Skip to main content

Local Mean Multiphase Segmentation with HMMF Models

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

This paper presents two similar multiphase segmentation methods for recovery of segments in complex weakly structured images, with local and global bias fields, because they can occur in some X-ray CT imaging modalities. Derived from the Mumford-Shah functional, the proposed methods assume a fixed number of classes. They use local image average as discriminative features. Region labels are modelled by Hidden Markov Measure Field Models. The resulting problems are solved by straightforward alternate minimisation methods, particularly simple in the case of quadratic regularisation of the labels. We demonstrate the proposed methods’ capabilities on synthetic data using classical segmentation criteria as well as criteria specific to geoscience. We also present a few examples using real data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bertsekas, D.: Incremental proximal methods for large scale convex optimization. Math. Program. Ser. B. 129, 163–195 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brox, T., Cremers, D.: On local regions models and a statistical interpretation of the piecewise smooth Mumford-Shah functional. Int. J. Comput. Vis. 84, 184–193 (2009)

    Article  Google Scholar 

  3. Buzug, T.N.: Computed Tomography from Photon Statistics to Modern Cone Beam CT. Springer, Berlin (2008)

    Google Scholar 

  4. Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM J. Imaging Sci. 5(4), 1113–1158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, T.F., Vese, L.A.: Active contours without edges. Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  6. Hansen, P.C., O’Leary, D.P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14(6), 1487–1503 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Held, M., Crowder, P.W.W.: Validation of subgradient optimization. Math. Program. 6, 62–88 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, C., Zeng, L.: An active contour model for the segmentation of images with intensity inhomogeneities and bias field estimation. PloS One 10(4), e0120399 (2015)

    Article  Google Scholar 

  9. Lauze, F., Nielsen, M.: From inpainting to active contours. Int. J. Comput. Vis. 79(1), 31–43 (2008)

    Article  MATH  Google Scholar 

  10. Marroquin, J.L., Santana, E.A., Botello, S.: Hidden Markov measure field models for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25(11), 1380–1387 (2003)

    Article  Google Scholar 

  11. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Müter, D., Pedersen, S., Sørensen, H.O., Feidenhans’L, R., Stipp, S.L.S.: Improved segmentation of X-ray tomography data from porous rocks using a dual filtering approach. Comput. Geosci. 49, 131–139 (2012)

    Article  Google Scholar 

  13. Müter, D., Sørensen, H.O., Jha, D., Harti, R., Dalby, K.N., Suhonen, H., Feidenhans, R., Engstrøm, F., Stipp, S.L.S.: Resolution dependence of petrophysical parameters derived from X-ray tomography of chalk. Appl. Phys. Lett. 105, 4 (2014)

    Article  Google Scholar 

  14. Nielsen, M., Florack, L., Deriche, R.: Regularization, scale-space, and edge detection filters. J. Math. Imaging Vis. 7, 291–307 (1997)

    Article  MathSciNet  Google Scholar 

  15. Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Med. Imaging 18(9), 737–752 (1999)

    Article  Google Scholar 

  16. Wang, X.-F., Huang, D.-S., Xu, H.: An efficient local chan-vese model for image segmentation. Pattern Recognit. 43(3), 603–618 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

J. Hansen and F. Lauze acknowledge funding from the Innovation Fund Denmark and Mærsk Oil and Gas A/S, for the P\(^3\) Project. We thank Henning Osholm Sørensen for giving us access to the experimental tomography data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Daniel Kirstejn Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hansen, J.D.K., Lauze, F. (2017). Local Mean Multiphase Segmentation with HMMF Models. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics