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Abstract. Risk stratification of lung nodules is a task of primary impor-
tance in lung cancer diagnosis. Any improvement in robust and accurate
nodule characterization can assist in identifying cancer stage, prognosis,
and improving treatment planning. In this study, we propose a 3D Convo-
lutional Neural Network (CNN) based nodule characterization strategy.
With a completely 3D approach, we utilize the volumetric information
from a CT scan which would be otherwise lost in the conventional 2D
CNN based approaches. In order to address the need for a large amount
for training data for CNN, we resort to transfer learning to obtain highly
discriminative features. Moreover, we also acquire the task dependent
feature representation for six high-level nodule attributes and fuse this
complementary information via a Multi-task learning (MTL) framework.
Finally, we propose to incorporate potential disagreement among radi-
ologists while scoring different nodule attributes in a graph regularized
sparse multi-task learning. We evaluated our proposed approach on one
of the largest publicly available lung nodule datasets comprising 1018
scans and obtained state-of-the-art results in regressing the malignancy
scores.

Keywords: Computer-Aided Diagnosis (CAD), Lung nodule character-
ization, 3D Convolutional Neural Network, Multi-task learning, Transfer
learning, Computed Tomography (CT), Deep learning

1 Introduction

Cancer is the number-one cause of deaths in the world. Out of 8.2 million deaths
due to cancer worldwide, lung cancer accounts for the highest number of mortal-
ities i.e. 1.59 million [1]. Risk stratification of lung nodules can aid in identifying
cancer stage leading to improved treatment and higher chances of survival. In ad-
dition, any significant development to accurately and automatically characterize
lung nodules can save significant manual exertion as well as valuable time.

Early diagnosis is one of the ways to reduce deaths related to lung cancer [2].
In this regard, lung screening programs are especially beneficial. Low Dose Com-
puted Tomography (CT) scans are usually used to perform lung nodule diagnosis,
including both detection and risk stratification. Although CT imaging remains
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the gold standard for lung cancer detection and diagnosis, Computer-Aided Di-
agnosis (CAD) and quantification tools are often necessary. Moreover, research
in developing CAD algorithms can help explore the domain of imaging features
and biomarkers which can be then studied by radiologists to further improve
clinical decision making.

The development of a fast, robust and accurate system to perform risk strat-
ification of lung nodules is therefore of significant importance. Specially the
availability of large publicly available datasets such as LIDC-IDRI from Lung
Image Database Consortium [3] has helped accelerate the research in this regard.
However, the variability in nodule characteristics, including shape, size, intensity,
location and uncertainty among radiologists’ interpretation have made this prob-
lem particularly challenging. The advancement in machine learning methods, in-
cluding the development of novel classification and feature learning techniques,
has increased the efficacy of this task. However, there remains a substantial
progress to be done in order to develop a CAD system attractive enough to be
used in routine clinical evaluations of lung nodules.

In this work, we address the challenge of risk-stratification of lung nodules
in low-dose CT scans. Capitalizing on the significant progress of deep learning
technologies for image classification and their potential applications in radiol-
ogy [4], we propose a 3D Convolutional Neural Network (CNN) based approach
for rich feature representation of lung nodules. We argue that the use of 3D CNN
is paramount in the classification of lung nodules in low-dose CT scans which are
3D by nature. By using the conventional CNN methods, however, we implicitly
lose the important volumetric information which can be very significant for accu-
rate risk stratification. The superior performance of 3D CNN over 2D networks
is well studied in [5]. We also avoid hand-crafted feature extraction, painstaking
feature engineering, and parameter tuning. Moreover, any information about six
high-level nodule attributes such as calcification, sphericity, margin, lobulation,
spiculation and texture (Figure 1) can help in improving the benign-malignant
risk assessment of the nodules. Taking forward this idea, we identify features cor-
responding to these high-level nodule attributes and fuse them in a multi-task
learning framework to obtain the final risk assessment scores. An overview of
the proposed approach is presented in Figure 2. Overall, our main contributions
in this work can be summarized as follows:

– We propose a 3D CNN based method to utilize the volumetric information
from a CT scan which would be otherwise lost in the conventional 2D CNN
based approaches. Moreover, we also circumvent the need for a large amount
of volumetric training data to train the 3D network by transfer learning. We
use the CT data to fine-tune a network which is trained on 1 million videos.
To the best of our knowledge, our work is the first to empirically validate the
success of transfer learning of a 3D network for lung nodules.

– We perform experimental evaluations on one of the largest publicly available
datasets comprising lung nodules from more than 1000 low-dose CT scans.
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Fig. 1. Lung nodule attributes with different scores. As we move from the top (attribute
missing) to the bottom (attribute with the highest prominence), the prominence of
the attributes increases. Column (a) and (b) show calcified and spherical nodules; (c)
represents margin where the top row is for poorly defined nodules and the bottom row
shows well-defined nodules. Column (d) and (e) show lobulated and spiculated nodules
whereas (f) represents nodules with different textures. The top row in (f) represents
non-solid nodule and the bottom row shows solid nodule. The graph in (g) shows the
number of nodules with different malignancy scores

– We employ graph regularized sparse multi-task learning to fuse the comple-
mentary feature information from high-level nodule attributes for malignancy
determination. We also propose a scoring function to measure the inconsis-
tency in risk assessment among different experts (radiologists).

2 Related Work

Conventionally, the characterization of lung nodules comprised nodule segmen-
tation, extraction of hand-crafted imaging features, followed by the application
of an off-the-shelf classifier/regressor. The method by Uchiyama et al. [6] was
based on the extraction of various physical measures, including intensity statis-
tics and then classification using Artificial Neural Networks. El-Baz et al. [7] first
segmented the lung nodules using appearance-based models and used spherical
harmonic analysis to perform shape analysis. The final step was the classification
using k-nearest neighbor. Proposing a study based on texture analysis, Han et
al. [8] extracted 2D texture features such as Haralick, Gabor and Local Binary
Patterns (LBP) and extended them to 3D. Support Vector Machine (SVM) was
employed to perform the classification. In another classical work by Way et al.
[9], segmentation is performed using 3D active contours followed by the extrac-
tion of texture features from the rubber band straightening transform of the
surrounding voxels. The classification was performed using Linear Discriminant
Analysis (LDA) classifier. In another study, Lee et al. [10] proposed a feature
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Fig. 2. An overview of the proposed approach. First, we fine-tune 3D CNNs using
labels for malignancy and six attributes. Given the input volume, we pass it through
different 3D CNNs each corresponding to an attribute (task). The network comprises
5 convolution, 5 max pooling, and 2 fully connected layers. We use the output from
the first fully connected layer as the feature representation. The features from differ-
ent CNNs are fused together using graph regularized sparse least square optimization
function to obtain coefficient vectors corresponding to each task. During the testing
phase, we multiply the feature representation of the testing image with the coefficient
vector to obtain the malignancy score.

selection based approach using both imaging and clinical data. An ensemble clas-
sifier, combining genetic algorithm (GA) and random subspace method (RSM)
was then used to gauge feature relevance and information content. Finally, LDA
was employed to perform classification on the reduced feature set.

Following up on the success of deep learning, the medical imaging community
has moved from feature engineering to feature learning. In those frameworks,
CNN had been used for feature extraction and an off-the-shelf classifier such as
Random Forest (RF) was employed for classification [11,12]. Recently, Buty et
al. [12] combined spherical harmonics along with deep CNN features and then
classified them using RF. However, the use of CNN for lung nodule classification
has been confined to 2D image analysis [13], thus falling short of utilizing the
important volumetric and contextual information.

Moreover, the use of high-level image attributes had been found to be instru-
mental in the risk assessment and classification of lung nodules. In an effort to
study the relationship between nodules attributes and malignancy, Furuya et al.
[14] found that in a particular dataset, 82% of the lobulated, 97% of the densely
spiculated, 93% of the ragged and 100% of the halo nodules were malignant.
Moreover, 66% of the round nodules were found to be benign. Inspired by this
study, in this work we utilize 3D CNN to learn discriminative feature set corre-
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sponding to each of the 6 attributes. We then fuse these feature representations
via MTL to determine the malignancy likelihood.

3 Method

3.1 Problem Formulation

Let X = [x1, x2 . . . xn] ∈ Rn×d be the data matrix comprising features from n
data points in Rd. Each sample corresponds with a regression score given by
Y = [y1, y2 . . . yn] where Y ∈ Rn×1. Here the objective is to learn the coefficient
vector or the regression estimator W from the training data. In this case, the `1
regularized least square regressor is defined as:

min
W
‖XW − Y ‖22 + λ ‖W‖1 , (1)

where λ controls the sparsity level for coefficient vector W = [w1, w2 . . . wd]. The
problem in Eq. 1 is an unconstrained convex optimization problem, and it remains
non-differentiable when wi = 0. Hence, the closed form solution corresponding
to the global minimum for Eq. 1 is not possible. Thus, the above equation is
represented in the following way as a constrained optimization function:

min
W
‖XW − Y ‖22 ,

s.t. ‖W‖1 ≤ t,
(2)

where t is inversely proportional to λ. In the representation given in Eq. 2, both
optimization function and the constraint are convex.

3.2 Network Architecture and Transfer Learning

We use the lung nodules dataset to fine-tune a 3D CNN trained on Sports-1M
dataset [15]. The sports dataset comprises 1 million videos with 487 classes.
In the absence of a large number of training examples from lung nodules, we
use transfer learning strategy to obtain rich feature representation from a larger
dataset (Sports-1M) for lung nodule characterization. The Sports-1M dataset is
used to train a 3D CNN [5]. The network comprises 5 convolution, 5 max-pooling,
2 fully-connected and 1 soft-max classification layers. The input to the network
is 3×16×128×171 where there are 16 non-overlapping slices in the input volume.
The first 2 convolution layers have 64 and 128 filters respectively, whereas there
are 256 filters in the last 3 layers. The outputs of the fully connected layers are
of 4096 dimensions.
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3.3 Multi-task learning

Consider a problem with M tasks representing different attributes corresponding
to a given dataset D. These tasks may be related and share some feature repre-
sentation, both of which are unknown. The goal in Multi-task learning (MTL) is
to perform joint learning of these tasks while exploiting dependencies in feature
space so as to improve regressing one task using the others. In contrast to multi-
label learning, tasks may have different features in MTL. Each task has model
parameters denoted by Wm, used to regress the corresponding task m. Moreover,
when W = [W1,W2 . . .WM ] ∈ RM×d represents a rectangular matrix, rank is
considered as an extension to the cardinality. In that case, trace norm, which
is the sum of singular values is a replacement to the `1-norm. Trace norm, also
known as nuclear norm is the convex envelope of the rank of a matrix (which
is non-convex), where the matrices are considered on a unit ball. By replacing
`1-norm with trace norm in Eq. 1, the trace norm regularized least square loss
function is given by:

min
W

M∑
i=1

‖XiWi − Yi‖22 + ρ ‖W‖∗ , (3)

where ρ tunes the rank of the matrix W, and trace-norm is defined as: ‖W‖∗ =∑
i=1 σi(W) with σ representing singular values.
Another regularizer, pertinent to MTL, is the regularization on the graph

representing the relationship between the tasks [16,17]. Consider a complete
graph G = (V, E), such that nodes V represent the tasks and the edges E encode
any relativity between the tasks. The complete graph can be represented as a
structure matrix S = [e1, e2 . . . e‖E‖] and the difference between all the pairs
connected in the graph is penalized by the following regularizer:

‖WS‖2F =

‖E‖∑
i=1

∥∥Wei
∥∥2
2

=

‖E‖∑
i=1

∥∥∥Weia
−Weib

∥∥∥2
2
. (4)

Herein, eia, eib are the edges between the nodes a and b. The above regularizer
can also be written as:

‖WS‖2F = tr((WS)T (WS)) = tr(WSSTWT ) = tr(WLWT ), (5)

where ‘tr’ represents trace of a matrix and L = SST is the Laplacian matrix.
Since there may exist disagreements between the scores from different experts
(radiologists), we propose a scoring function to measure potential inconsistencies:

Ψ(j) = (e
−

∑
i(x

j
i
−µj)2

2σp )−1. (6)

The inconsistency measure corresponding to a particular example j is rep-
resented by Ψ(j). xji is the score given by the expert (radiologist) i and µj and
σj denote mean and standard deviation of the scores, respectively. Here, for
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Algorithm 1 Algorithm for the proposed MTL method

Input: Generated features from 3D CNN: XN
M for M attributes and N examples

Attributes scores: Y NM
Output: Coefficient matrix W

Step 1 – for each task i = 1 to M and each example j = 1 to N do
Solve equation (6) to find Ψ

end for
Step 2 – Formulate objective function as in equation (7)
Step 3 – Use accelerated proximal gradient method to optimize equation (7)
return W

simplicity, we have dropped the index for the task; however, note that the incon-
sistency measure is computed for all the tasks. The final proposed graph regu-
larized sparse least square optimization function with the inconsistency measure
can then be written as:

min
W

M∑
i=1

1©︷ ︸︸ ︷
‖(Xi + Ψi)Wi − Yi‖22 +

2©︷ ︸︸ ︷
ρ1 ‖WS‖2F +

3©︷ ︸︸ ︷
ρ2 ‖W‖1, (7)

where ρ1 controls the level of penalty for graph structure and ρ2 controls the
sparsity. In the above optimization, the least square loss function 1© considers
tasks to be decoupled whereas 2© and 3© consider the interdependencies between
different tasks.

3.4 Optimization

The optimization function in Eq. 7 cannot be solved through standard gradi-
ent descent because the `1−norm is not differentiable at W = 0. Since the
optimization function in Eq. 7 has both smooth and non-smooth convex parts,
estimating the non-smooth part can help solve the optimization function. There-
fore, accelerated proximal gradient method [18,19] is employed to solve the Eq.
7. The accelerated proximal method is the first order gradient method with a
complexity of O(1/k2), where k is the iteration counter. Note that in Eq. 7, the
`1-norm comprises the non-smooth part and the proximal operator is used for its
estimation. The steps in the proposed approach are summarized in Algorithm 1.

4 Experiments

4.1 Data

For evaluating our proposed approach, we used LIDC-IDRI dataset from Lung
Image Database Consortium [3], which is one of the largest publicly available
lung cancer screening datasets. There were 1018 CT scans in the dataset, where
the slice thickness varied from 0.45 mm to 5.0 mm. The nodules having diameters
larger than or equal to 3 mm were annotated by at most four radiologists.
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The nodules which were annotated by at least three radiologists were used
for the evaluations. There were 1340 nodules satisfying this criterion. We used
the mean malignancy and attribute scores of different radiologists for experi-
ments. The nodules have ratings corresponding to malignancy and the other
six attributes which are (i) calcification, (ii) lobulation, (iii) spiculation, (iv)
sphericity, (v) margin and (vi) texture. The malignancy ratings varied from 1
to 5 where 1 indicated benign and 5 represented highly malignant nodules. We
excluded nodules with an average score equal to 3 to account for the indecision
among the radiologists. Our final dataset consisted of 635 benign and 509 ma-
lignant nodules for classification. The images were resampled to have 0.5 mm
spacing in each dimension.

4.2 Results

We used the 3D CNN trained on Sports-1M dataset [15] which had 487 classes.
We fine-tuned the network using samples from lung nodule dataset. In order to
generate the binary labels for the six attributes and the malignancy, we used
the center point and gave positive (or negative) labels to samples having scores
greater (or lesser) than the center point. In the context of our work, tasks rep-
resented six attributes and malignancy. We fine-tuned the network with these
7 tasks and performed 10 fold cross validation. By fine-tuning the network, we
circumvented the need to have a large amount of training data. Since the 3D
network was trained on image sequences with 3 channels and with at least 16
frames, we replicated the same gray level axial channel for the other two. More-

Table 1. Classification accuracy and mean absolute score difference of the proposed
multi-task learning method in comparison with the other methods.

Methods Accuracy Mean score diff.

GIST features with LASSO 76.83% 0.6753
3D CNN MTL with Trace norm 80.08% 0.6259
Proposed method (Equation 7) 91.26% 0.4593

over, we also ensured that all input volumes have 16 slices by interpolation when
necessary. We used the 4096-dimensional output from the first fully connected
layer of the 3D CNN as a feature representation.

To find the structure matrix S, we computed the correlation between tasks by
finding an initial normalized coefficient matrix W using lasso with least square
loss function and followed by computing the correlation coefficient matrix [17].
We then apply a threshold on the correlation coefficient matrix to obtain a bi-
nary graph structure matrix. For testing, we multiply the features from network
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(a) (b) (c) 

Fig. 3. Plots to show classification accuracy against various threshold values for average
absolute score difference. The graphs in (a) and (b) represent results from 10 different
cross validation (CV) sets. It can be seen that the classification accuracy increases, as
we increase the threshold value for absolute score difference. The graph (c) shows the
improved performance of the proposed method in comparison with GIST+LASSO and
3DCNN with Trace Norm.

trained on malignancy with the corresponding coefficient vector W to obtain the
score.

For evaluation, we used metrics for both classification and regression. We
calculated classification accuracy by considering classification to be successful if
the predicted score lies in ±1 of the true score. We also reported average absolute
score difference between the predicted score and the true score. Table 1 shows the
comparison of our proposed Multi-task learning method with GIST features [20]
+LASSO and 3D CNN Multi-task learning with trace norm. Our proposed graph
regularized MTL outperforms the other methods with a significant margin. Our
approach improves the classification accuracy over GIST features by about 15%
and over trace norm regularization by 11%. Moreover, the average absolute score
difference reduces by 32% and 27% when compared with GIST and trace norm
respectively.

We also plotted classification accuracy against different thresholds for aver-
age absolute score difference. Figure 3 (a) and (b) show the plot on different
cross-validation sets. It can be noticed that across different validation sets, the
predicted malignancy scores of around 70% of the nodules lie within a margin
of ±0.6 which increases to around 90% when ±1 margin is used. Figure 3 (c)
shows the comparison with the other methods, where the proposed approach
outperforms them over all values of average absolute score difference. Figure 4
shows the qualitative results from our proposed approach.

In order to evaluate the significance of transfer learning via fine-tuning, we
project the features onto a low dimensional space. This is done by computing
the proximity, between boundary points using t-distributed stochastic neighbor-
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(b) Malignant (a) Benign 

Fig. 4. Qualitative results using our proposed approach. (a) and (b) show axial views
of benign and malignant nodules respectively, where first three columns consist of
successful cases (where prediction was within ±1 of the expert score) and the last
column (after dotted line) shows failure cases.

hood embedding (t-SNE) [21]. As our feature space is high dimensional (4096-
dimension), t-SNE is useful in revealing the structure of data at different scales.
It can be seen in Figure 5 that fine-tuning the network on the lung nodule dataset
distinctively improves the separation between benign and malignant classes.

5 Discussion and Conclusion

In this work, we proposed a framework to stratify the malignancy of lung nodules
using 3D CNN and graph regularized sparse multi-task learning. To the best
of our knowledge, this is for the first time, transfer learning is employed over
3D CNN to improve lung nodule characterization. The task of data collection,
especially in medical imaging fields, is highly regulated and the availability of
experts for annotating these images is restricted. In this scenario, leveraging
on the availability of crowdsourced and annotated data such as user captured
videos can be instrumental in training discriminative models. However, given
the diversity in data from these two domains (i.e. medical and non-medical user
collected videos), it is vital to perform transfer learning from source domain (user
collected videos) to the target domain (medical imaging data). To establish this
observation and to visualize features, we used t-SNE to project high dimensional
features onto a low dimensional space (2D space), where the separation between
classes was evident in the case of transfer learning.

Moreover, in this work, we also empirically explored the importance of high-
level nodule attributes such as calcification, sphericity, lobulation and others
to improve malignancy determination. Rather than manually determining these
attributes we used 3D CNN to learn discriminative features corresponding to
these attributes. The 3D CNN based features from these attributes are fused in
a graph regularized sparse multi-task learning.
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Fig. 5. Effect of fine-tuning on 3D CNN features. t-SNE visualization for features
obtained from (a) pre-trained network and (b) network after fine-tuning. Separation
between features belonging to two classes, i.e. benign nodules (represented in blue) and
malignant nodules (shown in red) can be readily observed in (b).

Another important imaging modality for lung nodule diagnosis is Positron
Emission Tomography (PET). It has been found that the combination of PET
and CT can improve the diagnostic accuracy of solitary lung nodules [22]. With
the increase in the availability of PET/CT scanners, our future work will involve
their utilization for simultaneous detection and characterization of pulmonary
nodules.
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