
Detecting elderly behavior shift via smart devices and 
stigmergic receptive fields 

Marco Avvenuti, Cinzia Bernardeschi, Mario G. C. A. Cimino, 
Guglielmo Cola, Andrea Domenici, and Gigliola Vaglini 

 

Department of Information Engineering, University of Pisa,  
Largo L. Lazzarino, 1, 56122 Pisa, Italy 

{m.avvenuti,c.bernardeschi, m.cimino, 
g.cola, a.domenici, g.vaglini}@iet.unipi.it 

Abstract. Smart devices are increasingly used for health monitoring. We 
present a novel connectionist architecture to detect elderly behavior shift from 
data gathered by wearable or ambient sensing technology. Behavior shift is a 
pattern used in many applications: it may indicate initial signs of disease or 
deviations in performance. In the proposed architecture, the input samples are 
aggregated by functional structures called trails. The trailing process is inspired 
by stigmergy, an insects’ coordination mechanism, and is managed by 
computational units called Stigmergic Receptive Fields (SRFs), which provide a 
(dis-)similarity measure between sample streams. This paper presents the 
architectural view, and summarizes the achievements related to three 
application case studies, i.e., indoor mobility behavior, sleep behavior, and 
physical activity behavior. 
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1   Introduction and motivation 

Today there is a great availability of smart devices for health, ranging from general 
purpose ones (such as phones, watches, clothes, shoes, and socks) for measuring 
steps, heart rate, body motion, etc., to special medical devices for measuring blood 
glucose, blood pressure, oximeter, and so on. The term smart is commonly due to: 
miniaturization, physical integration with everyday life, capability of autonomous 
connection and sharing data through the Web. 

 However, smart applications should also include mechanisms to prevent cognitive 
overload. As a matter of fact, most users when equipped with interfaces displaying 
data or simple activities, like heart rate or pedometer, lose interest after a short period 
of time. Studies have shown that monitoring and noticing behavioral events is more 
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persuasive than displaying sequences of values or labels, because it requires less 
cognitive work and less user’s conscious attention [1]. 

In the literature, many systems have been developed to detect daily activities, such 
as feeding, dressing, sleeping, walking, watching TV, etc. as a basis to represent 
human behavior [2]. The detection of daily activities usually deploys different 
techniques, including machine learning and probabilistic modeling, to deal with the 
inherent complex, user-dependent, time varying and incomplete nature of human-
driven sensory data and behavioral logic. Actually, much work has to be done before 
such systems can be regularly managed. Another important problem of this approach 
is that domain modeling raises proprietary and privacy concerns, due to the direct 
access and processing of personal data sources and to the explicit modeling and 
tracking of personal behavior. Moreover, when standardized daily activities are used 
by health professionals to assess the functional status of people, some important 
requirements exist: the monitoring system should use a limited amount of states, be 
highly flexible, handle uncertainty, and allow a personalization of what to monitor 
and how to notice it. 

To cope with the above issues, we present a novel approach, consisting in two 
paradigm shifts: a different monitoring approach and a novel connectionist 
architecture with efficient setting and configuration. 

The monitoring approach is based on a general-purpose wearable device and 
minimally affecting the subject's everyday life [3]. The widespread adoption of 
wearable devices offers an unprecedented opportunity of continuous monitoring of 
users’ health [4]. For example, the use of commonly available smartphones to detect 
abnormal and potentially dangerous behavior – like falls or deviation in gait pattern – 
has been extensively investigated in the literature [5][6]. However, exploiting 
smartphones to monitor health has some limitations: (i) smartphones are not carried 
by their users for long periods during the day (e.g., the smartphone may be placed on 
a desk while being at home); (ii) users can carry the smartphones at different body 
positions or even in a shoulder bag, making data analysis more difficult and less 
trustworthy. In this context, a great enhancement could be represented by the adoption 
of wrist-worn devices, like smartwatches or smart bracelets. These devices can be 
worn continuously to enable deep analysis of mobility and sleep patterns. Moreover, 
the position and orientation of the device with respect to the user's body is known in 
advance. We remark that the approach focuses on detecting user’s behavior shift, a 
pattern used here to indicate initial signs of disease [7]. Detection of explicit user 
activities and diagnosis of specific diseases are not within the scope of the approach. 

The proposed architecture relies on advanced bio-inspired techniques to simplify 
the management effort. In the proposed architecture, the input samples are aggregated 
by functional structures called trails. The trailing process is inspired by stigmergy 
[2][8], an insects’ coordination mechanism, and is managed by computational units 
called Stigmergic Receptive Fields (SRFs), which provide a (dis-) similarity measure 
between sample streams. SRFs are organized into a multilayer system, and adapted to 
contextual behavior by means of the Differential Evolution (DE) algorithm [9]. Thus, 
the novelty of the undertaken study relates to the structure of a receptive field and the 
way in which such receptive fields are formed and adapted.  

The concept of receptive field derives from a computational mechanism employed 
by biological information processing systems [10]. In our approach to digital 



information processing, it relates to an architectural style consisting of a collection of 
general purpose local models (archetypes) that detects a micro-behavior of the entire 
modeling domain. Since micro-behavior is not individual, a receptive field can be 
reused for a broad class of patients/users: the use of SRF is then proposed as a more 
general and effective way of designing micro-pattern detection. Moreover, SRF can 
be used in a multilayered architecture, thus providing further levels of processing so 
as to realize a macro analysis. 

The paper is structured as follows. Section 2 focuses on the system architecture, 
including the smart devices adopted, the structure and topology of a multilayer 
architecture. In Section 3, three application case studies are presented. Finally, 
Section 4 summarizes conclusions and future work. 

2   System architecture 

In our research different smartwatches and localization systems have been used, 
differing on accuracy, type of input data, battery duration, and so on. The research 
regarding sleep analysis was carried out using an LG Watch R smartwatch, which 
ensures battery duration higher than 8 hours. The study on physical activity was based 
on a Moto 360 Sport smartwatch (Fig.1), which provides better accuracy. Both 
models include an accelerometer, gyroscope, barometric altimeter, and optical hearth 
rate monitor (PPG), and can be combined with ambient sensors to achieve accurate 
indoor positioning of the user. An indoor positioning system used in the study of the 
mobility behavior is the n-Core localization system, which exploits a mobile unit 
worn by the user and a static ZigBee wireless network [2]. This system combines 
measures such as Receive Signal Strength and Link Quality Indicator with a set of 
locating techniques to track users' position in real time. 

 

  
(a) (b) 

Fig. 1. (a) front side and (b) back side of the Moto 360 Sport smartwatch. 
 

The processing system periodically takes samples of the user activity parameters as 
an input and releases a mark in a computer-simulated spatial environment, thus 
allowing the accumulation of marks as a trail. A mark is a trapezoid with three 
attributes: intensity (height), width, and position. The position corresponds to the 
value of the sample where the mark is left. Mark intensity proportionally decreases 
with the distance from the position. Mark intensity in the trail has a temporal decay 
(the percentage of intensity decreased after a step of time). Hence, an isolated mark 
after a certain time tends to disappear. The time that a mark takes to disappear is 
longer than the period taken by the system to release a new mark; thus, consecutive 
samples close to a specific value (clump) will superimpose, so increasing the trail 



intensity. The trail can then be considered as a short-term and a short-size action 
memory. Thanks to the width, the trail captures a coarse spatiotemporal structure in 
the domain space, which hides the micro-complexity and the micro-variability in data. 
Trails of different sample streams can be compared to provide a degree of similarity 
between a current micro-behavior, represented by a segment of the time series, and a 
reference (or archetype) micro-behavior, referring to a pure form time series which 
embodies a behavioral class. An example of class is raising heartbeat, which means 
that the heartbeat shows a sudden increase of level over time.  

The similarity processing is managed by the SRF. Furthermore, an SRF is adaptive: 
its structural parameters, such as the mark attributes, are tuned by means of the DE 
algorithm. The use of SRFs is proposed as a more general and effective way of 
designing micro-pattern detection. Moreover, SRF can be used in a multilayered 
architecture, thus providing further levels of processing so as to realize a macro 
analysis. Fig. 2 shows the structure of a single SRF. Here, the input is made of the 
data sample of the reference signal ( )d k , represented in gray color, together with the 
data samples of the current signal ( )d k , which periodically feed the SRF. The first 
three processing modules of the SRF are exactly the same for the reference and the 
input segment. The modules of the reference signal are represented as gray shadow of 
the corresponding modules of the input segment. 

 

 

Fig. 2.  Structure of a Stigmergic Receptive Field. 

A normalization of the continuous-valued samples is assumed. First, normalized 
data samples undergo the clumping process, which is a kind of soft discretization of 
the samples to a set of levels. Second, the marking process produces a mark 
corresponding to each data sample and represented as a trapezoidal form in figure. 
Third, the trailing process creates the trail structure exploiting the accumulation and 
the evaporation over time of the marks. Fourth, similarity compares the current and 
reference (or archetype) trails. Fifth, activation increases/decreases the rate of 
similarity. Here, the term “activation” is taken from neural sciences and it is related to 
the requirement that a signal must reach a certain level before a processing layer can 
fire to the next layer [11]. 

Each SRF should be properly parameterized to enable an effective samples 
aggregation and output activation. For example, short-life marks evaporate too fast, 



preventing aggregation and pattern reinforcement, whereas long-life marks cause 
early activation. The adaptation module uses the DE algorithm to adapt the 
parameters of the SRF with respect to the fitness, which is computed over a tuning 
set. In Fig. 2 the tuning set is denoted by asterisks: it is a sequence of (input, desired 
output) pairs, represented on the left. In a fitting solution, the desired and actual 
output values (represented on the right) are very close. 

 Fig. 3 (a) shows the topology of a stigmergic perceptron. In neurocomputing, a 
perceptron computes a single output value from multiple input values, by forming a 
linear combination of them, parameterized for achieving some desired mapping. 
Similarly, the stigmergic perceptron detects the similarity between many reference 
signals (or archetypes) and the current input samples by forming a linear combination 
of the most similar SRFs, parameterized for achieving some desired mapping [10].  

 
(a) 

 
 

 
 
 

(b) 

Fig. 3.  (a) Topology of a stigmergic perceptron. (b) Topology of a multilayer architecture of SRF. 

 
More specifically, Fig. 3 (a) shows six SRFs, whose archetypes are mapped to the 

natural-valued interval [0,5]. In the output layer, the average of such natural numbers 
weighted by the SRF activations is calculated, to provide a linear combination of 
neighboring archetypes in the real-valued interval [0,5]. Fig. 3 (b) shows the topology 
of a multilayer architecture of SRFs. In the first layer, each SRF is fed with the input 
data series, to provide the degree of similarity to each archetypal pattern. The 
activation of each SRF is then used to generate a higher level time series through the 
stigmergic perceptron. In the next layer, another SRF is used to provide the degree of 
similarity between two time series of archetypes, i.e., current and reference time 
series. Here, the adaptation is based on similarity samples provided by a human 
expert. This layer carries out a macro-level similarity between two time series. 

An interesting property of the proposed approach is that the provided mapping is 
not explicitly modeled at design-time and then it is not directly interpretable. This 
offers a kind of information blurring of the human data, and can be enhanced to solve 
privacy issues. Indeed, stigmergy preserves privacy since it controls the level of 
perturbation of information, which means that information is scrambled to be partially 
hidden but up to preserve its utility. Stigmergy allows masking plain information by 



replacing it with a mark, as a surrogate keeping some piece of the original 
information. Furthermore, analog data provided by marker-based stigmergy allows 
measurements with continuously changing qualities, suitable for multi-valued 
classification. 

3   Application Case studies 

This Section summarizes three application case studies: indoor mobility behavior, 
sleep behavior, and physical activity behavior. 

The research on indoor mobility behavior aims to monitor elderly people living 
alone in their houses, by using a localization system [2]. The purpose is to face in a 
more proactive and preventive way age-related chronic diseases such as depression, 
cardiac insufficiency, arthritis, and so on. Indeed, disease situations initially lack 
noticeable symptoms and then do not cause emotional involvement that could activate 
decision-making, but gradual deviations of generic behavioral patterns such as 
mobility or vital parameters. The indoor position of the elderly is periodically 
estimated by a localization system, and taken as an input to the monitoring system. 
The similarity between the current and a reference track senses the variation of the 
current behavior situation with respect to what was judged a normal behavior. The 
normal behavior of the elderly is established in a long-term period of stable health 
conditions by a relative and a healthcare professional. The system has analyzed the 
data collected by a woman aged 90, affected by depression, who has been monitored 
for 24 days. The system was able to detect behavioral shift caused by depression 
symptoms, such as decreased appetite and withdrawal from socializing, increased 
total sleep time and nocturnal awakenings. 

The research on sleep behavior aims to detect sleep deprivation [12][13]. Chronic 
sleep deficit has been linked to long-term health issues such as diabetes, high blood 
pressure and heart disease, and recent studies suggest that it is the real cause of 
burnout. Recently developed smart-watches have been used for monitoring sleep 
patterns variation, because they can also feature sensors. Sensed data, i.e. heartbeat 
rate and wrist acceleration, are processed to produce a sleep stigmergic trail of the 
watch wearer. By comparing the current stigmergic trail to a trail produced in normal 
sleeping, it can be derived a sort of digital sleep diary, enabling the doctor to 
accurately diagnose any disorder. The system has analyzed the data collected by a 
woman aged 88, affected by arterial hypertension, who has worn a smartwatch during 
20 nights. As a result, the system was able to detect behavioral shift caused by 
awakenings and an overall sleep quality. 

The research on physical activity behavior is a part of a larger project whose 
purpose is to detect frailty in older adults [14]. Physical activity is important for 
healthy ageing. Better insight into objectively measured activity levels in older adults 
is needed, since most previous studies employed self-report. This is particularly 
important for the elderly population, as a healthier lifestyle would enable independent 
living to occur for a longer period of time. The effect of leading an increasing 
sedentary lifestyle is also not evident straightaway. Thus, an alert on a behavioral shift 
event is significant to the user. Data have been collected among 60+, 70+ and 80+ 



years old subjects, measuring heartbeat rate, acceleration and pedometer in a variety 
of physical activity levels. The system generates an activity trail of the elderly, which 
can be compared with a reference trail to provide physical activity levels. As a result, 
it is able to detect behavioral shift caused by physical weakness and loss of strength. 

The first experimentation of the proposed system was carried out in the indoor 
mobility behavior study. Subsequently, the system was improved with additional 
modules/features, and then experimented in the sleep behavior study. Recently, 
modules/features have been included for the study on physical activity behavior. The 
modules/features experimented in each application case study are shown in Table 1. 

Table 1.  Case studies and related modules/features experimented.  

Module/Feature 
type 

Application case study and related module/feature 

Indoor mobility 
behavior 

Sleep behavior Physical activity behavior  

Smart device Localization system Smartwatch Smartwatch 
Sampling rate 1 sample / 5 min. 10 samples / sec. 10 samples / sec. 
Input - indoor position  - wrist acceleration 

- heartbeat rate 
- wrist acceleration 
- heartbeat rate 
- pedometer 

1D/2D Input 2D 1D 1D 
Processing 
modules 

- marking 
- trailing 
- similarity 
- activation 

- normalization 
- clumping 
- marking 
- trailing 
- similarity 
- activation 
- adaptation 
- perceptron 
- multilayer 

- normalization 
- clumping 
- marking 
- trailing 
- similarity 
- activation 
- adaptation 
- perceptron 
- multilayer 
- multichannel 

Output Behavioral shift  
caused by depression 

Behavioral shift  
caused by awakenings 
and sleep quality 

Behavioral shift caused by 
physical weakness and loss 
of strength 

Subject Woman aged 90 Woman aged 88 
Man aged 72 

Men aged 60+, 70+, 80+ 

Observation 
period 

24 days 20 nights 30 days 

3   Conclusions and future work 

This paper summarizes our research activity on monitoring elderly behavior shift. 
A novel approach based on stigmergic computing paradigm and smart devices is 
proposed. The challenges in the field are outlined, the novel architectural approach is 
illustrated and applied to three different application case studies. The proposed 
architecture has been developed and experimented, making possible the initial roll-out 
of the approach into real environments. Other pilot case studies are currently 



undertaken, to demonstrate that the system is effective in achieving the expected 
performance on a number of cases. 
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