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Abstract. The neurobiology of Alzheimer’s disease (AD) has been ex-
tensively studied by applying network analysis techniques to activation
patterns in fMRI images. However, the structure of the directed networks
representing the activation patterns, and their differences in healthy and
Alzheimer’s people remain poorly understood. In this paper, we aim to
identify the differences in fMRI activation network structure for patients
with AD, late mild cognitive impairment (LMCI) and early mild cogni-
tive impairment (EMCI). We use a directed graph theoretical approach
combined with entropic measurements to distinguish subjects falling into
these three categories and the normal healthy control (HC) group. We
explore three methods. The first is based on applying linear discriminant
analysis to vectors representing the in and out degree statistics of dif-
ferent anatomical regions. The second uses an entropic measure of node
assortativity to gauge the asymmetries in the node with in and out de-
gree. The final approach selects the most salient anatomical brain regions
and uses the degree statistics of the connecting directed edges.
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1 Introduction

Functional magnetic resonance imaging (fMRI) provides a sophisticated means
of studying the neuropathophysiology associated with Alzheimer’s disease (AD)
[1]. Specifically, the blood oxygen level-dependent (BOLD) signal in fMRI in-
dicates the activation potential of different brain regions, and neuronal activity
between the various brain regions can be determined by measuring the correla-
tion between activation signals. The resulting network representation of region
activity has proved useful in understanding the functional working of the brain
[2]. Functional neuroimaging has also proved useful in understanding Alzheimer’s
disease (AD) via the analysis of intrinsic brain connectivity [3]. Abnormal brain
function in AD is characterized by progressive impairment of episodic memory
and other cognitive domains, resulting in dementia and, ultimately, death [5].
Although there is converging evidence about the identity of the affected regions
in fMRI, it is not clear how this abnormality affects the functional organization
of the whole brain.
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Tools from complex network analysis provide a convenient approach for un-
derstanding the functional association of different regions in the brain [3]. The
approach is to characterize the topological structures present in the brain and to
quantify the functional interaction between brain regions, using the mathemati-
cal study of networks and graph theory. Graph theory offers an attractive route
since it provides effective tools for characterizing network structures together
with their intrinsic complexity. This approach has led to the design of several
practical methods for characterizing the global and local structure of undirected
graphs [4]. Features based on the global and local measures of connectivity are
widely used in functional brain analysis [6]. By comparing the structural and
functional network topologies between different populations of subjects, graph
theory provides meaningful and easily computable measurements to reveal con-
nectivity abnormalities in both neurological and psychiatric disorders [5].

Unfortunately, there is relatively little literature aimed at studying structural
network features using directed graphs. The reason for that is the vast major-
ity of techniques suggested by graph theory pertain to undirected rather than
directed graphs. However, directed graphs are a more natural representation for
brain structure, since they allow the temporal causality of activation signals for
different anatomical structures in the brain. Moreover, Granger causality pro-
vides a powerful tool that can be used to investigate the direction of information
flow between different brain regions [6]. When combined with machine learning
algorithms, classification exhibited from directed graphs provides an effective
way of detecting functional regions associated with Alzheimer’s disease [6]. By
explicitly defining anatomical and functional connections in a directed manner
between brain regions, fMRI data may be analyzed in a more detailed way and
used to identify the different stages of neurodegenerative diseases [5, 6].

This paper is motivated by the need to fill this important gap in the litera-
ture, and to establish effective methods for measuring the structural properties
of directed graphs representing inter-regional casual networks extracted from
fMRI brain data. In particular, in order to characterize the functional organi-
zation of the brain, our approach uses as its starting point the von Neumann
entropy for directed graphs. In a recent paper, Ye et al. [4] have derived an ap-
proximation of the Neumann entropy of a directed graph that depends on the
in and out degrees of nodes in a directed graph. Thus it provides a natural way
of capturing the flow of information across a directed network, based on the
asymmetry of edges entering and exiting its nodes. We aim to use the directed
network entropy to develop graph analytical methods to measure the degree of
functional connectivity in brain networks.

We demonstrate that the resulting techniques can be used to distinguish the
fMRI data from healthy controls and AD objects. The AD subjects exhibit sig-
nificantly lower regional connectivity and exhibit disrupted the global functional
organization when compared to healthy controls. Moreover, we apply linear dis-
criminant analysis to brain network data from two groups of subjects with early
mild cognitive impairment (EMCI) and late mild cognitive impairment (LMCI).
Our results indicate that the node in and out degree statistics together with their
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associated von Neumann entropy may be useful as a graph-based indicator to
distinguish Alzheimer’s disease subjects from normal healthy control population.

2 Directed Graphs in fMRI Networks

2.1 Preliminaries

LetG(V,E) be a directed graph with node set V and directed edge set E ⊆ V×V .
Each edge e = (u, v) ∈ E, has a start vertex u and end-vertex v. The adjacency
matrix A of the directed graph is defined as

A =

{
1 if (u, v) ∈ E
0 otherwise.

(1)

For the node u the in-degree and out-degree of node are

dinu =
∑
v∈V

Avu doutu =
∑
v∈V

Auv (2)

and the total degree of node in the directed graph is du = dinu + doutu . An edge is
said to be unidirectional if Auv = 1 and Avu = 0, and bidirectional if Auv = 1
and Avu = 1.

2.2 Von Neumann Entropy for Directed Graphs

For an undirected graph the von Neumann entropy [8] computed from the nor-
malised Laplacian spectrum has been shown to be effective for network charac-
terization. In fact, Han et al.[9] have shown how to approximate the calculation
of von Neumann entropy in terms of simple degree statistics. Their approxima-
tion allows the cubic complexity of computing the von Neumann entropy from
the Laplacian spectrum, to be reduced to one of quadratic complexity using
simple edge degree statistics, i.e.

SU = 1− 1

|V |
− 1

|V |2
∑

(u,v)∈E

1

dudv
(3)

This expression for the von Neumann entropy has been shown to be an
effective tool for characterizing structural properties of networks. Moreover, it
has extremal values for cycles and fully connected graphs. Ye et al. [4] have
extended this result to directed graphs by distinguishing between the in-degree
and out-degree of nodes, giving the following expression for the entropy

SD = 1− 1

|V |
− 1

2|V |2
∑

(u,v)∈E1

dinu
dinv d

out2
u

+
∑

(u,v)∈E2

1

doutu doutv

(4)

where the edge set E is partitioned into two disjoint subsets E1 and E2, which
respectively contain the unidirectional and directional edges.

The two subsets E1 and E2 satisfy the conditions that E1 = {(u, v)|(u, v) ∈
E∩ (v, u) /∈ E}, E2 = {(u, v)|(u, v) ∈ E∩ (v, u) ∈ E}. E1∪E2 = E, E1∩E2 = ∅.
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If most of the edges in the graph are unidirectional, i.e., |E1| � |E2|, then the
graph is said to be strongly directed. In this case we can ignore the entropy
associated with the summation over E2, giving the approximate entropy for
strongly directed graphs as

SSD = 1− 1

|V |
− 1

2|V |2
∑

(u,v)∈E

dinu
doutu

· 1

dinv d
out
u

(5)

There are thus two factors determining the entropy. The first is the ratio of the

in to out degree of the start node u of the directed edge, i.e. ρu =
dinu
dout
u

, while the

second is the directed version of the edge entropy, i.e. 1
dout
u dinv

. The former weights

the contributions of the entropy associated with the directed edges exiting node
u. The contributions to the entropy are thus large if the ratio ρu is small, and
directed edge connects nodes with large both out and in degree.

2.3 Entropic Edge Assortativity for Directed Graphs

For undirected graphs, the assortativity is the tendency of nodes to connect to
those of similar degree. This concept can be extended to directed graphs if we
measure the tendency of nodes to connect to those nodes of similar in and out
degree. Foster et al. [12] define the directed assortativity as

r(α, β) =
1

|E|

∑
(u,v)∈E [(dαu − d̄αu)(dβv −

¯
dβv )]

σασβ
(6)

where α, β ∈ {in, out} is the incoming and outgoing direction for a directed edge.

d̄αu = |E|−1
∑

(u,v)∈E d
α
u and σα =

√
|E|−1

∑
(u,v)∈E(dαu − d̄αu)2. The similar

definitions are for
¯
dβv and σβ .

Ye [11] adopts a different approach to defining degree assortativity for di-
rected graphs based on von Neumann entropy decomposition. The method is
based on the observation that edges associated with high degree nodes have
large entropy and preferentially attach to clusters in a graph. The entropic as-
sortativity measurement provides a novel way to analyze the graph structure.
For instance, with the approximation for the von Neumann entropy for directed
graph SD, the coefficient of directed edge assortativity is given by [11]

R =

∑
(u,v)∈E [(Suuv − ¯Suuv)(S

v
uv − ¯Svuv)]

σSuσ
S
v

(7)

where Suuv associate the entropy of all the outgoing edges from vertex u, and Svuv
are all the incoming edges of vertex v.

3 Experiments and Evaluations

In this section, we describe the application of the above methods to the analysis
of interregional connectivity structure for fMRI activation networks for normal
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and Alzheimer subjects. We first examine the differences in degree distribution
for the four groups of subjects. Then we apply the entropy-based analysis to
distinguish Early Mild Cognitive Impairment(EMCI) and Late Mild Cognitive
Impairment (LMCI).

3.1 fMRI Data Set

The fMRI data comes from the ADNI initiative [10]. Each image volume is
acquired every two seconds with Blood-Oxygenation-Level-Dependent(BOLD)
signals. The fMRI voxels here have been aggregated into larger regions of in-
terest (ROIs). The different ROI’s correspond to different anatomical regions
of the brain and are assigned anatomical labels to distinguish them. There are
96 anatomical regions in each fMRI image. The correlation between the aver-
age time series in different ROIs represents the degree of functional connectivity
between regions which are driven by neural activities [13].

A directed graph with 96 nodes is constructed for each patient based on the
magnitude of the correlation and the sign of the time-lag between the time-series
for different anatomical regions. To model causal interaction among ROIs, the
directed graph uses the time lagged cross-correlation coefficients for the average
time series for pairs of ROIs. We detect directed edges by finding the time-
lag that results in the maximum value of the cross-correlation coefficient. The
direction of the edge depends on whether the time lag is positive or negative.
We then apply a threshold to the maximum values to retain directed edges with
the top 40% of correlation coefficients. This yields a binary directed adjacency
matrix for each subject, where the diagonal elements are set to zero. Those ROIs
which have missing time series data are discarded.

Subjects fall into four categories according to their degree of disease severity.
The classes are full Alzheimer’s (AD), Late Mild Cognitive Impairment (LMCI),
Early Mild Cognitive Impairment (EMCI) and Normal Healthy Controls (HC).
The LMCI subjects are more severely affected and close to full Alzheimer’s,
while the EMCI subjects are closer to the healthy control group (Normal). We
have fMRI data for 30 AD subjects, 34 LMC subjects, 47 EMCI subjects, and
38 normal healthy control subjects.

3.2 Alzheimer’s Classification

We first investigate the in and out degree distribution of the data by showing
a scatter plot in-degree versus out-degree for each directed edge in the data. In
order to extract potential structural difference, the distribution of points in the
scatter plot is analyzed using a general linear model. Fig.1 shows the scatter plots
of in-degree versus out-degree, comparing the first AD vs. Normal and secondly
EMCI vs. LMCI respectively. The obvious difference is that normal subjects ex-
hibit a high degree of interregional connection compared to Alzheimer’s subjects.
A similar effect is shown by Early and Late detection groups. Table 1 shows the
coefficients of a linear model with 95% confidence bounds and root mean square
error.

The results of fitting the linear model show that the in and out degree dis-
tributions for the nodes in the AD and LMCI groups of subjects have a greater
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slope than those of the Normal and Early groups. This implies that there is a
greater imbalance in in-degree and out-degree in the Alzheimers and late detec-
tion groups. In other words, the nodes in the fMRI inter-regional connectivity
graphs for these two groups tend to have larger in-degree than out-degree. More-
over, the small value of RMSE in these two groups reveals that for Alzheimer’s
subjects the scatter about the regression lines is smallest. By contrast, for the
normal and early control subjects the scatter is significantly higher. This un-
derlines the imbalance in in-degree for the subjects belonging to the diseased
groups.
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Fig. 1. The in-degree/out-degree distribution for edges in the directed graphs in Nor-
mal Healthy Control and Alzheimer’s groups (left), Early Mild Cognitive Impair-
ment(EMCI) and Late Mild Cognitive Impairment (LMCI) (right). The blue stars
represent the edges in normal patients’ graphs which occupy the high degree region
with large variance. The red cycles show the AD patients’ graphs with narrow and low
degree occupation.

Table 1. Liner polynomial model to fit the edge in-degree/out-degree distribution

Group of subjects Coef (α) BSC (α) Coef (β) BSC (β) R2 RMSE

AD 0.8582 [0.8406, 0.8758] 5.445 [4.719, 6.171] 0.7604 7.2444
Normal 0.6103 [0.5848, 0.6357] 22.45 [20.94, 23.96] 0.3771 11.3445
EMCI 0.7235 [0.7034, 0.7436] 14.6 [13.5, 15.7] 0.5253 10.3959
LMCI 0.9236 [0.9098, 0.9375] 2.933 [2.356, 3.509] 0.8395 6.4426

We can explore this asymmetry of in and out degree in more detail using Ye’s
entropy assortativity measure. This gauges the extent to which nodes to connect
to others with similar in-degree or out-degree [6]. To represent the structural
difference regarding the entropy associated with degree of each node, we plot
the histogram of edge entropy assortativity in Fig.2. It shows the difference in
entropy of the directed edges for subjects in AD vs. Normal, and EMCI vs. LMCI.
By comparing the directed edges in the AD and normal groups, we conclude that
the edges in the directed graphs for Alzheimer’s subjects tend to have a higher
value of entropy, and this reveals the structure is weakly connected with a lower
average in out to in degree ratio. A similar effect is shown in the EMCI and
LMCI subject groups. For late Alzheimer’s subjects, the shift in entropy to the
right represents the weak degree connection in the nodes. This clearly reveals
the loss of interregional connection for directed edges in Alzheimer’s.
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Finally, the in-degree and out-degree of nodes are used as the features to
distinguish the different group of subjects. For each edge, we construct four di-
mensional feature vectors with two nodes and in and out degree measurements
on each node. So the graph can be represented by these directed edges associated
with four-dimensional feature vectors. We perform the linear discriminant anal-
ysis(LDA) on the Alzheimer’s(AD) and Normal healthy control groups as the
training process to find the decision boundary. Then the LDA model is applied
on the EMCI and LMCI groups to classify patients. We compare the results and
the labels to get classification accuracy.
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Fig. 2. Histogram of directed edge entropy association for four healthy control groups.
The normal and early patients exhibit low entropy association for each edge compared
to the late and AD groups which the distributions shift to high entropy region.

Table 2. The classification accuracy with linear discriminant analysis(LDA) for train-
ing data (AD/Normal) and testing data (EMCI/LMCI) (in %)

LDA Accuracy Sensitivity Specificity Positive Predictivity

AD/Normal 87.87 ± 0.58 88.59 87.10 88.00
EMCI/LMCI 80.47 ± 0.41 75.85 86.18 87.14

Table 2 shows the classification accuracy of linear discriminant analysis(LDA).
The directed graphs for the AD and Normal subjects are used as the training data
to find the decision boundary. The performance of the resulting LDA classier is
high with an accuracy of 87.87% when computed using 10-fold cross-validation.
We randomly divide the AD and Normal subjects into 10 disjoint subsets of
equal size. Remove one subset, train the LDA model using the other nine sub-
sets. This process is repeated by removing each of the ten subsets once at a time
and then average the classification accuracy. In order to evaluate the perfor-
mance of classification, we provide results for sensitivity and specificity for LDA
classifier. The sensitivity indicates the percentage of Alzheimer’s people who are
correctly identified. It reaches 88.59% which represents the high percentage of
correctly classified. In addition, the specificity shows the true negative that is
the healthy people correctly identified as healthy. It is 87.10% revealing most
normal healthy people are correctly identified in the Normal group. Similarly to
the LDA in AD and Normal classier, for the discrimination of subjects belonging
to the EMCI and LMCI groups, we obtain a classification accuracy of 80.47%.
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Although this result is acceptable, the sensitivity is reduced to 75.85% indicating
some percentage of patients are not correctly classified in LMCI groups.

3.3 Identifying Salient Nodes for Disease Classification

Identifying diseased regions in the brain is also important in the study in Alzheimer’s
analysis. Several studies have shown that in anatomical structures the corre-
sponding ROIs are important for understanding brain disorders [1, 3]. Here we
compute the difference of out-degree and in-degree in our study and investigate
the method for identification of the disease nodes in patients with Alzheimer’s.

Fig. 3. Histogram of degree difference between Alzheimer’s (AD) and Normal Healthy
Controls (HC) groups. The normal and early patients exhibit wide bound range com-
pared to the late and AD groups which the distributions narrows around zero.
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Fig. 4. Directed edge entropy difference between Alzheimer’s (AD) and Normal
Healthy Controls (HC) groups (left). The ratio of out-degree and in-degree difference
corresponding to each ROI in two groups of AD and Normal patients (right). The sig-
nificant changes of degree ratio in each nodes associate to the similar pattern in edge
entropy plot, which illustrates the disease area in the brain.

We first compute the histogram of degree imbalance, i.e. out-degree minus
in-degree for each node. Fig.3 compares histograms obtained for AD and HC,
and for EMCI and LMCI. The obvious feature is that the directed graphs for
HC (normal) and EMCI (early development) groups give a much broader range
of degree difference compared to that for the AD (fully developed disease) and
LMCI (late development) groups. In other words for subjects with fully devel-
oped AD, there is a loss of connection between brain regions and gives rise to a
narrowing of the distribution of degree difference.

We now plot the difference in directed edge entropy between corresponding
regions (nodes) in the directed graphs for the AD and HC groups. We find a
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similar feature pattern of the degree difference in both plots as shown in Fig.4.
The entropic measurements associated with degree difference in the brain areas,
such as the Temporal Gyrus, Parahippocampal Gyrus, Operculum Cortex and
Lingual Gyrus, suggest that subjects with AD experience loss of interconnection
in their brain network during the progression of the disease.

Table 3. Top 10 ROIs with the significant difference between groups of AD and Normal.
These ROIs are extracted from the absolute value of out-degree to in-degree ratio.

Graph measure ROI Number Corresponding area in brain

Out-degree/In-
degree Ratio
Difference

83 Right Parahippocampal Gyrus
14 Left Inferior Temporal Gyrus
27 Left Paracingulate Gyrus
65 Right Temporal Fusiform Cortex
93 Right Heschl’s Gyrus
43 Left Parietal Operculum Cortex
75 Right Paracingulate Gyrus
38 Left Temporal Fusiform Cortex
42 Left Central Opercular Cortex
5 Left Inferior Frontal Gyrus

As listed in Table 3, the ten anatomical regions with the largest entropy
differences for subjects with full AD are right Parahippocampal Gyrus, left Infe-
rior Temporal Gyrus, left Paracingulate Gyrus, right Temporal Fusiform Cortex,
right Heschl’s Gyrus, left Parietal Operculum Cortex, right Paracingulate Gyrus,
left Temporal Fusiform Cortex, left Central Opercular Cortex and left Inferior
Frontal Gyrus. This result is consistent with the previous study [6, 5], which sug-
gested that the middle temporal gyrus is an important region in AD pathology
[3]. The parahippocampal gyrus has consistently been reported as being an af-
fected region in EMCI and AD [12]. The loss of connection between these brain
regions results in significant functional impairment between healthy subjects and
patients with AD.

Table 4. The LDA classification accuracy with top 20 selected ROIs to distinguish
AD/Normal and EMCI/LMCL (in %)

LDA Accuracy Sensitivity Specificity Positive Predictivity

AD/Normal 90.52 ± 0.67 91.36 89.61 91.20
EMCI/LMCI 86.20 ± 0.81 83.90 90.12 89.26

We now repeat our LDA analysis using just the salient regions listed in Ta-
ble 3, since it is the impairment of connections to these anatomical structures
that appears to determine the onset of AD. We perform LDA on the 4 vectors
representing the pairs of listed anatomical regions. The classification accuracy
is shown in Table 4. In comparison to the previous results in Table 2, the accu-
racy increases by about 3% in AD/Normal groups and 6% in the EMCI/LMCL
groups. All other performances are also improved with these selected degree
features.
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4 Conclusions

In conclusion, this paper is motivated by filling the gap in the literature of
analyzing fMRI regional brain interaction networks using directed graphs. We
commence from the recently developed simplified approximations to the von
Neumann entropy of directed graphs, which are dependent on the graph size and
the in and out degree statistics of vertices. In order to characterize the functional
organization of the brain, assortativity of nodes in directed graphs provides
insights into the neuropathology of Alzheimer’s disease. Entropic measurements
associated with node degree identifies the edge connection features which offer
high discrimination between subjects suffering from AD and normal subjects.
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