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Abstract

Many methods have been developed to spatially normalize a population of brain images for 

estimating a mean image as a population-average atlas. However, methods for deriving a network 

atlas from a set of brain networks sitting on a complex manifold are still absent. Learning how to 

average brain networks across subjects constitutes a key step in creating a reliable mean 

representation of a population of brain networks, which can be used to spot abnormal deviations 

from the healthy network atlas. In this work, we propose a novel network atlas estimation 

framework, which guarantees that the produced network atlas is clean (for tuning down noisy 

measurements) and well-centered (for being optimally close to all subjects and representing the 

individual traits of each subject in the population). Specifically, for a population of brain networks, 

we first build a tensor, where each of its frontal-views (i.e., frontal matrices) represents a 

connectivity network matrix of a single subject in the population. Then, we use tensor robust 

principal component analysis for jointly denoising all subjects’ networks through cleaving a sparse 

noisy network population tensor from a clean low-rank network tensor. Second, we build a graph 

where each node represents a frontal-view of the unfolded clean tensor (network), to leverage the 

local manifold structure of these networks when fusing them. Specifically, we progressively shrink 

the graph of networks towards the centered mean network atlas through non-linear diffusion along 

the local neighbors of each of its nodes. Our evaluation on the developing functional and 

morphological brain networks at 1, 3, 6, 9 and 12 months of age has showed a better centeredness 

of our network atlases, in comparison with the baseline network fusion method. Further cleaning 

of the population of networks produces even more centered atlases, especially for the noisy 

functional connectivity networks.

1 Introduction

The study of brain connectivity propelled the development of the field of brain 

connectomics, where the connectivity between different brain regions is usually measured 

using functional (e.g., resting state fMRI) or structural brain imaging (e.g., diffusion MRI) 

[1]. A connectome is a brain network or a graph, where each node represents an anatomical/

functional region of interest (ROI) in the brain and the weight between two nodes encodes 
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biological information. This can also be represented as a symmetric matrix, where each of 

its values represents a connectivity measurement between a pair of ROIs. More importantly, 

big connectomic data are rapidly exploding with emerging international research initiatives 

aiming to massively collect large high-quality brain images with structural, diffusion and 

functional modalities such as UK Biobank [2], the Developing Human Connectome Project 

in Europe, and the Baby Connectome Project, which extends the Human Connectome 

Project from birth through early childhood [3]. Part of analyzing a large number of brain 

networks is to learn how to effectively average them, which indeed constitutes a key step in 

creating a reliable and meaningful mean representation of a population of brains. This can be 

used to spot deviations from the normal network atlas (e.g., cases with brain disorder/

disease) as well as provide a principled understanding of the developing and aging 

trajectories of brain connectivities [1].

Broadly, connectomic data analysis methods targeted different neuroscientific and clinical 

applications such as population-based (or individual-based) brain parcellation using 

connectomes [4], extracting the connected core or backbone of connectivity networks of a 

population [5], and connectome-based feature extraction for brain disease/disorder diagnosis 

[1, 6]. However, the problem of effectively fusing a population of brain networks nested in a 

complex manifold, which can shed new light on brain connectivity, was somewhat 

overlooked. On the other hand, a variety of methods have been developed to spatially 

normalize a population of brain images to estimate a ‘mean image’ (i.e., a population 

template or image atlas), which were further refined to estimate a sharp atlas that is well-

centered and more representative of each individual image [7]. To fill in this gap, we aim to 

estimate a population-based network atlas that is clean and centered. Both these crucial traits 

are considered to define a good representative atlas of a corrupted or noisy population of 

networks.

Specifically, since fMRI has low signal-to-noise ratio possibly induced by non-neural noise, 

its derived functional connectivity strength between pairs of ROIs can be spurious or noisy. 

To address this issue, particularly when producing network atlas for functional networks, we 

first build a tensor where each of its frontal-views represents a connectivity network matrix 

of a single subject in the population. Since brain network is intrinsically sparse, we 

encourage sparsity in its noisy components (i.e., sparse noise). Hence, we propose to use 

tensor robust principal component analysis introduced in [8] to cleave a sparse noisy 

population network tensor from a clean low-rank network tensor. Next, we propose to 

estimate a well-centered atlas from the unfolded clean tensor. Since at a subject level, some 

brain regions wire similarly to one another, a low-rank representation is appropriate for brain 

network atlas representation. Furthermore, at a population level, since brain networks of 

different healthy subjects share similar connectivity patterns, then jointly decomposing and 

denoising them may better preserve their similarities.

Recently, Wang et al. introduced in [9] a robust method to non-linearly fuse different 

matrices, each matrix encoding a specific type of genomic similarities between a set of 

patients. Broadly, given N networks, each network is iteratively updated through diffusing 

the global structure of the averaged remaining (N − 1) networks across its local structure. 

Then the fused network is obtained through simply averaging the N diffused networks. A 
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key limitation of such an approach is that it completely ignores the pairwise associations 

between different networks in the diffusion/fusion process. Particularly, it simply averages 

all remaining networks without considering their proximity or relationship to the current 

network. To address this issue, we propose to explore the underlying data distribution during 

the fusion process for network atlas estimation, through modeling of their relationships 

using a graph as introduced in [10] for image atlas estimation. This will better preserve the 

topology of the manifold, where the individual networks sit as they smoothly diffuse and 

fuse toward a well-centered network. This is an important characteristic of an atlas, where it 

occupies a position near to all the individuals of a population, which implies that it well 

captures the individual characteristics of each subject in the population while generating 

their mean. It is worth noting that our graph shrinkage strategy differs from [10] in two 

major aspects: (1) our graph is made of graphs (connectomes) instead of images (i.e., a 

graph of graphs), and (2) the graph shrinkage is performed through diffusion instead of 

diffeomorphic warping.

The main contributions of our work can be summarized as follows: (1) introducing the 

concept of a clean and centered network atlas to capture connectomic data characteristics of 

a population, (2) proposing a joint denoising of brain networks through modeling the 

network population as a tensor, (3) further improving network fusion strategy introduced in 

[9] by modeling each frontal-view of the unfolded clean tensor as a ‘network node’ in a 
graph that shrinks through manifold-guided diffusion, and (4) evaluating our approach on 

both functional and morphological brain networks of developing infants.

2 Estimation of Clean and Centered Network Atlas using Diffusive-

Shrinking Graphs

In this section, we briefly present the framework introduced in [9] for similarity network 

fusion (SNF), and extend it to our aim. We denote tensors by boldface Euler script letters, 

e.g., . Matrices are denoted by boldface capital letters, e.g., X, and scalars are denoted by 

lowercase letters, e.g., x. For easy reference and enhancing the readability, we have 

summarized the major mathematical notations in Table 1.

2.1 Conventional Similarity Network Fusion Method

Suppose we have a population of N brain networks, where each brain network is subject-

specific and can be represented as a graph (or connectome) C = (VC, EC). The vertices VC 

denote ROIs in the brain and the edges EC are weighted by a connectivity strength. We 

represent edge weights by an m × m similarity matrix X with X(i, j) denoting the 

connectivity between ROI i and ROI j. Our goal is to estimate a network atlas A, that 

captures both the local traits of each individual network Xk and the global traits of the 

population of networks {X1, …, Xk, …, XN}. To this end, for each individual k in the 

population, we define a global matrix Pk that carries the connectivity strength of each ROI to 

all other ROIs and a local matrix k that encodes the similarity to nearest similar ROIs for 

each ROI in the brain network (or local affinity in the connectome graph C). These are 

defined as follows based on [9]:
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(1)

(2)

We identify the set of ROIs Ni in an individual brain network that are neighbors to ROI i in 

the network graph C using KNN (K-nearest neighbors). Sk carries the sparse local traits of 

each individual network Xk.

The basic idea of similarity network fusion proposed in [9] is to consider each individual 

network Pk of the population as a single view, then iteratively update it through diffusing the 

average global structure of other (N − 1) views from the population along the fixed local 

sparse structure Sk of the network. This is achieved through the following iterative equation: 

, where t ∈ {0, …, t*} denotes the diffusion iteration number 

and T denotes the matrix transpose operator. After each iteration t,  is normalized using 

equation 1. Finally, following t* iterations, the fused network atlas is generated by averaging 

all updated diffused networks: 

Whereas at a network-level SNF explores the local inter-regional relationships within each 

individual network through estimating the matrix S, at a higher network manifold-level, it 

ignores the inter-network relationships during the diffusion process. In other words, when 

iteratively updating a single network, it weighs equally the contributions of other networks, 

as mathematically reflected by the diffusion kernel . Additionally, although the 

diffusion of a global network along the local structure of a single network Sk may reduce 

some local noise in the original network X, it may overlook noise that distributes randomly 

and sparsely in X. To alleviate both shortcomings, we first propose to perform a joint 
denoising for all individual networks through modeling the network population as a tensor 

, then we devise a diffusive-shrinking graph evolution strategy through locally exploring 

the clean network manifold structure to estimate a well-centered network atlas.

2.2 Proposed Similarity Network Fusion through Diffusive-Shrinking Graph

In this section we address the aforementioned limitations and detail the three steps for clean 

and centered network atlas estimation.

• Step 1: Tensor-based network population denoising—We first build a network 

tensor  by defining each of its frontal-views as a brain network from our population and 
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then decompose this noisy network tensor into a tubal low-rank tensor (i.e., clean) and a 

sparse tensor (i.e., noise). The tensor denoising process is performed through mininizing the 

following equation using ADMM [8]:

(3)

ℒ represents the low-rank clean tensor whereas ℰ denotes the sparse noisy component of 

the tensor. In our case, n1 = n2 = m (number of brain ROIs) and n3 = N (number of subjects 

in the population). The trade-off parameter λ is automatically set to  as detailed in 

[8].

• Step 2: Tensor unfolding and graph building—Motivated by the fact that a 

manifold representation can be effectively used to model the nonlinearity of samples in a 

population, we propose to model the manifold of brain networks using a graph for a more 

effective fusion of populations of networks with different distributions. Notably, graphs have 

demonstrated superb capability to model the nonlinearlity of samples on a manifold [10]. To 

do so, we first unfold the estimated clean tensor ℒ into its frontal clean brain network views 

{L1, …, Lk, …, LN}. Next, we build a graph G = (EM, VM) to model the structure of the 

clean network population manifold. Each node in VM represents a brain network Lk (or a 

graph). To compute a similarity between two networks Lk and Lk′, we use the distance 

metric d(Lk, Lk′) = 1 − (trace(Lk × Lk′))/‖Lk‖F × ‖Lk′‖F) with ‖ · ‖F denoting Frobenius 

norm. Then, we define the symmetric N × N weighted graph edge matrix EM, where two 

networks Li and Lj are connected if d(Li, Lj) ≠ 0 and we set the weights on the diagonal to 0 

to avoid self-connectedness. Our ‘graph of graphs’ is then built by implementing the 

following steps:

1. Apply affinity propagation (AP) clustering method to VM [11] to group similar 

network nodes (i.e., networks) using the network similarity distance d and define 

their representatives {Pr}, so they can be fused in the same way.

2. On a local level, each identified AP cluster defines a sub-graph, where similar 

nodes are connected with a weighted edge using distance d;

3. To ensure that the local fusion of each node with nearby nodes is smooth, we 

average the representatives of all sub-graphs to generate a center global network 

PC that will guide the fusion of sub-graphs.

4. On a higher level, link all sub-graphs through connecting the representatives of 

all subgraphs to the global center.

Based on this graph, all brain networks in the manifold can be progressively diffused and 

fused in accordance to their connected networks, in the direction of the global center as 

illustrated in Fig. 1.

• Step 3: Manifold-guided graph shrinkage through diffusion—To ensure that the 

local fusion of each network node with nearby nodes is smooth, we average the 

representatives of all sub-graphs to generate a center global network. Then, we move each 

Rekik et al. Page 5

Inf Process Med Imaging. Author manuscript; available in PMC 2017 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



node (i.e., locally update each network) by fusing it with its closest neighboring nodes (i.e., 

networks) through an iterative process as in [10] in the direction of the global center. Since 

the representative nodes are moved, we subsequently update the global center. We then 

repeat these two steps while updating the global center until it becomes stable. Eventually, 

the as the original graph shrinks where all nodes will locate at the vicinity of the global 

center PC, where their averaging is more reliable and meaningful to produce the sought 

‘network atlas’ (Fig. 1). The steps for diffusive-shrinking graph for network atlas estimation 

are detailed in Algorithm 1, where where we denote by  the diffusion at a sub-graph level 

in G and by  the diffusion at a higher level in G.

3 Results

Evaluation dataset

We evaluated the proposed framework on 35 typically developing infants, where each 

subject has 5 serial T1-w, T2-w MRI and resting-state fMRI (rsfMRI) scans acquired at 1, 3, 

6, 9 and 12 months of age. We generated two types of brain networks for each subject.

Functional Brain Networks—After rsfMRI pre-processing (including motion 

correction), we performed infant brain image longitudinal registration from native space to 

MNI space using GLIRT where each rsfMRI was partitioned into 116 ROIs using AAL 

template, which includes both cerebral and cerebellar regions. For each subject, we 

computed the mean fMRI time-series signal in each ROI. Then, we created the 116 × 116 

functional connectivity matrix where the connectivity strength between a pair of ROIs 

represents the correlation between their mean functional signals.

Morphological Brain Networks—After rigid alignment of longitudinal and cross-

sectional infant structural MR images (i.e., T1-w and T2-w) and brain tissue segmentation, 

we reconstructed and parcellated the cortical surfaces into 35 cortical regions using in-house 

developed tools [12]. By computing the pairwise absolute difference in cortical thickness 

between pairs of regions of interest, we generate a 35 × 35 morphological connectivity 

matrix for each time point in each subject.

Evaluation—To evaluate the centeredness of the estimated brain network atlas, we 

compute the mean distance between the estimated network atlas and each individual network 

in the population using as metric d. Fig. 2 shows the mean distance computed using the 

proposed network atlas estimation method and the conventional SNF method [9]. The 

smaller the evaluation distance the more centered is the atlas with respect to the individual 

networks on the network manifold. We used paired t-test to evaluate the statistical 

significance of our method in comparison with [9]. Clearly, our method produced more 

centered network atlases than conventional SNF (p << 0.001) at all acquisition timepoints 

(Fig. 2). When using functional networks, the denoising step led to more centered network 

atlases for both our method and SNF (Fig. 2). On the other hand, denoising morphological 

networks did not further improve the centeredness of the estimated atlases at different 

timepoints, which can be explained by the fact that fMRI is much noisier than structural 

T1/T2-w MR imaging. Fig. 3–4 show that at each diffusion iteration, our method generated 
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rapidly a more centered network atlas than the conventional SNF method. Fig. 3-B displays 

the estimated functional network atlases using our method at different timepoints. A 

dramatic functional connectivity change occurs between 1 and 3 months of age, followed by 

a few sparsely distributed changes between 3 and 12 months of age. We also notice that in 

Fig. 4-B many cortical thickness-based connectivities become weaker (i.e. smaller absolute 

difference) as we transition from 1 to 3 months of age, which implies that different brain 

regions develop more similar cortical thicknesses. On the other hand, brighter connectivities 

appear in morphological network atlases between 3 and 12 months of ages, which shows 

that the cortical thickness becomes more spatially heterogeneous with age.
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Algorithm 1

Diffusive-shrinking graph strategy for network atlas estimation

4 Discussion and conclusion

We have proposed a diffusive-shrinking graph strategy that follows the local manifold 

structure of a set of brain networks to gradually fuse them through a diffusion process until 

reaching the final network atlas. Our results showed that our strategy significantly improves 

the atlas centeredness and pre-denoising (especially for functional networks) further centers 

the estimated clean atlases. Additionally, our method converges around 5–10 times faster 

than the conventional SNF method. While SNF converges when the number of iterations t 
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exceeds 20 as noted in [9], the optimal number of iterations required for our method to 

converge is t* ~ 2 for functional networks and t* ~ 4 for morphological networks. Precisely, 

while the SNF mean distance slowly decreases with each diffusion iteration as the atlas 

becomes more centered (see red and white bars in Fig. 3 and dark blue and pink bars in Fig. 

4), our mean distance dramatically drops during the first few iterations (black vs. yellow 

bars (without denoising) and red vs. white bars (with denoising) in Fig. 3) and then slightly 

increases and remains stable. This convergence behavior shows first that, following the 

manifold structure when diffusing, speeds up the convergence process to the optimal t*, and 

second that over-diffusion t > t* decenters the network atlas as it becomes closer to the 

identify matrix. Clearly, our method have two advantages over conventional SNF: (1) a 

better atlas centeredness (shown in Fig. 2-A), and (2) a significantly decreased 

computational time (shown in Fig. 3–4). We also notice that, when denoising, the diagonals 

of the denoised tensor may take non- zero values. This is not problematic since the diffusion 

process automatically resets these values using Eq. 1.

It is worth noting that the proposed network atlas estimation framework is appropriate for 

large datasets with thousands of networks where the network distribution is complex. 

Indeed, to capture this complexity, Algorithm 1 can include several hierarchical levels of 

subgraphs and their representatives that progressively diffuse as they approach the global 

center of the whole graph. Since our framework overlooks the network distribution in the 

temporal domain, we will further extend it by enforcing temporal consistency to produce a 

longitudinal network atlas. Eventually, building clean and centered atlases for healthy 

individuals as well as patients with a specific brain disease or disorder will help us better 

identify population-based distinctive changes in brain connectivity, thereby providing 

reliable features or biomarkers for an accurate diagnosis.
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Fig. 1. Illustration of the proposed manifold-guided diffusive-shrinking graphs for network atlas 
estimation
(A) Modeling the manifold of brain networks as a graph partitioned into homogeneous 

subgraphs, where similar networks are clustered together. (B) Iterative sub-graph shrinking 

through locally diffusing and fusing each network node with its most similar neighboring 

nodes, in the direction of the global center of the manifold graph.
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Fig. 2. Clean and centered network atlas evaluation
(A) Mean distance between the estimated network atlas and all individual networks in the 

population using conventional SNF method and our framework, with and without denoising. 

(B–C) Network denoising using tensor robust principal component analysis and fusion using 

the proposed diffusive-shriking graph strategy. We display both functional (B) and 

morphological (C) estimated network atlases at 9 months of age.

Rekik et al. Page 12

Inf Process Med Imaging. Author manuscript; available in PMC 2017 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
(A) Evaluation of the estimated functional network atlases for developing infants (1, 3, 6, 9 

and 12 months of age) using the conventional similarity network fusion method introduced 

in [9] and our proposed diffusive-shrinking graph method. We display the mean distance 

between estimated network atlas and all individuals in the population of networks at each 

diffusion iteration, with and without denoising. The dashed gray line shows that our method 

rapidly achieves the best accuracy within the first diffusion iterations (t* ~ 2). (B) The 

estimated functional network atlases using our method.
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Fig. 4. 
(A) Evaluation of the estimated morphological network atlases for developing infants (1, 3, 

6, 9 and 12 months of age) using the conventional similarity network fusion method 

introduced in [10] and our proposed diffusive-shrinking graph method. We display the mean 

distance between estimated network atlas and all individuals in the population of networks at 

each diffusion iteration, with and without denoising. The dashed gray line shows that our 
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method rapidly achieves the best accuracy within the first diffusion iterations (t* ~ 4). (B) 

The estimated morphological network atlases using our method.
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Table 1

Major mathematical notations used in this paper.

Mathematical notation Definition

tensor in ℝn1 × n2 × n3

X connectivity matrix in ℝn1 × n2 or frontal-view of tensor 

A population-based network atlas

Pk global normalization of the connecitivity matrix Xk of individual k

Sk local normalization of the connecitivity matrix Xk of individual k

Ni set of neighboring ROIs to the ith ROI in the brain network

set of neighboring networks to a network Pk in a subgraph g

ℒ tubal low-rank tensor (clean tensor)

Lk frontal-view of the clean tensor or brain network matrix

ℰ sparse tensor (noise)

d(Lk, Lk′) distance between two brain networks Lk and Lk′

C = (VC, EC) connectome or brain network graph of a single subject

VC nodes or brain ROIs

EC edges connecting pairs of brain ROIs in a single subject

G = (VM, EM) graph of brain networks representing the network population manifold

VM set of network nodes or brain networks in the population

EM edges connecting pairs of brain networks
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