Skip to main content

On Probabilistic Algorithm for Solving Almost All Instances of the Set Partition Problem

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10304))

Included in the following conference series:

Abstract

Earlier, I.V. Latkin and the author have shown the set partition problem can be reduced to the problem of finding singular points of a cubic hypersurface. The article focuses on the new link between two different research areas as well as on methods to look for singular points or to confirm the smoothness of the hypersurface. Our approach is based on the description of tangent lines to the hypersurface. The existence of at least one singular point imposes a restriction on the algebraic equation that determines the set of tangent lines passing through the selected point of the space. This equation is based on the formula for the discriminant of a univariate polynomial. We have proposed a probabilistic algorithm for some set of inputs of the set partition problem. The probabilistic algorithm is not proved to have polynomial complexity.

The research has been carried out at the expense of the Russian Science Foundation, project no. 14–50–00150.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  2. Margulies, S., Onn, S., Pasechnik, D.V.: On the complexity of Hilbert refutations for partition. J. Symbolic Comput. 66, 70–83 (2015). doi:10.1016/j.jsc.2013.06.005

    Article  MathSciNet  MATH  Google Scholar 

  3. Herrero, M.I., Jeronimo, G., Sabia, J.: Affine solution sets of sparse polynomial systems. J. Symbolic Comput. 51, 34–54 (2013). doi:10.1016/j.jsc.2012.03.006

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodur, M., Dash, S., Günlük, O.: Cutting planes from extended LP formulations. Math. Program. 161(1), 159–192 (2017). doi:10.1007/s10107-016-1005-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Tamir, A.: New pseudopolynomial complexity bounds for the bounded and other integer Knapsack related problems. Oper. Res. Lett. 37(5), 303–306 (2009). doi:10.1016/j.orl.2009.05.003

    Article  MathSciNet  MATH  Google Scholar 

  6. Claßen, G., Koster, A.M.C.A., Schmeink, A.: The multi-band robust knapsack problem — a dynamic programming approach. Discrete Optimization. 18, 123–149 (2015). doi:10.1016/j.disopt.2015.09.007

    Article  MathSciNet  Google Scholar 

  7. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980). doi:10.1145/322217.322225

    Article  MathSciNet  MATH  Google Scholar 

  8. Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Generic-case complexity, decision problems in group theory, and random walks. J. Algebra 264, 665–694 (2003). doi:10.1016/S0021-8693(03)00167-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Rybalov, A.N.: A generic relation on recursively enumerable sets. Algebra Logic 55(5), 387–393 (2016). doi:10.1007/s10469-016-9410-9

    Article  Google Scholar 

  10. Latkin, I.V., Seliverstov, A.V.: Computational complexity of fragments of the theory of complex numbers. Bulletin of University of Karaganda. Ser. Mathematics, vol. 1, pp. 47–55 (2015). (in Russian)

    Google Scholar 

  11. Seliverstov, A.V.: On cubic hypersurfaces with involutions. In: Vassiliev, N.N. (ed.) International Conference Polynomial Computer Algebra 2016, St. Petersburg, 18–22 April 2016, pp. 74–77. VVM Publishing, Saint Petersburg (2016)

    Google Scholar 

  12. Nesterov, Y.: Random walk in a simplex and quadratic optimization over convex polytopes. CORE Discussion Paper 2003/71 (2003)

    Google Scholar 

  13. Hillar, C.J., Lim, L.H.: Most tensor problems are NP-hard. J. ACM 60(6), 45 (2013). doi:10.1145/2512329

    Article  MathSciNet  MATH  Google Scholar 

  14. Gel’fand, I.M., Zelevinskii, A.V., Kapranov, M.M.: Discriminants of polynomials in several variables and triangulations of Newton polyhedra. Leningrad Math. J. 2(3), 499–505 (1991)

    MathSciNet  Google Scholar 

  15. Chistov, A.L.: An improvement of the complexity bound for solving systems of polynomial equations. J. Math. Sci. 181(6), 921–924 (2012). doi:10.1007/s10958-012-0724-4

    Article  MathSciNet  MATH  Google Scholar 

  16. Kulikov, V.R., Stepanenko, V.A.: On solutions and Waring’s formulae for the system of \(n\) algebraic equations with \(n\) unknowns. St. Petersburg Math. J. 26(5), 839–848 (2015). doi:10.1090/spmj/1361

    Article  MathSciNet  MATH  Google Scholar 

  17. Bokut, L.A., Chen, Y.: Gröbner-Shirshov bases and their calculation. Bull. Math. Sci. 4(3), 325–395 (2014). doi:10.1007/s13373-014-0054-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of the \(F_5\) Gröbner basis algorithm. J. Symbolic Comput. 70, 49–70 (2015). doi:10.1016/j.jsc.2014.09.025

    Article  MathSciNet  MATH  Google Scholar 

  19. Eder, C., Faugère, J.-C.: A survey on signature-based algorithms for computing Gröbner bases. J. Symbolic Comput. 80(3), 719–784 (2017). doi:10.1016/j.jsc.2016.07.031

    Article  MathSciNet  Google Scholar 

  20. Mayr, E.W., Ritscher, S.: Dimension-dependent bounds for Gröbner bases of polynomial ideals. J. Symbolic Comput. 49, 78–94 (2013). doi:10.1016/j.jsc.2011.12.018

    Article  MathSciNet  MATH  Google Scholar 

  21. Malaschonok, G., Scherbinin, A.: Triangular decomposition of matrices in a domain. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 292–306. Springer, Cham (2015). doi:10.1007/978-3-319-24021-3_22

    Chapter  Google Scholar 

  22. Vershik, A.M., Sporyshev, P.V.: An estimate of the average number of steps in the simplex method, and problems in asymptotic integral geometry. Sov. Math. Dokl. 28, 195–199 (1983)

    MATH  Google Scholar 

  23. Smale, S.: On the average number of steps of the simplex method of linear programming. Math. Program. 27(3), 241–262 (1983). doi:10.1007/BF02591902

    Article  MathSciNet  MATH  Google Scholar 

  24. Dubickas, A., Smyth, C.J.: Length of the sum and product of algebraic numbers. Math. Notes. 77, 787–793 (2005). doi:10.1007/s11006-005-0079-y

    Article  MathSciNet  MATH  Google Scholar 

  25. Kollár, J.: Unirationality of cubic hypersurfaces. J. Inst. Math. Jussieu. 1(3), 467–476 (2002). doi:10.1017/S1474748002000117

    Article  MathSciNet  MATH  Google Scholar 

  26. Cenk, M., Hasan, M.A.: On the arithmetic complexity of Strassen-like matrix multiplications. J. Symbolic Comput. 80(2), 484–501 (2017). doi:10.1016/j.jsc.2016.07.004

    Article  MathSciNet  MATH  Google Scholar 

  27. Hedén, I.: Russell’s hypersurface from a geometric point of view. Osaka J. Math. 53(3), 637–644 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mark Spivakovsky, Sergei P. Tarasov, Mikhail N. Vyalyi, and the anonymous reviewers for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr V. Seliverstov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Seliverstov, A.V. (2017). On Probabilistic Algorithm for Solving Almost All Instances of the Set Partition Problem. In: Weil, P. (eds) Computer Science – Theory and Applications. CSR 2017. Lecture Notes in Computer Science(), vol 10304. Springer, Cham. https://doi.org/10.1007/978-3-319-58747-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58747-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58746-2

  • Online ISBN: 978-3-319-58747-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics