Skip to main content

Analytic Existence and Uniqueness Results for PDE-Based Image Reconstruction with the Laplacian

  • Conference paper
  • First Online:
Book cover Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

Partial differential equations are well suited for dealing with image reconstruction tasks such as inpainting. One of the most successful mathematical frameworks for image reconstruction relies on variations of the Laplace equation with different boundary conditions. In this work we analyse these formulations and discuss the existence and uniqueness of solutions of corresponding boundary value problems, as well as their regularity from an analytic point of view. Our work not only sheds light on useful aspects of the well posedness of several standard problem formulations in image reconstruction but also aggregates them in a common framework. In addition, the performed analysis guides us to specify two new formulations of the classic image reconstruction problem that may give rise to new developments in image reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azzam, A., Kreyszig, E.: On solutions of elliptic equations satisfying mixed boundary conditions. SIAM J. Math. Anal. 13(2), 254–262 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM J. Appl. Math. 70(1), 333–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertalmio, M., Bertozzi, A., Sapiro, G.: Navier-stokes, fluid dynamics, and image and video inpainting. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 355–362. IEEE (2001)

    Google Scholar 

  4. Bertalmío, M., Caselles, V., Haro, G., Sapiro, G.: PDE-based image and surface inpainting. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 33–61. Springer, Heidelberg (2006). doi:10.1007/0-387-28831-7_3

    Chapter  Google Scholar 

  5. Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Company (2000)

    Google Scholar 

  6. Bertozzi, A., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Proc. 16(1), 285–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  8. Chen, Y., Ranftl, R., Pock, T.: A bi-level view of inpainting-based image compression. ArXiv Report arXiv:1401.4112 (2014)

  9. Dret, H.L., Lucquin, B.: Partial Differential Equations: Modeling, Analysis and Numerical Approximation. Birkhäuser, Basel (2016)

    Book  MATH  Google Scholar 

  10. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  11. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.-P.: Towards PDE-based image compression. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 37–48. Springer, Heidelberg (2005). doi:10.1007/11567646_4

    Chapter  Google Scholar 

  12. Hoeltgen, L., Setzer, S., Weickert, J.: An optimal control approach to find sparse data for laplace interpolation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 151–164. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40395-8_12

    Chapter  Google Scholar 

  13. Hoeltgen, L.: Optimal interpolation data for image reconstructions. Ph.D. thesis, Saarland University (2014)

    Google Scholar 

  14. Hoeltgen, L., Weickert, J.: Why does non-binary mask optimisation work for diffusion-based image compression? In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 85–98. Springer, Cham (2015). doi:10.1007/978-3-319-14612-6_7

    Google Scholar 

  15. Li, Y., Jeong, D., Choi, J., Lee, S., Kim, J.: Fast local image inpainting based on the Allen-Cahn model. Digit. Sig. Process. 37, 65–74 (2015)

    Article  Google Scholar 

  16. Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S.: Edge-based compression of cartoon-like images with homogeneous diffusion. Pattern Recogn. 44(9), 1859–1873 (2011)

    Article  Google Scholar 

  17. Mainberger, M., Hoffmann, S., Weickert, J., Tang, C.H., Johannsen, D., Neumann, F., Doerr, B.: Optimising spatial and tonal data for homogeneous diffusion inpainting. In: Bruckstein, A.M., Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 26–37. Springer, Heidelberg (2012). doi:10.1007/978-3-642-24785-9_3

    Chapter  Google Scholar 

  18. Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J.: Evaluating the true potential of diffusion-based inpainting in a compression context. Sig. Process.: Image Commun. 46, 40–53 (2016)

    Google Scholar 

  19. Schmaltz, C., Weickert, J., Bruhn, A.: Beating the quality of JPEG 2000 with anisotropic diffusion. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 452–461. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03798-6_46

    Chapter  Google Scholar 

  20. Schönlieb, C.B.: Partial Differential Equation Methods for Image Inpainting, Cambridge Monographs on Applied and Computational Mathematics, vol. 29. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  21. Tang, C.: Mixed boundary value problems for quasilinear elliptic equations. Ph.D. thesis, Iowa State University (2013)

    Google Scholar 

  22. Zaremba, S.: Sur un probléme mixte relatif à l’équation de Laplace. Bulletin International de l’Académie des Sciences de Cracovie, pp. 313–344 (1910)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Hoeltgen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hoeltgen, L., Harris, I., Breuß, M., Kleefeld, A. (2017). Analytic Existence and Uniqueness Results for PDE-Based Image Reconstruction with the Laplacian. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics