Skip to main content

Adaptive Discretizations for Non-smooth Variational Vision

  • Conference paper
  • First Online:
  • 1351 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

Variational problems in vision are solved numerically on the pixel lattice because it provides the simplest computational grid to discretize the input images, even though a uniform grid seldom matches the complexity of the solution. To adapt the complexity of the discretization to the solution, it is necessary to adopt finite-element techniques that match the resolution of piecewise polynomial bases to the resolving power of the variational model, but such techniques have been overlooked for nonsmooth variational models. To address this issue, we investigate the pros and cons of finite-element discretizations for nonsmooth variational problems in vision, their multiresolution properties, and the optimization algorithms to solve them. Our 2 and 3D experiments in image segmentation, optical flow, stereo, and depth fusion reveal the conditions where finite-element can outperform finite-difference discretizations by achieving significant computational savings with a minor loss of accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Les, P., Wayne, T.: The Nurbs Book. Springer, Berlin (1997)

    MATH  Google Scholar 

  2. Sederberg, T.W., Zheng, J., Sewell, D., Sabin, M.: Non-uniform recursive subdivision surfaces. In: SIGGRAPH, pp. 387–394 (1998)

    Google Scholar 

  3. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans. Graph. 32, 1–13 (2013)

    Article  MATH  Google Scholar 

  4. Calakli, F., Taubin, G.: SSD: smooth signed distance surface reconstruction. Comput. Graph. Forum 30, 1993–2002 (2011)

    Article  Google Scholar 

  5. Ummenhofer, B., Brox, T.: Global, dense multiscale reconstruction for a billion points. In: CVPR (2015)

    Google Scholar 

  6. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. SOA, vol. 49, pp. 185–212. Springer, New York (2011). doi:10.1007/978-1-4419-9569-8_10

    Chapter  Google Scholar 

  7. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balzer, J., Morwald, T.: Isogeometric finite-elements methods and variational reconstruction tasks in vision – a perfect match. In: CVPR, pp. 1624–1631 (2012)

    Google Scholar 

  9. Morwald, T., Balzer, J., Vincze, M.: Direct optimization of T-splines based on Multiview Stereo. In: 2014 2nd International Conference on 3D Vision (3DV) (2014)

    Google Scholar 

  10. Estellers, V., Scott, M., Tew, K., Soatto, S.: Robust poisson surface reconstruction. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 525–537. Springer, Cham (2015). doi:10.1007/978-3-319-18461-6_42

    Google Scholar 

  11. Cremers, D., Soatto, S.: Motion competition: a variational approach to piecewise parametric motion segmentation. IJCV 62, 249–265 (2004)

    Article  Google Scholar 

  12. Nir, T., Bruckstein, A., Kimmel, R.: Over-parameterized variational optical flow. IJCV 76(2), 205–216 (2008)

    Article  Google Scholar 

  13. Sun, D., Sudderth, E.B., Black, M.J.: Layered segmentation and optical flow estimation over time. In: CVPR, pp. 1768–1775, June 2012

    Google Scholar 

  14. Yang, J., Li, H.: Dense, accurate optical flow estimation with piecewise parametric model. In: CVPR, pp. 1019–1027 (2015)

    Google Scholar 

  15. Vogel, C., Schindler, K., Roth, S.: Piecewise rigid scene flow. In: ICCV, pp. 1377–1384 (2013)

    Google Scholar 

  16. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45, 272–293 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for TV-L 1 optical flow. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds.) Statistical and Geometrical Approaches to Visual Motion Analysis. LNCS, vol. 5604, pp. 23–45. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03061-1_2

    Chapter  Google Scholar 

  19. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: CVPR, pp. 2432–2439, June 2010

    Google Scholar 

  20. Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV-L1 range image integration. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  21. Merrell, P., Akbarzadeh, A., Wang, L., Mordohai, P., Frahm, J.M., Yang, R., Nistér, D., Pollefeys, M.: Real-time visibility-based fusion of depth maps. In: ICCV (2007)

    Google Scholar 

  22. Graber, G., Pock, T., Bischof, H.: Online 3D reconstruction using convex optimization. In: ICCV Work 2011, pp. 708–711 (2011)

    Google Scholar 

  23. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation, North Chelmsford (2012)

    Google Scholar 

  24. Kirchner, H., Niemann, H.: Finite element method for determination of optical flow. Pattern Recogn. Lett. 13, 131–141 (1992)

    Article  Google Scholar 

  25. Cohen, I., Herlin, I.: Non uniform multiresolution method for optical flow computation. In: Berger, M.O., Deriche, R., Herlin, I., Jaffré, J., Morel, J.M. (eds.) ICAOS 1996. LNCIS, vol. 219, pp. 315–322. Springer, Heidelberg (1996). doi:10.1007/3-540-76076-8_144

    Google Scholar 

  26. Schnörr, C.: A study of a convex variational diffusion approach for image segmentation and feature extraction. J. Math. Imaging Vis. 8, 271–292 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yaacobson, F., Givoli, D.: An adaptive finite element procedure for the image segmentation problem. Int. J. Numer. Methods Biomed. Eng. 14, 621–632 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Preußer, T., Rumpf, M.: An adaptive finite element method for large scale image processing. J. Vis. Commun. Image Represent. 11, 183–195 (2000)

    Article  Google Scholar 

  29. Bänsch, E., Mikula, K.: A coarsening finite element strategy in image selective smoothing. Comput. Vis. Sci. 1, 53–61 (1997)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially funded by SNSF grant P300P2-161038, NSF grant 442511-SS-22001 and AFOSR grant FA9550-15-1-0229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Estellers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Estellers, V., Soatto, S. (2017). Adaptive Discretizations for Non-smooth Variational Vision. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics