Agile Modeling with UML

Bernhard Rumpe

Agile Modeling with UML

Code Generation, Testing, Refactoring

@ Springer

Bernhard Rumpe
Software Engineering
RWTH Aachen University
Aachen

Germany

ISBN 978-3-319-58861-2 ISBN 978-3-319-58862-9 (eBook)
DOI 10.1007/978-3-319-58862-9

Library of Congress Control Number: 2017939615

Based on a translation from the German language edition: Agile Modellierung mit UML — Codegenerierung,
Testfille, Refactoring © Springer Verlag Berlin Heidelberg 2005, 2012. All Rights Reserved.

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Foreword to the First Edition

Today, software systems are generally complex products and the use of engi-
neering techniques is essential if the systems are to be produced successfully.
Over the last three decades, this finding, which is frequently quoted but is
now more than 30 years old, has led to intensive work on languages, meth-
ods, and tools in the IT field of Software Engineering to support the software
creation process. However, despite great advances, we must concede that in
comparison with other much older engineering disciplines, many questions
still remain unanswered and new questions are constantly arising.

For example, a superficial comparison with the field of construction
quickly shows that in there, international standards have been set for creat-
ing models of buildings, analyzing the models, and then realizing the mod-
els in actual constructions. The distribution of roles and tasks is generally
accepted and there are professional groups such as architects, structural en-
gineers, as well as engineers for construction above and below ground.

This type of model-based approach is increasingly finding favor in soft-
ware development. In recent years in particular, this has led to international
attempts to define a generally accepted modeling language so that just like
in construction, a model created by a software architect can be analyzed by
a “software structural engineer” before it is implemented in executable pro-
grams by specialists responsible for the realization, i.e., programmers.

This standardized modeling language is the Unified Modeling Language
and it is subject to continuous further development by an international con-
sortium in a gradual process. Due to the wide range of interested parties in
the standardization process, the current version 2.0 of UML has emerged as
a language family with a great many open questions with regard to scope,
semantic foundation, and methodological use.

Over the past few years, Professor Rumpe has dedicated himself to this
problem in his scientific and practical work, the results of which are now

A%

VI Preface

available to a wide audience in two books. In these books, Professor Rumpe
focuses on the methodological process. In line with the current finding that
lightweight, agile development processes offer great advantages particularly
in smaller and medium-sized development projects, Professor Rumpe has
developed techniques for an agile development process. On this basis, he
has then defined a suitable modeling language by defining a language profile
for UML. In this language profile, UML/P, Professor Rumpe has made UML
leaner and rounded it off in some places to produce a manageable version of
UML in particular for an agile development process.

Professor Rumpe has explained this language UML/P in detail in his
previous book “Modeling with UML”, which offers a significant basis for
the current book (the content of the previous book is briefly summarized).
The current book, “Agile Modeling with UML”, is dedicated primarily to the
methodological treatment of UML/P.

Professor Rumpe addresses three core topics of model-based software de-
velopment. These are:

e Code generation, i.e., the automated transition from a model to an exe-
cutable program

e Systematic testing of programs using a model-based, structured defini-
tion of test cases

o Further development of models using techniques for transformation and
refactoring

Professor Rumpe initially examines all three core topics systematically
and introduces the underlying concepts and techniques. For each topic, he
then presents his approach based on the language UML/P. This division and
clear separation between basic principles and applications make the presen-
tation extremely easy to understand and also allows the reader to transfer
this knowledge directly to other model-based approaches and languages.

Overall, this book is of great benefit to those who practice software de-
velopment, for academic training in the field of Software Engineering, and
for research in the area of model-based software development. Practitioners
learn how to use modern model-based techniques to improve the production
of code and thus significantly increase quality. Students are given both im-
portant scientific basics as well as direct applications of the basic techniques
presented. And last but not least, the book gives scientists a comprehensive
overview of the current status of development in the three core topics it cov-
ers.

The book therefore represents an important milestone in the development
of concepts and techniques for a model-based and engineering-style software
development and thus offers the basis for further work in the future. Prac-
tical experience of using the concepts will validate their stability. Scientific,
conceptual work will provide further research on the topic of model trans-
formation based on graph transformation in particular. It will also deepen
the area of model analysis in the direction of structural model analysis.

Preface VII

This deeper understanding of the IT methods in model-based software
development is a crucial prerequisite for a successful combination with other
engineering-style methods, such as in the field of embedded systems or the
area of intelligent, user-friendly products. The fact that the language UML/P
is not specific to any domain also offers a lot of opportunities here.

Gregor Engels

Paderborn, September 2004

Preface to the Second Edition

As this is the second book on agile software development with UML, in-
terested readers will probably be familiar with the first book [Rum16]. The
preface in [Rum16] holds true for both books and here, therefore, I refer to
the first book, in which the following aspects are discussed:

o Agile methods and model-based methods are both successful software
development techniques.
So far, the two approaches have not been harmonized or integrated.
However, the basic idea of using models instead of programming lan-
guages provides the opportunity to do exactly that.
This book contributes to this integration in the form of UML/P.
In the second edition, UML/P has been updated and adapted to UML 2.3
and Java Version 6.

I'hope you enjoy using this book and its contents.

Bernhard Rumpe

Aachen, Germany, March 2012

VIII Preface

Preface to the English and 3rd Edition

Colleagues have asked when the English version of the two books would
be published. The first one was finished in 2016 and now, here comes the
second one. I wish all the readers, students, teachers, and developers fun
and inspiration for their work.

I'would like to thank all the people that helped me translating and qual-
ity checking this book, namely Tracey Duffy for the main translation, Sylvia
Gunder and Gabi Heuschen for continuous support, Robert Eikermann for
the Latex and continuous integration setup, Kai Adam (for reviewing Chap-
ters 5,7 and 10), Vincent Bertram (8), Arvid Butting (3,8,10), Anabel Derlam
(1), Katrina Engelbrecht (3,9,10), Robert Eikermann (3,8,9), Timo Greifenberg
(6,7,11), Lars Hermerschmidt (11,), Steffen Hillemacher (3,7,11), Katrin Holl-
dobler (9,10), Oliver Kautz (3,8,10), Thomas Kurpick (2), Evgeny Kusmenko
(2,5), Achim Lindt (1,2,9), Matthias Markthaler (7,9), Klaus Miiller (4), Pe-
dram Mir Seyed Nazari (1,5), Dimitri Plotnikov (1,4,5), Deni Raco (6,7,8),
Alexander Roth (4), Christoph Schulze (6,8,11), Michael von Wenckstern
(2,3,4,6), and Andreas Wortmann (1,11).

Bernhard Rumpe

Aachen, Germany, February 2017

Further material:

http://mbse.se-rwth.de

Contents

1 Introduction.......
1.1 The Goals and Content of Volume 1

1.2 Additional Goals of This Book

1.3 OVerview ...

1.4 Notational Conventions,

2 Agile and UML-Based Methodology
2.1 The Software Engineering Portfolio

2.2 Extreme Programming (XP)l

2.3 Selected Development Practices............................
2.3.1 Pair Programming.................ooiiiiii....

2.3.2 Test-First Approach..............

2.3.3 Refactoring i

2.4 Agile UML-Based Approach...............................

25 SUMMATY ...t

3 CompactOverviewof UML/P
3.1 ClassDiagrams.............. ...
3.1.1 Classes and Inheritance

3.1.2 Associations il

3.1.3 Representation and Stereotypes

3.2 Object Constraint Language
321 OCL/POVerVIEWoiiet i

322 OCLLOGIC.....coiii i

3.2.3 Container Data Structures...........................

324 FunctionsinOCL o ..

3.3 ObjectDiagramscooiiiiiiiiiiiiiiiii ..
3.3.1 Introduction to Object Diagrams.....................

3.3.2 Compositions ..o

3.3.3 The Meaning of an Object Diagram

3.34 The Logic of Object Diagrams

Contents

3.4 Statecharts 56
3.4.1 Properties of Statecharts 56
3.4.2 Representation of Statecharts........................ 60

3.5 SequenceDiagramsol 65

Principles of Code Generation 71

41 Concepts of Code Generation 74
411 Constructive Interpretation of Models................ 76
4.1.2 Tests versus Implementation 78
4.1.3 Tests and Implementation from the Same Model 81

42 Code Generation Techniques 82
42.1 Platform-Dependent Code Generation 82
422 Functionality and Flexibility......................... 85
4.2.3 Controlling the Code Generation 88

4.3 Semantics of Code Generation 89

4.4 Flexible Parameterization of a Code Generator 91
441 ImplementingTools 92
4.42 Representation of Script Transformations............. 94

Transformations for Code Generation 99

5.1 Transformations for Class Diagrams........................ 100
511 Attributes......... 100
512 Methods......... ... i 103
5.1.3 Associations il 106
5.1.4 Qualified Associationsccoviiiiiin... 110
5.1.5 Compositionsciiiiiiiiiii 114
51.6 Classesouiiiiiiiiiiiii 116
5.1.7 Object Instantiation....................... 119

5.2 Transformations for Object Diagrams....................... 123
52.1 Object Diagrams Used For Constructive Code 123
52.2 Example of a Constructive Code Generation.......... 125
5.2.3 Object Diagram Used as Predicate 125
524 An Object Diagram Describes a Structure Modification 129
525 Object Diagramsand OCL 131

5.3 Code Generation from OCL 132
5.3.1 An OCL Expression as a Predicate 133
532 OCLLOGIC....oviiiiiiii i 135
533 OCLTIYPeS....cvviiiiiii i 137
534 ATypeasanExtension 139
5.3.5 Navigation and Flattening 140
5.3.6 Quantifiers and Special Operators 141
5.3.7 Method Specifications 141
5.3.8 Inheritance of Method Specifications 145

5.4 Executing Statecharts ool 146

54.1 Method Statecharts, 146

54.2
54.3

Contents

The Transformationof States
The Transformation of Transitions

5.5 Transformations for Sequence Diagrams

5.5.1
552

A Sequence Diagram as a Test Driver
A Sequence Diagram as a Predicate

5.6 Summary of Code Generation

Principles of TestingwithModels......................... ...
6.1 An Introduction to the Challenges of Testing

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8

Terminology for Testing.
The Goals of Testing Activities.......................
Error Categories...............ooooiiiiiiiii it
Terminology Definitions for Test Procedures..........
Finding Suitable Test Data
Language-Specific Sources for Errors.................
UML/P as the Test and Implementation Language
A Notation for Defining Test Cases

6.2 Defining TestCasesooiiiaL.

6.2.1
6.2.2
6.2.3

Implementing a Test Case Operatively
Comparing Test Results
TheJUnittoolt

Model-Based Tests
7.1 Test Data and Expected Results using Object Diagrams
7.2 Invariants as Code Instrumentations
7.3 Method Specifications L

73.1
732
733

Method Specification for Code Instrumentation
Method Specifications for Determining Test Cases
Defining Test Cases using Method Specifications..

74 Sequence Diagrams i,

74.1
742
743
744
7.4.5
7.4.6

Triggers ...
Completeness and Matching
Noncausal Sequence Diagrams
Multiple Sequence Diagrams in a Single Test
Multiple Triggers in a Sequence Diagram.............
Interaction Patterns...............l

7.5 Statechartsco i

751
752
753
754
755
7.5.6

Executable Statecharts
Using Statecharts to Describe Sequences
Statecharts used in Testing
Coverage Metrics. ...l
Transition Tests instead of Test Sequences
Further Approaches

7.6 Summary and Open Issues Regarding Testing

XII

Contents

Design Patterns for Testing 217

81 Dummiesooiiiiiiii 219

8.1.1 Dummies for Layers of the Architecture.............. 221

8.12 DummieswithaMemory........................... 222

8.1.3 Using a Sequence Diagram instead of Memory 223

8.1.4 Catching Side Effects 224

8.2 Designing Testable Programs 224

8.2.1 Static Variablesand Methods 225

8.2.2 Side Effects in Constructors 228

8.2.3 Object Instantiation................................. 228

8.2.4 Predefined Frameworks and Components............ 230

83 Handlingof Time i, 232

8.3.1 Simulating TimeinaDummy 233

8.3.2 A Variable Time Setting in a Sequence Diagram 234

8.3.3 Patterns for Simulating Time 236

834 Timers..........coiiiiiiiiiiii 237

8.4 Concurrency with Threads 237

8.4.1 Separate Scheduling 238

8.4.2 Sequence Diagrams as Scheduling Models............ 240

84.3 HandlingThreads.................................. 241

8.4.4 A Pattern for Handling Threads 241

8.4.5 The Problems of Forcing Sequential Tests............. 243

8.5 Distribution and Communication 245

8.5.1 Simulating the Distribution 245

8.5.2 Simulating a Singleton................. 247

8.5.3 OCL Constraints across Several Locations 248

8.5.4 Communication Simulates Distributed Processes 249

8.5.5 Pattern for Distribution and Communication 251

8.6 Summary i 253

Refactoring as a Model Transformation 255

9.1 Introductory Examples for Transformations................. 256

9.2 The Methodology of Refactoring 261
9.2.1 Technical and Methodological Prerequisites for

Refactoringo o i 261

9.2.2 The Qualityof the Design 263

9.2.3 Refactoring, Evolution, and Reuse 264

9.3 Model Transformations.ot 265

9.3.1 Forms of Model Transformations 265

9.3.2 The Semantics of a Model Transformation 266

9.3.3 The Concept of Observation......................... 272

9.3.4 TransformationRules............................... 277

9.3.5 The Correctness of Transformation Rules 278

9.3.6 Transformational Software Development Approaches . 280
9.3.7 Transformation Languages.......................... 282

Contents XIII

10 Refactoring of Models 285
10.1 Sources for UML/P Refactoring Rules 286
10.1.1 Defining and Representing Refactoring Rules 288
10.1.2 RefactoringinlJava/P............................ 289
10.1.3 Refactoring Class Diagrams 295
10.1.4 Refactoringin OCL.............................. 301
10.1.5 Introducing Test Patterns as Refactoring........... 302
10.2 A Superimposition Method for Changing Data Structures... 306
10.2.1 Approach for Changing the Data Structure 306
10.2.2 Example: Representing a Bag of Money............ 308
10.2.3 Example: Introducing the Chair in the Auction
SYSeM . ..ottt 312
10.3 Summary of Refactoring Techniques 320
11 Summary, Further Reading and Outlook 323
T1.1 0 SUMMATY . .o e 324
11.2 OUutlooK ..ot 325
11.3 Agile Model Based Software Engineering 328
11.4 Generative Software Engineering 331
11.5 Unified Modeling Language (UML) 332
11.6 Domain Specific Languages (DSLs) 332
11.7 Software Language Engineering (SLE) 335
11.8 Modeling Software Architecture and the MontiArc Tool. ... 339
11.9 Variability and Software Product Lines (SPL) 342
11.10 Semantics of Modeling Languages 344
11.11 Compositionality and Modularity of Models and
Languagesoi i 348
11.12 Evolution and Transformation of Models 349
11.13 State Based Modeling (Automata) 351
11.14 Modelling Cyber-Physical Systems (CPS) 354
11.15 Applications in Cloud Computing and Data-Intensive
SYSIEMS . . oot 355
11.16 Modelling for Energy Management 356
11.17 Modelling Robotics, 358
11.18 Automotive Software 359
11.19 Autonomic Driving and Driver Intelligence 360
References 363

	Preface
	Foreword to the First Edition
	Preface to the Second Edition
	Preface to the English and 3rd Edition

	Contents

