge is chosen independently with probability q.

Theorem 5 (Theorem 7.4 in [11]). Let ǫ > 0 be a constant, q = q(n), and define

k±ǫ :=
⌊2

q
(ln(nq)− ln ln(nq) + 1− ln2± ǫ)

⌋

.

There exists a constant Cǫ such that for Cǫ/n ≤ q = q(n) ≤ ln−2 n, a.a.s., the largest

independent set in Gn,q has size between k−ǫ and k+ǫ.

Proof of Lemma 4. Construct a graph G with vertex set [n] from the fooling-set pattern ma-

trix R(n, p) in the following way: There is an edge between vertices k and ℓ with k > ℓ,
if and only if Mk,ℓ 6= 0. This gives a random graph G = Gn,m,1/2 which is constructed by

first drawing uniformly at random a graph from all graphs with vertex set [n] and exactly m
edges, and then deleting each edge, independently, with probability 1/2. Using standard re-

sults in random graph theory (e.g., Lemma 1.3 and Theorem 1.4 in [7]), this random graph

behaves similarly to the Erdős-Rényi graph with q := p/2. In particular, since Gn,p/2 has an

independent set of size Ω(n), so does Gn,m,1/2.

It is easy to see that the independent sets in G are just the lower-triangular principal

submatrices of Rn,p.

As already mentioned, Theorem 2(a) is completed by noting that for p < C/n, an easy

application of Turán’s theorem (or ad-hoc methods) gives us an independent set of size Ω(n).

3 Proof of Theorem 2(b)

Let F be a finite field with F := |F|. As mentioned in Theorem 2, we allow F = F (n) to depend

on n. In this section, we need to bound some quantities away from others, and we do that

generously.

Let us say that a tee shape is a set T = I × [n] ∪ [n]× I, for some I ⊂ [n]. A tee matrix is a

tee shape T together with a mapping N : T → F which satisfies

Nk,k = 1 for all k ∈ I, and Nk,ℓNℓ,k = 0 for all (k, ℓ) ∈ I × [n], k 6= ℓ. (1)

The order of the tee shape/matrix is |I|, and the rank of the tee matrix is the rank of the

matrix NI×I .

For a matrix M and a tee matrix N with tee shape T , we say that M contains the tee

matrix N , if MT = N .

Lemma 6. Let M be a matrix with rank s := rkM , which contains a tee matrix N of rank s.
Then M is the only matrix of rank s which contains N .

In other words, the entries outside of the tee shape are uniquely determined by the entries

inside the tee shape.

Proof. Let T = I × [n] ∪ [n]× I be the tee shape of a tee matrix N contained in M .

Since NI×I = MI×I and rkNI×I = s = rkM , there is a row set I1 ⊆ I of size s = rkM
and a column set I2 ⊆ I of size s such that rkMI1×I2 = s. This implies that M is uniquely

determined, among the matrices of rank s, by MT ′ with T ′ := I1 × [n] ∪ [n]× I2 ⊆ T . (Indeed,

3



since the rows of MI1×[n] are linearly independent and span the row space of M , every row in

M is a unique linear combination of the rows in MI1×[n]; since the rows in MI1×I2 are linearly

independent, this linear combination is uniquely determined by the rows of M[n]×I2 .)

Hence, M is the only matrix M ′ with rkM ′ = s and M ′
T ′ = MT ′ . Trivially, then, M is the

only matrix M ′ with rkM ′ = s and M ′
T = MT = N .

Lemma 7. For r ≤ n/5 and m ≤ 2r(n− r)/3, there are at most

O(1) ·
(

n

2r

)

·
(

2r(n− r)

m

)

· (2F )m

matrices of rank at most r over F which contain a tee matrix of order 2r with at most m
nonzeros.

Proof. By the Lemma 6, the number of these matrices is upper bounded by the number of

tee matrices (of all ranks) of order 2r with at most k nonzeros.

The tee shape is uniquely determined by the set I ⊆ [n]. Hence, the number of tee shapes

of order 2r is
(

n

2r

)

. (∗)

The number of ways to choose the support a tee matrix. Suppose that the tee matrix has h
nonzeros. Due to (1), h nonzeros must be chosen from

(

2r
2

)

+ 2r(n − 2r) ≤ 2r(n − r) opposite

pairs. Since h < 2r(n− r)/2, we upper bound this by

(

2r(n− r)

h

)

.

For each of the h opposite pairs, we have to pick one side, which gives a factor of 2h. Finally,

picking, a number in F for each of the entries designated as nonzero gives a factor of (F −1)h.

For summing over h = 0, . . . ,m, first of all, remember that
∑(1−ε)j/2

i=0

(

j
i

)

= Oε(1) ·
(

j
(1−ε)j/2

)

(e.g., Theorem 1.1 in [2], with p = 1/2, u := 1 + ε). Since m ≤ 2r(n− r)/3, we conclude

m
∑

h=0

(

2r(n− r)

h

)

= O(1) ·
(

2r(n− r)

m

)

(with an absolute constant in the big-Oh). Hence, we find that the number of tee matrices

(with fixed tee shape) is at most

m
∑

h=0

(

2r(n− r)

h

)

2h(F − 1)h ≤ (2F )m
m
∑

h=0

(

2r(n− r)

h

)

= O(1) · (2F )m ·
(

2r(n− r)

m

)

.

Multiplying by (∗), the statement of the lemma follows.

Lemma 8. Let r ≤ n/5. Every matrix M of rank at most r contains a tee matrix of order 2r
and rank rkM .

Proof. There is a row set I1 of size s := rkM and a column set I2 of size s such that rkMI1×I2 =
s. Take I be an arbitrary set of size 2r containing I1 ∪ I2, and T := I × [n] ∪ [n] × I. Clearly,

M contains the tee matrix N := MT , which is of order 2r and rank s = rkM .

Lemma 9. Let 100max(1, ln lnF )/n ≤ p ≤ 1, and n/(1000(max(1, lnF )) ≤ r ≤ n/100. A.a.s.,

every tee shape of order 2r contained in the random matrix R(n, p) has fewer than 15pr(n− r)
nonzeros.
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Proof. We take the standard Chernoff-like bound for the hypergeometric distribution of the

intersection of uniformly random p
(

n
2

)

-element subset (the diagonally opposite pairs of R(n, p)

which contain a 1-entry) of a
(

n
2

)

-element ground set (the total number of diagonally opposite

pairs) with a fixed 2r(n− r)-element subset (the opposite pairs in T ) of the ground set:2 With

λ := p2r(n − r) (the expected size of the intersection), if x ≥ 7λ, the probability that the

intersection has at least x elements is at most e−x.

Hence, the probability that the support of a fixed tee shape of order 2r is greater than

than 15pr(n− r) ≥ 14pr(n− r) + r is at most

e−14pr(n−r) ≤ e−r·14·99·max(1,ln lnF ) ≤ e−r·1000·max(1,ln lnF ))

Since the number of tee shapes is

(

n

r

)

≤ er(1+ln(n/r)) ≤ er(11+lnmax(1,lnF )),≤ er(11+max(1,ln lnF ))

we conclude that the probability that a dense tee shape exists in R(n, p) is at most e−Ω(r).

We are now ready for the main proof.

Proof of Theorem 2(b). Call a fooling-set matrix M regular, if Mk,k = 1 for all k. The mini-

mum rank over a fooling-set pattern is always attained by a regular matrix (divide every row

by the corresponding diagonal element).

Consider the event that there is a regular matrix M over F with σ(M) = R(n, p), and

rkM ≤ r := n/(2000 lnF ). By Lemma 8, M contains a tee matrix N of order 2r and rank

rkM . If the size of the support of N is larger than 15pr(n− r), then we are in the situation of

Lemma 9.

Otherwise, M is one of the

O(1) ·
(

n

2r

)

·
(

2r(n− r)

15pr(n− r)

)

· (2F )15pr(n−r)

matrices of Lemma 7.

Hence, the probability of said event is o(1) (from Lemma 9) plus at most an O(1) factor of

the following (with m := pn2/2 and ̺ := r/n) a constant

(

n

2r

)

·
(

2r(n− r)

15pr(n− r)

)

· (2F )15pr(n−r)

(

(

n
2

)

p
(

n
2

)

)

2p(
n

2
)2−O(pn)

=

(

n

2r

)

·
(

2r(n− r)

15pr(n− r)

)

· (2F )15pr(n−r)

(

n2/2

pn2/2

)

2pn
2/2−O(pn)

=

(

n

2̺n

)

·
(

4̺(1− ̺)n2/2

30p̺(1− ̺)n2/2

)

· (2F )30p̺(1−̺)n2/2

(

n2/2

pn2/2

)

2pn
2/2−O(pn)

=

(

n

2̺n

)

·
(

4̺(1− ̺) n2/2

30̺(1− ̺) pn2/2

)

· (2F )30̺(1−̺) pn2/2

(

n2/2

pn2/2

)

2pn
2/2−O(pn)

=: Q

Abbreviating α := 30̺(1− ̺) < 30̺, denoting H(t) := −t ln t− (1− t) ln(1 − t), and using

(

a

ta

)

= Θ
(

(ta)−
1/2

)

eH(t)a, for t ≤ 1/2 (2)

2Specifically, we use Theorem 2.10 applied to (2.11) in [11]
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(for a large, “≤” holds instead of “= Θ”), we find (the O(pn) exponent comes from replacing
(

n
2

)

by n2/2 in the denominator)

(

n

2̺n

)

230̺(1−̺) pn2/2

2pn
2/2−O(pn)

≤ eH(1/2̺)n−(ln 2)(1−α)pn2/3

≤ eH(1/2̺)n−(ln 2)(1−α)pn2/3

= en
(

H(1/2̺)−(ln 2)(1−α)pn/3
)

≤ en
(

H(1/2̺)−(ln 2)33(1−30̺)
)

= o(1),

as pn/2 ≥ 30 and 1 − α > 1 − 30̺, and the expression in the parentheses is negative for all

̺ ∈ [0, 3/100].
For the rest of the fraction Q above, using (2) again, we simplify

(

4̺(1− ̺) n2/2

30̺(1− ̺) pn2/2

)

F 30̺(1−̺) pn2/2

(

n2/2

pn2/2

) ≤

(

αn2/2

αpn2/2

)

F 30̺(1−̺) pn2/2

(

n2/2

pn2/2

) = O(1)·en
2/2·

(

(α−1)H(p)+pα lnF
)

.

Setting the expression in the parentheses to 0 and solving for ̺, we find

α ≥ ln(1/p)

ln(1/p) + lnF

suffices for Q = o(1); as α ≤ ̺, the same inequality with α replaced by ̺ is sufficient. This

completes the proof of the theorem.

4 Proof of Theorem 2(c)

In this section, following the idea of [9], we apply a theorem of Ronyai, Babai, and Ganapa-

thy [15] on the maximum number of zero-patterns of polynomials, which we now describe.

Let f = (fj)j=1,...,h be an h-tuple of polynomials in n variables x = (x1, x2, · · · , xn) over an

arbitrary field F. In line with the definitions above, for u ∈ F
n, the zero-nonzero pattern of f

at u is the vector σ(f(u)) ∈ {0, 1}h.

Theorem 10 ([15]). If h ≥ n and each fj has degree at most d then, for all m, the set

∣

∣

∣

∣

{

y ∈ {0, 1}h
∣

∣

∣ |y| ≤ m and y = σ(f(u)) for some u ∈ F
n
}

∣

∣

∣

∣

≤
(

n+md

n

)

.

In other words, the number of zero-nonzero patterns with Hamming weight at most m is at

most
(

n+md
n

)

.

As has been observed in [9], this theorem is implicit in the proof of Theorem 1.1 of [15]

(for the sake of completeness, the proof is repeated in the appendix). It has been used in the

context of minimum rank problems before (e.g., [14, 9]), but our use requires slightly more

work.

Given positive integers r < n, let us say that a G-pattern is an r×n matrix whose entries are

the symbels 0, 1, and ∗, with the following properties.

(1) Every column contains at most one 1, and every column containing a 1 contains no ∗s.

(2) In every row, the leftmost entry different from 0 is a 1, and every row contains at most

one 1.

6



(3) Rows containing a 1 (i.e., not all-zero rows) have smaller row indices than rows contain-

ing no 1 (i.e., all-zero rows). In other words, the all-zero rows are at the bottom of P .

We say that an r × n matrix Y has G-pattern P , if Yj,ℓ = 0 if Pj,ℓ = 0, and Yj,ℓ = 1 if

Pj,ℓ = 1. There is no restriction on the Yj,ℓ for which Pj,ℓ = ∗.

“G” stands for “Gaussian elimination using row operations”. We will need the following

tree easy lemmas.

Lemma 11. Any r×n matrix Y ′ can be transformed, by Gaussian elimination using only row

operations, into a matrix Y which has some G-pattern.

Proof (sketch). If Y ′ has no nonzero entries, we are done. Otherwise start with the left-most

column containing a nonzero entry, say (j, ℓ). Scale row j that entry a 1, permute the row to

the top, and add suitable multiples of it to the other rows to make every entry below the 1

vanish.

If all columns 1, . . . , ℓ have been treated such that column ℓ has a unique 1 in row, say

j(ℓ), consider the remaining matrix {j(ℓ) + 1, . . . r} × {ℓ + 1, . . . , n}. If every entry is a 0, we

are down. Otherwise, find the leftmost nonzero entry in the block; suppose it is in column

ℓ′ and row j′. Scale row j′ to make that entry a 1, permute row j′ to j(ℓ) + 1, and add

suitable multiples of it to all other rows {1, . . . , r} \ {j(ℓ)+1} to make every entry below the 1

vanish.

Lemma 12. For every r × n G-pattern matrix P , the number of ∗-entries in P is at most

r(n− r/2).

Proof (sketch). The G-pattern matrix P is uniquely determined by c1 < · · · < cs, the (sorted)

list of columns of P which contain a 1. With c0 := 0, for i = 1, . . . , s, if ci−1 < ci − 1, then

replacing ci by ci − 1 gives us a G-pattern matrix with one more ∗ entry. Hence, we may

assume that ci = i for i = 1, . . . , s. If s < r, then adding s+ 1 to the set of 1-columns cannot

decrease the number of ∗-entries (in fact, it increases the number, unless s + 1 = n). Hence,

we may assume that s = r. The number of ∗-entries in the resulting (unique) G-pattern

matrix is

n− 1 + · · ·+ n− r = rn− r(r + 1)/2 ≤ r(n− r/2),

as promised.

Lemma 13. Let ̺ ∈ ]0, .49]. The number of n× ̺n G-pattern matrices is at most

O(1) ·
(

n

̺n

)

(with an absolute constant in the big-O).

Proof (sketch). A G-pattern matrix is uniquely determined by the set of columns containing

a 1, which can be between 0 and ̺n. Hence, the number of n× ̺n G-pattern matrices is

̺n
∑

j=0

(

n

j

)

. (∗)

From here on, we do the usual tricks. As in the previous section, we use the helpful fact

(Theorem 1.1 in [2]) that

(∗) ≤ 1

1− ̺
1−̺

(

n

̺n

)

.

A swift calculation shows that 1/(1− ̺/(1− ̺)) ≤ 30, which completes the proof.

We are now ready to complete the Proof of Theorem 2(c).
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Proof of Theorem 2(c). Let M be a fooling-set matrix of size n and rank at most r. It can be

factored as M = XY , for an n × r matrix X and an r × n matrix Y . By Lemma 11, through

applying row operations to Y and corresponding column operations to X , we can assume

that Y has a G-pattern.

Now we use Theorem 10, for every G-pattern matrix separately. For a fixed G-pattern

matrix P , the variables of the polynomials are

• Xk,j , where (k, j) ranges over all pairs {1, . . . , n} × {1, . . . , r}; and

• Yj,ℓ, where (j, ℓ) ranges over all pairs {1, . . . , r} × {1, . . . , n} with Pj,ℓ = ∗.

The polynomials are: for every (k, ℓ) ∈ {1, . . . , n}2, with k 6= ℓ,

fk,ℓ =
∑

j
Pj,ℓ=1

Xk,j +
∑

j
Pj,ℓ=∗

Xk,jYj,ℓ.

Clearly, there are n(n− 1) polynomials; the number of variables is 2rn− r2/2, by Lemma 12

(and, if necessary, using “dummy” variables which have coefficient 0 always). The polynomi-

als have degree at most 2.

By Theorem 10, we find that the number of zero-nonzero patterns with Hamming weight

at most m of fooling-set matrices with rank at most r which result from this particular G-

pattern matrix P is at most
(

2rn− r2/2 + 2m

2rn− r2/2

)

.

Now, take a ̺ < 1/2, and let r := ̺n. Summing over all G-pattern matrices P , and

using Lemma 13, we find that the number of zero-nonzero patterns with Hamming weight

at most m of fooling-set matrices with rank at most ̺n is at most an absolute constant times
(

n

̺n

)(

(2̺− ̺2/2)n2 + 2m

(2̺− ̺2/2)n2

)

.

Now, take a constant p ∈ ]0, 1], and let m := ⌈p
(

n
2

)

⌉. The number of fooling-set patterns of

size n with density p is
(
(

n
2

)

m

)

2m,

and hence, the probability that the minimum rank of a fooling-set matrix with zero-nonzero

pattern R(n, p) has rank at most r is at most
(

n

̺n

)(

(2̺− ̺2/2)n2 + 2m

(2̺− ̺2/2)n2

)

(
(

n
2

)

m

)

2m
≤

(

n

̺n

)(

(2̺− ̺2/2)n2 + 2pn2/2

(2̺− ̺2/2)n2

)

(

n2/2

pn2/2

)

2pn
2/2+O(pn)

=

(

n

̺n

)(

αn2 + pn2

αn2

)

(

n2/2

pn2/2

)

2pn
2/2+O(pn)

where we have set α := 2̺ − ̺2/2. As in the previous section, we use (2) to estimate this

expression, and we obtain

ln









(

n

̺n

)(

αn2 + pn2

αn2

)

(

n2/2

pn2/2

)

2pn
2/2+O(pn)









= nH(̺) + n2
(

αH
(

α/(α+ p)
)

− 1
2H(p)− (ln 2)p/2

)

+O(pn).

The dominant term is the one where n appears quadratic. The expression 1
2H(p) + (ln 2)p/2

takes values in ]0, 1[. For every fixed p, the function g : α 7→ αH
(

α/(α+ p)
)

is strictly increas-

ing on [0, 1/2] and satisfies g(0) = 0. Hence, for every given constant p, there exists an α for

which the coefficient after the n2 is negative.

(As indicated in the introduction, such an α must tend to 0 with p → 0.)
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In Jaroslav Nešetřil and Marco Pellegrini, editors, The Seventh European Conference
on Combinatorics, Graph Theory and Applications, volume 16 of CRM series, pages

383–390. CRM, 2013.
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A Proof of Lemma 1

Let (x1, y1), . . . , (xn, yn) ∈ X×Y be a fooling set in f , and let A be a matrix over F with Ax,y = 0
iff f(x, y) = 0. Consider the matrix B := A ⊗ A⊤. This matrix B contains a permutation

matrix of size n as a submatrix: for i = 1, . . . , n, B(xi,xi),(yi,yi) = Axi,yi
Ayi,xi

= 1 but for i 6= j,
B(xi,xi),(yj,yj) = Axi,yj

Ayi,xj
= 0. Hence,

n ≤ rk(B) = rk(A)2.

B Proof of Theorem 10

Since Theorem 10 is not explicitly proven in [15], we give here the slight modification of the

proof of Theorem 1.1 from Theorem 10 which proves Theorem 10. The only difference be-

tween the following proof and that in [15] is where the proof below upper-bounds the degrees

of the polynomials gy.

Proof of Theorem 10. Consider the set

S :=
{

y ∈ {0, 1}h
∣

∣

∣ |y| ≤ m and y = σ(f(u)) for some u ∈ F
n
}

.

For each such y, let uy ∈ F
n be such that σ(f(uy)) = y, and let

gy :=
∏

j,yj=1

fj.

Now define a square matrix A whose row- and column set is S, and whose (y, z) entry is

gy(uz). We have

gy(uz) 6= 0 ⇐⇒ z ≥ y,

with entry-wise comparison, and “1 > 0”. Hence, if the rows and columns are arranged

according to this partial ordering of S, the matrix is upper triangular, with nonzero diagonal,

so it has full rank, |S|. This implies that the gy, y ∈ S, are linearly independent.

Since each gy has degree at most |y| · d ≤ md, and the space of polynomials in n variables

with degree at most md has dimension
(

n+md
md

)

, it follows that S has at most that many

elements.
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