Skip to main content

Time Discrete Extrapolation in a Riemannian Space of Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

The Riemannian metamorphosis model introduced and analyzed in [7, 12] is taken into account to develop an image extrapolation tool in the space of images. To this end, the variational time discretization for the geodesic interpolation proposed in [2] is picked up to define a discrete exponential map. For a given weakly differentiable initial image and a sufficiently small initial image variation it is shown how to compute a discrete geodesic extrapolation path in the space of images. The resulting discrete paths are indeed local minimizers of the corresponding discrete path energy. A spatial Galerkin discretization with cubic splines on coarse meshes for image deformations and piecewise bilinear finite elements on fine meshes for image intensity functions is used to derive a fully practical algorithm. The method is applied to real images and image variations recorded with a digital camera.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    First painting by A. Kauffmann (public domain, see http://commons.wikimedia.org/wiki/File:AngelikaspsKauffmannsps-spsSelfspsPortraitsps-sps1784.jpg), second painting by R. Peale (GFDL, see http://en.wikipedia.org/wiki/File:MaryspsDenison.jpg).

References

  1. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  2. Berkels, B., Effland, A., Rumpf, M.: Time discrete geodesic paths in the space of images. SIAM J. Imaging Sci. 8(3), 1457–1488 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56, 587–600 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Holm, D., Trouvé, A., Younes, L.: The Euler-Poincaré theory of metamorphosis. Q. Appl. Math. 67, 661–685 (2009)

    Article  MATH  Google Scholar 

  5. Klingenberg, W.P.A.: Riemannian Geometry. de Gruyter Studies in Mathematics, vol. 1, 2nd edn. Walter de Gruyter & Co., Berlin (1995)

    Book  MATH  Google Scholar 

  6. Lorenzi, M., Pennec, X.: Geodesics, parallel transport & one-parameter subgroups for diffeomorphic image registration. Int. J. Comput. Vis. 105(2), 111–127 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: a general framework. Int. J. Comput. Vis. 41(1–2), 61–84 (2001)

    Article  MATH  Google Scholar 

  8. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  9. Rumpf, M., Wirth, B.: Variational time discretization of geodesic calculus. IMA J. Numer. Anal. 35(3), 1011–1046 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput. Vis. 28(3), 213–221 (1998)

    Article  MathSciNet  Google Scholar 

  11. Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Trouvé, A., Younes, L.: Metamorphoses through Lie group action. Found. Comput. Math. 5(2), 173–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vialard, F.-X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vis. 97, 229–241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vialard, F.-X., Risser, L., Rueckert, D., Holm, D.D.: Diffeomorphic atlas estimation using geodesic shooting on volumetric images. Ann. BMVA 2012, 1–12 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Effland .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Here, we derive Eq. (9) from the system of Euler-Lagrange equations (6), (7) and (8). By using the transformation formula the energy \(\mathcal {W}^D\) can be rewritten as follows

$$\begin{aligned} \mathcal {W}^D[{u}_1,{u}_2,\phi _2]=\int _\varOmega |D\phi _2-{\mathbbm {1}}|^2+\gamma |\varDelta ^m\phi _2|^2+\frac{1}{\delta }\frac{({u}_2-{u}_1\circ \phi _2^{-1})^2}{\det (D\phi _2)\circ \phi _2^{-1}}{\,\mathrm {d}}x. \end{aligned}$$

Now we rewrite the Euler-Lagrange equation (8). To this end, we use that

$$\begin{aligned} \partial _{\phi _2}\phi _2^{-1}(\psi )=-((D\phi _2)^{-1}\psi )\circ \phi _2^{-1}, \end{aligned}$$

which follows by differentiating \((\phi _2+\epsilon \psi )\circ (\phi _2+\epsilon \psi )^{-1}={\mathbbm {1}}\) with respect to \(\epsilon \), and that \(\partial _A\det (A)(B)={{\mathrm{cof}}}(A):B\) for \(A\in GL(n)\) and \(B\in \mathbb {R}^{n,n}\) with \({{\mathrm{cof}}}A = (\det A)A^{-T}\). Thus, we obtain

$$\begin{aligned}&\int _\varOmega 2D\phi _2:D\psi +2\gamma \varDelta ^m\phi _2\cdot \varDelta ^m\psi +\frac{2}{\delta }({u}_2-{u}_1\circ \phi _2^{-1})\frac{(\nabla {u}_1\cdot (D\phi _2)^{-1}\psi )\circ \phi ^{-1}_2}{\det (D\phi _2)\circ \phi ^{-1}_2} \\&\qquad +\frac{({u}_2-{u}_1\circ \phi _2^{-1})^2}{\delta (\det D\phi _2)^2\circ \phi _2^{-1}}\left( {{\mathrm{cof}}}D\phi _2 \!:\! (D^2\phi _2(D\phi _2)^{-1}\psi )-{{\mathrm{cof}}}D\phi _2\!:\!D\psi \right) \circ \phi _2^{-1}{\,\mathrm {d}}x =0. \end{aligned}$$

A further application of the transformation formula with respect to \(\phi _2\) yields

$$\begin{aligned}&\int _\varOmega 2D\phi _2:D\psi +2\gamma \varDelta ^m\phi _2\cdot \varDelta ^m \psi + \frac{2}{\delta }({u}_2\circ \phi _2-{u}_1)\nabla {u}_1\cdot (D\phi _2)^{-1}\psi \nonumber \\&\qquad +\frac{1}{\delta }\frac{({u}_2\circ \phi _2-{u}_1)^2}{\det D\phi _2} \left( {{\mathrm{cof}}}D\phi _2 :(D^2\phi _2(D\phi _2)^{-1}\psi )-{{\mathrm{cof}}}D\phi _2 : D\psi \right) {\,\mathrm {d}}x=0. \end{aligned}$$
(13)

To remove the dependency of the function \({u}_2\) above, we employ the pointwise condition

$$\begin{aligned} {u}_2\circ \phi _2-{u}_1=\frac{{u}_1-{u}_0\circ \phi _1^{-1}}{\det (D\phi _1)\circ \phi _1^{-1}} \end{aligned}$$

for a.e. \(x\in \varOmega \), which directly follows from (6). Inserting this in (13) and using the integral transformation formula we achieve

$$\begin{aligned}&\int _\varOmega 2D\phi _2:D\psi +2\gamma \varDelta ^m\phi _2\cdot \varDelta ^m\psi +\frac{2}{\delta }({u}_1\circ \phi _1-{u}_0)(\nabla {u}_1\cdot (D\phi _2)^{-1}\psi )\circ \phi _1\\&\quad +\frac{1}{\delta }\frac{({u}_1\circ \phi _1-{u}_0)^2}{\det D\phi _1}\left( \frac{{{\mathrm{cof}}}D\phi _2:(D^2\phi _2(D\phi _2)^{-1}\psi )-{{\mathrm{cof}}}D\phi _2 : D\psi }{\det D\phi _2}\right) \circ \phi _1{\,\mathrm {d}}x=0. \end{aligned}$$

Here, we take into account the identity \({{\mathrm{cof}}}(A)=\det (A)A^{-T}\). Next, we consider the test function \(\zeta :=((D\phi _2)^{-1}\psi )\circ \phi _1\) in (7). To justify this, we need a regularity result for polyharmonic PDEs to show \(\zeta \in H^{2m}_0(\varOmega )\). Inserting \(\zeta \) into (7) we get

$$\begin{aligned}&-\int _\varOmega \frac{2}{\delta }({u}_1\circ \phi _1-{u}_0)(\nabla {u}_1\cdot (D\phi _2)^{-1}\psi )\circ \phi _1{\,\mathrm {d}}x \\&\quad =\int _\varOmega 2\gamma \varDelta ^m\phi _1\cdot \varDelta ^m(((D\phi _2)^{-1}\psi )\circ \phi _1)+2D\phi _1:D(((D\phi _2)^{-1}\psi )\circ \phi _1){\,\mathrm {d}}x. \end{aligned}$$

By adding this identity to the above equation we finally obtain (9).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Effland, A., Rumpf, M., Schäfer, F. (2017). Time Discrete Extrapolation in a Riemannian Space of Images. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics