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Abstract

We propose a learning method to identify which specific regions and features
of images contribute to a certain classification. In the medical imaging context,
they can be the evidence regions where the abnormalities are most likely to appear,
and the discriminative features of these regions supporting the pathology classi-
fication. The learning is weakly-supervised requiring only the pathological labels
and no other prior knowledge. The method can also be applied to learn the salient
description of an anatomy discriminative from its background, in order to localise
the anatomy before a classification step. We formulate evidence pinpointing as a
sparse descriptor learning problem. Because of the large computational complex-
ity, the objective function is composed in a stochastic way and is optimised by the
Regularised Dual Averaging algorithm. We demonstrate that the learnt feature
descriptors contain more specific and better discriminative information than hand-
crafted descriptors contributing to superior performance for the tasks of anatomy
localisation and pathology classification respectively. We apply our method on the
problem of lumbar spinal stenosis for localising and classifying vertebrae in MRI
images. Experimental results show that our method when trained with only target
labels achieves better or competitive performance on both tasks compared with
strongly-supervised methods requiring labels and multiple landmarks. A further
improvement is achieved with training on additional weakly annotated data, which
gives robust localisation with average error within 2 mm and classification accura-
cies close to human performance.

1 Introduction

Pathology classification based on radiological images is a key task in medical image
computing. A clinician often inspects consistent and salient structures for localising
the anatomies, then evaluates the appearance of certain local regions for evidence of
pathology. In a computer-aided approach, by learning to identify or pinpoint these regions
and describing them discriminatively could provide precise information for localising the
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anatomies and classifying pathology. In this paper, we describe a method to automatically
pinpoint the evidence regions as well as learn the discriminative descriptors in a weakly-
supervised manner, i.e., only the class labels are used in training, and no other supervisory
information is required. For localisation, we learn which features describe the anatomies
saliently on a training set of aligned images. For classification, given the images with
pathological labels, we learn the local features which provide evidence for discriminating
between the normal and abnormal cases. We interpret evidence region pinpointing as
a sparse descriptor learning problem [1, 2] in which the optimal feature descriptors are
selected from a large candidate pool with various locations and sizes. Because of its large
scale, the problem is formulated in a stochastic learning manner and the Regularised
Dual Averaging algorithm [3,4] is used for the optimisation.

The evidence pinpointing task is reminiscent of the multiple-instance problem as de-
scribed in [5] in which instances or features responsible for the classification are identified.
Here, the learnt descriptors have several advantages over conventional hand-crafted rep-
resentations, such as shape and appearance models, and local features, e.g., histogram
of oriented gradient (HOG) [6] and local binary patterns [7]: (1) The training is weakly-
supervised requiring no annotation of key features; (2) The learnt descriptors are more
discriminative and informative, and therefore can contribute to better localisation and
classification performance; (3) The evidence regions supporting the classification are au-
tomatically pinpointed which may be used by clinicians to determine the aetiology.

It is worth noting that the Convolutional Neural Network (CNN) architecture [8–11]
learns discriminative features from pathological labels with weak supervision as well, but
requires large number of training samples and sufficient training. Instead of learning from
raw image pixels, we formulate it as salient feature learning from a higher-level description
of the image, which circumvents any need for the low-level feature training. As a result the
optimisation is straightforward, consuming much less computing resource, and requiring
no massive training data and no parameter tuning. Moreover, our descriptor learning
method differs from the recent CNN based evidence pinpointing techniques [12, 13] in
that we not only localise the evidence regions but at the same time give the description
of these regions at optimal feature scales.

We apply our method to lumbar spinal stenosis for localising the vertebrae in axial
images and predicting the pathological labels. Two conditions are evaluated, namely
central canal stenosis and foraminal stenosis. Descriptors are learnt to classify each
condition respectively. The dataset for validation consists of three weakly annotated
subsets of 600 L3/4, L4/5, L5/S1 axial images with classification labels, and three densely
annotated subsets of 192, 198, 192 images with labels and dense landmarks. We show
that compared with supervised methods trained with labels and landmarks, our descriptor
learning method gives competitive performance trained on the same subsets with labels
only. With further training on the weakly annotated subset, a significant improvement
is obtained which validates the learning ability of our method with weak-supervision.

2 Methodology

An anatomy can be localised by certain salient local structures distinctive from the back-
ground. Also, a pathological condition in an anatomy is often shown as changes in
intensity or structure in local regions. Learning to identify and describe these discrimi-
native regions accordingly can therefore capture the key information for localisation and
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Figure 1: (a) Region candidate on an image. (b) Region candidates on an image pyramid
having multiple region sizes and feature scales. (c) For a certain task, the salient regions
are selected by sparse learning. (d) The learnt descriptors.

classification tasks. We next detail the formulation and optimisation of discriminative
region learning.

2.1 Formulation

Assume we have a set of training images classified into a subset N with negative labels
and a subset P with positive labels. For example, for classification tasks N and P consist
of normal and pathological images. For localisation tasks, N refers to the images with
the anatomies aligned, and P the misaligned images.

To learn the local regions and features that lead to the classification, we generate a pool
of region candidates having various locations and sizes, and select the most discriminative
ones. Specifically, to generate the location candidates, each region is represented by a
Gaussian weighted window g(ρ, θ, σ) with ρ and θ being the polar coordinate of the
window on the image, and σ the size of the window, see Fig. 1(a). Parameters {ρ, θ}
are sampled over the ranges ρ = [0, ρ1], θ = [0, 2π] such that the regions cover the whole
image. To include multiple sizes of local features in the candidate pool, we build an
image pyramid with the lower resolution images containing larger scale textures. The
region candidates are sampled from each layer with the same size in pixels, which results
in larger effective region sizes and feature scales on lower resolution images, see Fig. 1(b).

To represent each region, instead of using raw image features, we decompose the local
textures into complementary frequency components for a compact description. This is
achieved by designing window functions to partition the spectrum, see Fig 2(a). The
specific form of the windows are shown in Fig 2(b). The low-pass window is a Gaussian
function, and the oriented windows are logarithmic functions along radius in four direc-
tions. Each of the 4 oriented windows in Fig 2(b) corresponds to 2 spatial-domain filters
(real and imaginary part separately) and together with the low-pass filter, we obtain 9
filters, see Fig 2(c). Note that the filters correspond to the intensity, first and second
order derivative features respectively. The filters are similar to Haar and discrete wavelet

Figure 2: (a) Spectrum partition. (b) Filter windows in the Fourier domain. (c) Fil-
ters in the spatial domain corresponding to intensity, gradient and curvature features
respectively.
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Figure 3: (a) The objective function of sparse descriptor learning. (b) The zero entries
in the learnt w remove the non-salient feature dimensions (region candidates), the non-
zero entries define the hyperplane for classification in the salient feature space. (c) The
sigmoid probability function.

filters but with enhanced smoothness and complementary properties. We calculate the
response map of the image to each filter, and accumulate over the i-th region to obtain
the region descriptor Φi ∈ R1×9. The region descriptors from different locations and
pyramid levels form a candidate pool Φ = {Φi}Ni=1 ∈ RN×9, where N is the total number
of the region candidates. Φ gives a redundant (overcomplete) description of the image,
see Fig. 1(b).

The task then is to select from the candidate pool Φ a few regions containing the dis-
criminative information, which we formulate as a sparse learning problem. The selection
can be described by the operation,

φ = W
1
2 Φ. (1)

W ∈ RN×N is a diagonal matrix with sparse entries w = [w1, w2, . . . , wN ], in which wi is
the assigned weight of the i-th region Φi, and the non-zeros weights corresponding to the
regions selected. φ represents the selected salient features (Fig. 1(c)).

The objective is to learn w such that the selected descriptors φ are consistent within
class and discriminative between classes. Let φ(p), p ∈ P and φ(n), n ∈ N be the
descriptors of two random examples from the positive and negative image set respectively.
The distances between the descriptors can be calculated by,

||φ(p)− φ(n)||22 =
∑N

i=1 ||
√
wiΦi(p)−

√
wiΦi(n)||2 =

∑N
i=1wi||Φi(p)− Φi(n)||2 = wTd(p, n), (2)

where d(p, n) ∈ RN×1 is a vector with each entry di(p, n) being the feature difference
calculated at a region, i.e., di(p, n) = ||Φi(p)− Φi(n)||2.

Similarly we randomly sample two examples n1, n2 ∈ N from the negative set and cal-
culate the distance denoted by d(n1, n2). To penalise the differences within the negative
set and reward the distances between the positive and negative sets, we set a margin-based
constraint,

wTd(n1, n2) + 1 < wTd(p, n). (3)

We do not penalise the differences within the positive set as it represents the misaligned
or pathological images with large variations, see Fig. 3(a).

The objective function enforcing the constraint may be composed in a sparse learning
form,

arg min
w>0

∑
p∈P;n,n1,n2∈N

L(wTd(n1, n2)−wTd(p, n)) + µ||w ||1, (4)
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where L(z) = max{z + 1, 0} is a loss function penalising the non-discriminative entries,
and the `1-norm ||w ||1 is a sparsity-inducing regulariser which encourages the entries of
w to be zero, thus performs region selection. Note that each n in the function represent
an independent random index from the negative set, and p from the positive set. The
number of the summands is not fixed, which fits with the stochastic learning and online
optimisation procedure, i.e., repetitively drawing random samples d(n1, n2), d(p, n) and
optimising w until a criterion is met. The random sampling also enables incremental
learning which means we can refine the model without re-learning it all over again when
new training data become available. We deduce the solution to (4) in the next section.

2.2 Optimisation

Finding the sparse parameter w in (4) is a regularised stochastic learning problem where
the objective function is the sum of two convex terms: one is the loss function of the
learning task fed recursively by random examples, and the other is a `1-norm regulari-
sation term for promoting sparsity. It can be solved efficiently by the Regularised Dual
Averaging (RDA) algorithm [3, 4], which recursively learns and updates w with new
examples.

At the t-th iteration, RDA takes in a new observation, which in our case are random
pairs d(p, n) and d(n1, n2). The loss subgradient g t is calculated by,

g t =
∂L
(
wT (d(n1, n2)− d(p, n))

)
∂w

=

{
d(n1, n2)− d(p, n), wT (d(n1, n2)− d(p, n)) > −1

0, otherwise.

(5)

g t is used to update the average subgradient, ḡ t = 1
t

∑t
i=1 g i. Updating the parameter

w with RDA takes the form,

w t+1 = arg min
w

(wT ḡ t + u||w ||1 +
βt
t
h(w)) (6)

in which the last term is an additional strong convex regularisation term. One can set
h(w) = 1

2
||w ||22 = 1

2
wTw , βt = γ

√
t, γ > 0 for a convergence rate of O(1/

√
t). By writing

u as a N dimension vector with each elements being u, equation (6) becomes,

w t+1 = arg min
w

(wT ḡ t + wTu +
γ

2
√
t
wTw), (7)

which can be solved by Least Squares method to give,

w t+1 = −
√
t

r
(ḡ t + u). (8)

The discriminative regions and optimal descriptors are obtained by keeping only the
candidates with non-zero weights indicated by the learnt w . An example is given in
Fig. 1(d).

2.3 Localisation and Classification

Denoting φl as the learnt optimal descriptor for localising anatomy, and φc the descriptor
for a certain classification task, we show how the optimal descriptors are applied (Fig. 4).

5



Figure 4: Applying the learnt descriptors for localisation and classification.

2.3.1 Localisation.

The anatomy is described discriminatively by φl which represents the salient structures.
Localising the anatomy in the image is conducted by searching for these structures. Given
an initial estimation x (0) of the location, which can be set at the centre of the image,
the descriptor at the initial location φl(x

(0)) is observed to deduce the true location x ∗.
The deduction can be expressed as solving the regression φl(x

(0)) 7→ x ∗. The direct
mapping function is non-linear in nature and training such function comes up against
the over-fitting problem. In practice the mapping can be decomposed into a sequence of
linear mapping and updating steps,{

Mapping: φl(x
(k)) 7→ ∆x (k),

Updating: x (k+1) = x (k) + ∆x (k),
(9)

where in the mapping stage, a prediction for the correction of the location is made, based
on the observation φl(x

(k)) at the current location x (k); and in the updating stage, the
location and observation is updated. The learning mapping function is set to be,

∆x (k) = R(k)φl(x
(k)) + b(k), (10)

with R(k) being a projection matrix and b(k) the bias. {R(k), b(k)} in each iteration is
trained with the Supervised Descent Method, the details of which can be found in [14].

2.3.2 Classification.

Learning w in the objective function (4) can be viewed as a simultaneous feature selection
and classification process. The zero entries in w correspond to the non-salient features
(or region candidates) to be discarded. In fact, the non-zero entries in w form a vector
defining the hyperplane classifying the positive and negative samples in the salient feature
space, which is similar to a support vector in Support Vector Machine classifier, see
Fig 3(b).

For a specific pathological condition, the learnt descriptor φc covers the regions where
the abnormalities are most likely to appear, and preserves their discriminative features
for classification. To predict the class label ` of a test image, we extract the descriptor
φc(x

∗) at the detected location x ∗ and calculate the average distance to the normal
descriptors,

d =
1

|N |
∑
n∈N

||φc(x
∗)− φc(n)||22, (11)
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where n indexes all the cases in the normal set N .
A larger d indicates a greater probability of the case being abnormal. More formally,

the probability of the case being abnormal is modelled by a sigmoid function (Fig. 3(c)),

p(` = 1|φc(x
∗)) =

1

1 + e−(d−dt)
, (12)

where dt is a threshold distance. The cases with p > 0.5 are classified as abnormal,
with confidence p. Conversely, the cases with p < 0.5 are classified as normal with the
confidence (1− p).

3 Experiments

3.1 Clinical background

Lumbar spinal stenosis (LSS) is a common disorder of the spine. The disorder can
be observed in radiological studies as morphological abnormalities. Intervertebral disc-
level axial images in MRI scans can provide rich information revealing the condition of
important anatomies such as the disc, central canal, neural foramen and facet. In most
cases the original axial scans are not aligned to the disc planes caused by the curvature
of the spine. To obtain the precise intervertebral views, we localise the disc planes in
the paired sagittal scans (red line in Fig 5), and map the geometry to the axial scans to
calculate the coordinates, where the voxels are sampled to extract the aligned images.
On a disc-level image shown in Fig. 5(b), conditions of the posterior disc margins (red
line) and the posterior spinal canal (cyan line) are typically inspected for the diagnosis.
Degeneration of these structures can constrict the spinal canal (pink area) and the neural
foramen (yellow area) causing central and foraminal stenosis.

Data. The data collected from routine clinics consists of T2-weighted MRI scans of
600 patients with varied LSS symptoms. Each patient has paired sagittal-axial scans.
The L3/4, L4/5, L5/S1 intervertebral planes are localised in the sagittal scans and the
images sampled from the axial scans. We obtain three sets of 600 disc-level axial images
for the three intervertebral planes respectively. The images are resampled to have an
pixel space of 0.5 mm. All cases are inspected and annotated with classification labels
with respect to the central stenosis and foraminal narrowing. In addition, the dense
annotations are available for the first 192, 198, 192 images in the three subsets, in which
each image is delineated with 37 landmarks outlining the disc, central canal and facet,
see Fig. 7(a). In summary the dataset for validation contains three sets of 600 data with
classification labels and three subsets of 192, 198, 192 data with dense annotations, which
are referred to as weakly and densely annotated datasets respectively.

3.2 Results

3.2.1 Validation protocols.

In each of the three intervertebral subsets we randomly select 100 densely annotated
images as the test set, and the remaining densely annotated images as the training set.
The additional images with only classification labels are used for further training the
weakly supervised methods. The selection of training and test sets is repeated for an
unbiased validation. The training sets is used for learning descriptors for both localisation
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Figure 5: (a) Mid-sagittal view of a lumbar spine. Grey dashed lines show the raw axial
scans. Red lines show the aligned disc-level planes, from which the axial images are
extracted. (b) Anatomy of a L3/4 disc-level axial image. (c) A case with severe central
stenosis. (d) A case with foraminal stenosis

and task-specific classifications. In the testing stage, the localisation and classification
tasks are carried out by each method independently, and the performance is evaluated.

3.2.2 Anatomy localisation.

The learning result of the optimal descriptor for localising the vertebrae, L3/4 as an
example, is shown in Fig. 6(a). The hot maps of salient regions are visualised by showing
the selected region candidates as Gaussian blobs. It is interesting to compare these with
the biological anatomy in Fig. 5(b) and the annotations by the clinician in Fig. 7(a).
The learnt descriptor highlights the posterior margin of the disc and the posterior arch,
which have sharp textures and high contrast. Note that compared with a clinician’s
annotations, the front edge of the disc is not selected. The reason for this may be there
being less consistency across images because of the variation in disc size, as well as the
ambiguous boundaries to the abdominal structures in some of the cases.

We compare our method with HOG grid [6] and Deformable Part Models (DPM)
[7, 15]. The HOG grid is a hand-crafted descriptor covering the holistic appearance, see
Fig. 7(b). It assumes no prior clinical knowledge and assigns equal weights to the local
features of the anatomy. The DPM is a strongly supervised method which describes
the anatomy by local patches at each of the landmarks as well as the geometry of the
landmark locations (Fig. 7(c)). Each patch is described by a SIFT descriptor. In all
the methods the initial location is set at the centre of the images and the searching is
driven by the SDM algorithm [14]. The experimental results are reported in Table 1.
The initial distances to the true locations are also given. We can see that our learnt
descriptors give comparable localisation precision with DPM when trained on the same
densely annotated subsets, but use no landmark annotation. With further training on
additional data, a significant improvement is observed indicating the learning ability of
our method on weakly annotated data.

3.2.3 Pathology classification.

The classification follows on from the anatomy localisation step. The learnt discriminative
descriptors and evidence regions for the classification of central canal stenosis and foramen
stenosis are shown in Fig. 6(b)(c) respectively. We can see that the descriptor learnt on
central stenosis labels highlights the spinal canal area. When learnt on foraminal stenosis
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Figure 6: The discriminative descriptors (top) and evidence regions (bottom) learnt for
the task of (a) anatomy localisation (b) central stenosis classification and (c) foraminal
stenosis classification.

Figure 7: Comparative descriptors: landmarks, HOG-grid and DPM.

Table 1: Precision of anatomy localisation in mm (+ Require landmarks. * Trained on
additional weakly annotated data).

Data Initial HOG grid∗ DPM+ Learnt Learnt*
L3/4 16.41± 10.10 2.45± 1.69 2.01± 1.62 1.95± 1.58 1.22±1.01
L4/5 16.59± 10.80 2.37± 1.55 1.73± 1.30 1.76± 1.26 1.57±1.36
L5/S1 12.86± 8.29 2.52± 1.71 1.85± 1.42 2.09± 1.52 1.24±0.96

labels, it pinpoints the neural foramen as the evidence regions. These evidence regions
pinpointed automatically by our methods (Fig. 6(b)(c)) show high agreement with the
medical definition of the pathologies shown in Fig. 5(c)(d).

The learnt descriptors are extracted at the detected location for classification on test
images. The predicted pathological labels as well as the confidences of prediction are
given by (12). For comparison, in the HOG grid method, the descriptors are centred at
the detected location. In the DPM method, two forms of descriptions are considered, i.e.,
the geometry represented by the landmarks, and the SIFT descriptors extracted from the
aligned landmarks, which are denoted by DPM(Geo) and DPM(SIFT) respectively. The
classifiers for the methods compared are trained with the AdaBoost, with decision trees
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Figure 8: Example images with different degrees of degeneration. First row: the repeated
labels for central stenosis by the same clinician, made at different times. Disagreement
is shown in blue. Second row: the labels and probabilities by our classification method.
Table 2: Agreement (%) of classification. (+ Require landmarks. * Trained on additional
weakly annotated data.)

Human HOG grid DPM(Geo)+ DPM(SIFT)+ Learnt Learnt*

Central canal stenosis
L3/4 88.5 80.6± 4.9 79.5± 4.5 81.0± 4.9 85.7± 3.5 87.2±3.2
L4/5 87.4 81.3± 4.6 78.3± 4.1 82.4± 4.5 84.2± 3.4 85.1±3.4
L5/S1 89.2 81.8± 4.7 81.4± 4.5 82.7± 4.4 86.0± 3.7 87.5±3.3

Foraminal stenosis
L3/4 86.5 79.6± 4.5 81.2± 4.8 83.1± 4.7 82.9± 4.5 84.3±3.9
L4/5 87.2 81.5± 4.9 82.4± 4.6 83.3± 4.3 82.5± 4.5 84.0±4.0
L5/S1 89.5 81.7± 4.4 81.8± 4.7 82.9± 4.5 84.1± 3.8 87.1±3.4

as the weak learners. The performance is evaluated by the agreement with labelling done
by a clinician, calculated by (pp+ nn)/M , in which pp and nn are the number of agreed
positive and agreed negative cases, and M is the total number of cases.

The results of the two classification tasks are shown in Table. 2. Our descriptor learn-
ing method gives better or competitive classification accuracies compared with supervised
methods, trained on the same densely annotated subset but requires no landmarks to be
identified. A significant improvement is again seen with additional training on weakly
annotated data. Note that the performance is affected by the precision of the human
labels, as the clinician can only achieve a certain level of agreement between themselves
when the labelling step is repeated on same dataset. We report the self-agreement of a
clinician in Table. 2, denoted as the human performance. The disagreement is generally
caused by ambiguous conditions in many cases. We give several example images with
different degrees of degenerations, and show the classification labels by the clinician as
well as the labels and probabilities by our method in Fig. 8. The probability indicates the
confidence of our prediction, which may be helpful for being aware of and understanding
errors in the classification results.

4 Conclusions

We propose a method for learning the optimal descriptors for anatomy localisation and
classification. The learnt descriptors for localising an anatomy highlights consistent and
salient structures across a set of images. The descriptors for classifying a specific condi-
tion, learnt with no prior knowledge but the labels, pinpoint the evidence regions where
the abnormalities are most likely to appear. The information in the descriptors is highly
discriminative leading to more accurate classification results. The training is straightfor-
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ward with no need of parameter tuning. We have shown that promising results can be
achieved when learnt on 600 labelled images. The average training time for one task is
about 27 minutes in MATLAB on a 3.20 GHz GPU with 16 GB RAM. The method can
be readily applied to other clinical tasks for rapidly pinpointing and describing evidence
of abnormalities directly from expertly labelled data. Further work includes extending
the method to 3D where the increased scale might be handled by random candidate sam-
pling. The MATLAB toolbox of the methods described here will be made public available
for research purposes.

References

[1] Simonyan, K., Vedaldi, A., Zisserman, A.: Descriptor learning using convex optimi-
sation. In: European Conference on Computer Vision, Springer (2012) 243–256

[2] Simonyan, K., Vedaldi, A., Zisserman, A.: Learning local feature descriptors using
convex optimisation. IEEE Transactions on PAMI 36(8) (2014) 1573–1585

[3] Xiao, L.: Dual Averaging Method for Regularized Stochastic Learning and Online
Optimization. In: Advances in Neural Information Processing Systems. Curran
Associates, Inc. (2009) 2116–2124

[4] Xiao, L.: Dual averaging methods for regularized stochastic learning and online
optimization. Journal of Machine Learning Research 11(Oct) (2010) 2543–2596

[5] Chen, Y., Bi, J., Wang, J.Z.: Miles: Multiple-instance learning via embedded
instance selection. IEEE Transactions on PAMI 28(12) (2006) 1931–1947

[6] Lootus, M., Kadir, T., Zisserman, A.: Vertebrae detection and labelling in lumbar
MR images. In: MICCAI CSI Workshop. Springer (2013) 219–230

[7] Zhao, Q., Okada, K., Rosenbaum, K., Kehoe, L., Zand, D.J., Sze, R., Summar, M.,
Linguraru, M.G.: Digital facial dysmorphology for genetic screening: hierarchical
constrained local model using ICA. Medical Image Analysis 18(5) (2014) 699–710

[8] Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neu-
ral networks for lung nodule classification. In: International Conference on IPMI,
Springer (2015) 588–599

[9] Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D.,
Summers, R.M.: Deep convolutional neural networks for computer-aided detection:
CNN architectures, dataset characteristics and transfer learning. IEEE Transactions
on Medical Imaging 35(5) (2016) 1285–1298

[10] Schlegl, T., Waldstein, S.M., Vogl, W.D., Schmidt-Erfurth, U., Langs, G.: Predicting
semantic descriptions from medical images with convolutional neural networks. In:
International Conference on IPMI, Springer (2015) 437–448

[11] Mahapatra, D.: Retinal image quality classification using saliency maps and CNNs.
In: International Conference on MICCAI, Springer (2016)

11



[12] Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Is object localization for free? Weakly
supervised learning with convolutional neural networks. In: Proceedings of the IEEE
Conference on CVPR. (2015) 685–694

[13] Jamaludin, A., Kadir, T., Zisserman, A.: SpineNet: Automatically Pinpointing
Classification Evidence in Spinal MRIs. In: International Conference on MICCAI,
Springer (2016) 166–175

[14] Xiong, X., Torre, F.: Supervised descent method and its applications to face align-
ment. In: Proceedings of the IEEE conference on CVPR. (2013) 532–539

[15] Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE Transactions on PAMI 32(9)
(2010) 1627–1645

12


