
Globally optimal coupled surfaces for
semi-automatic segmentation of medical images

Juan Eugenio Iglesias

Translational Imaging Group, University College London, UK

Abstract. Manual delineations are of paramount importance in medical
imaging, for instance to train supervised methods and evaluate automatic
segmentation algorithms. In volumetric images, manually tracing regions
of interest is an excruciating process in which much time is wasted label-
ing neighboring 2D slices that are similar to each other. Here we present
a method to compute a set of discrete minimal surfaces whose bound-
aries are specified by user-provided segmentations on one or more planes.
Using this method, the user can for example manually delineate one slice
every n and let the algorithm complete the segmentation for the slices
in between. Using a discrete framework, this method globally minimizes
a cost function that combines a regularizer with a data term based on
image intensities, while ensuring that the surfaces do not intersect each
other or leave holes in between. While the resulting optimization prob-
lem is an integer program and thus NP-hard, we show that the equality
constraint matrix is totally unimodular, which enables us to solve the
linear program (LP) relaxation instead. We can then capitalize on the
existence of efficient LP solvers to compute a globally optimal solution
in practical times. Experiments on two different datasets illustrate the
superiority of the proposed method over the use of independent, label-
wise optimal surfaces (∼5% mean increase in Dice when one every six
slices is labeled, with some structures improving up to ∼10% in Dice).

1 Introduction

Image segmentation is the process of assigning meaningful labels to pixels (2D)
or voxels (3D). In medical imaging, the set of labels corresponds to a number of
biologically relevant regions of interest (ROIs), such as different organs, types
of cells, etc., as well as a background, in most cases. Segmentation is a key
preprocessing step for a wide array of subsequent analyses, such as volumetry or
shape analysis, and is therefore one of the core problems in medical imaging.

As useful as traditional manual segmentation is, its usage is encumbered by
the necessity that images have to be delineated by an expert, which leads to
three main issues: (a) it is not reproducible; (b) it often requires expertise that
might not be present at every research center; and (c) it is typically very time
consuming – and thus expensive. This last limitation is particularly problematic
in 3D data (in which multiple 2D slices are traced to create a 3D segmentation)
for two reasons. First, the increasing resolution of medical images requires seg-
menting a larger number of 2D slices. And second, several iterations are often
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needed in order to ensure that segmentations made in a particular orientation
are consistent and smooth when displayed in the orthogonal views. Moreover,
3D segmentation is typically a very inefficient process, since a lot of time is spent
labeling 2D images that are very similar to their neighboring slices.

Some of the limitations of manual segmentation can be addressed with auto-
mated techniques. Most popular families of automatic segmentation methods are
supervised and rely on training data, e.g., shape models [1], multi-atlas segmen-
tation [2, 3], probabilistic atlases [4], or voxel classifiers based on learning models
such as support vector machines [5], random forests [6] or, more recently, deep
neural networks (e.g., [7]). However, creating databases of labeled training data
for supervised techniques still requires manually segmenting images. And even
for unsupervised methods, manual delineations are needed to produce a gold
standard with validation purposes.

A faster, more reproducible way of generating gold standards is through
semi-automated segmentation, which represents a compromise between auto-
mated and manual methods: the user is required to provide a relatively small
amount of input, which an automated algorithm subsequently uses to produce a
dense segmentation of the whole image. In 2D, the popular live wire method [8,
9] uses a shortest path algorithm to produce a continuous contour out of a set of
points placed along the (possibly ill-defined) boundary of an object. The Grab-
Cut algorithm [10] iteratively uses graph cuts [11] to create a segmentation of
an object from a rectangular, user-provided bounding box. The Random Walker
algorithm [12] uses a set of user-provided scribbles to compute a dense segmen-
tation based on the probability that a random walker starting at each unlabeled
pixel first reaches one of the prelabeled pixels. GeoS [13] also relies on scribbles
to produce a geodesic distance map that, in the context of a conditional ran-
dom field, yields the final segmentation. Many of these methods can be made
interactive by allowing the user to modify his input while updating the output
in real-time – if this is computationally feasible.

Extending the semi-automated methods described above to 3D is immediate
in most cases. A notable exception is live wire, which requires finding a minimal
surface joining user-specified contours. Such an extension has a direct, very useful
application to semi-automated segmentation: a user can manually delineate one
slice every n in a 3D volume (possibly with 2D semi-automated techniques) and
then use this method to produce a smart “interpolation” of the segmentation
for the unlabeled slices. This strategy effectively exploits the similarity between
adjacent slices and can save large amounts of manual labeling effort.

After some attempts in the literature to reconstruct 2D surfaces from sets of
1D curves (e.g., [14]), Grady proposed an algorithm [15] to compute a globally
minimal surface given its boundary. The solution is efficiently found by solving a
minimum-cost flow problem [16]. Compared with other globally optimal surface
algorithms, such as LOGISMOS [17] and its variants (all based on [18]), Grady’s
method has the advantages of being able to handle topological changes in the
optimal surface; being agnostic to the type and modality of the input images;
and not requiring a preliminary volumetric segmentation.
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Generalizing Grady’s method to multi-class segmentation is not straightfor-
ward. One can apply the algorithm one label at the time and combine the binary
outputs into a multi-class segmentation, but this approach has three disadvan-
tages. First, it requires handcrafting rules for handling conflicts (overlaps, holes)
when merging segmentations. Second, it is suboptimal in terms of cost function.
And third, the quality of the segmentation can in some cases be considerably
worse than that of an algorithm that jointly computes the surfaces, e.g., high-
contrast ROIs can help the segmentation of neighboring lower-contrast ROIs.

Here we present a generalization of Grady’s algorithm to multiple ROIs. The
method computes surfaces simultaneously for all labels while ensuring that no
holes or overlaps are produced, and also inherits the ability to handle topological
changes in the surfaces. We show that, despite the coupling between the surfaces,
the globally optimal solution can still be obtained by solving a linear (rather than
integer) program, which can be done in practical times with existing techniques.

2 Methods

2.1 Continuous formulation of joint surface fitting

In the continuous domain, the problem of joint surface fitting can be framed
as a constrained optimization problem, illustrated in Fig. 1. Given a cuboid
shaped 3D image domain Ω, let {Ul : l = 1, . . . , L} represent user-provided
segmentations for L different ROIs (including the background), defined on one
or more planes. In our target application, there would be two parallel planes1, but
this does not need to be the case in our formulation. Let {Rl = δUl : l = 1, . . . , L}
represent the boundaries of the segmentations; note that each Rl can represent
more than one contour, e.g., contours on different planes, as in Fig. 1. Finally,
let {Zl : l = 1, . . . , L} represent the L surfaces to fit; note that Zl is necessarily
an open surface since it has a non-empty boundary Rl. The problem is then:

min
{Zl}

L∑
l=1

(
α

∫
Zl

dS +

∫
Zl

gl(I, n̂;β)dS

)
(1)

s.t. B(Zl) = Rl,

L⋃
l=1

Vol(Zl ∪ Ul) = Ω,
⋂

l={l1,l2}

Vol(Zl ∪ Ul) = ∅,∀l1 6= l2,

where dS is the area element; B is the boundary operator; Vol(Zl ∪ Ul) is the
3D segmentation enclosed by Zl ∪ Ul; α, β are scalar constants; I represents the
image intensities; and n̂ is the surface normal at each point (pointing towards
the inside of the volume). The first term in Eq. 1 is a regularizer that penalizes
the total surface area with relative weight α. The second term encourages the
surfaces to follow perpendicular image gradients, by means of a function gl of

1 If there are more than two segmented slices, we can solve for one gap between labeled
planes at the time because the boundary conditions decouple the problems.
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Fig. 1. We aim to find the open surfaces {Zl} that: (a) globally minimize the cost
function in Eq. 1; (b) are constrained to have boundaries {Rl} given by the contours
of user-specified segmentations {Ul}; and (c) do not intersect or leave holes in between.
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Fig. 2. Duality in 3D, 6-connected lattice. The image intensities are defined on the
primal nodes. The surfaces we consider in this paper are given by sets of dual facets,
which are equivalent to the faces of the cuboids representing image voxels.

the image intensities and the normal n̂, parametrized by β. A frequent choice is:

gl(I, n̂;β) = exp(−β‖∇n̂I‖2), (2)

which we use in this study. Note that the cost of a surface is independent of its
label l in Eq. 2, but this does not need to be the case in general.

2.2 Discrete formulation

We follow [15] to discretize the problem in Eq. 1, which enables us to compute a
globally optimal solution. We assume that our image intensities are defined at the
center of cuboid voxels. These centers correspond to the nodes of a 6-connected
3D lattice, which defines our primal graph (see Fig. 2). The (primal) nodes are
connected by K primal2 edges {epk : k = 1, . . . ,K}, which have corresponding
(label-dependent) weights wl = [wl1, . . . , wlK ]T . In addition, we also consider
the dual graph, in which nodes corresponds to volumes, edges to facets, and
vice versa. The volumes of the dual graph correspond to the cuboids of the
image voxels, such that the dual facets {fdk : k = 1, . . . ,K} correspond to the

2 We use superscript p for primal and superscript d for dual.
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faces of these cuboids (where our surfaces will be defined). The dual facets
have a direct correspondence with the primal edges, and hence share the same
weights wlk. Note that it is crucial to include each primal edge / dual facet
twice in {epk}, {fdk} and wl with opposite orientations. This is because we need
to discern whether the segmented ROI is on one side of the dual facet or the
other, following the convention that the surface normal points toward the inside
of the enclosed volume. In a similar fashion, we also consider the M dual edges
{edm : m = 1, . . . ,M} with corresponding primal facets {fpm : m = 1, . . . ,M}.

To represent each surface, we use a discrete function zl = [zl1, . . . , zlK ]T that
encodes whether dual facet fdk is part of the lth surface (or, equivalently, whether
primal edge epk intersects the surface), and with what multiplicity. Hence, we are
replacing each continuous surface Zl by a set of voxel faces represented by zl.

Cost function: We discretize the cost function by replacing integrals by sums
in Eq. 1. If dual facet fdk is part of the lth surface, its contribution to the cost is:

wlk = Area(fdk )
(
α+ exp

[
−β(Ij1 − Ij2)2

])
,

where Ij1 and Ij2 are the image intensities at the primal nodes defining the
corresponding primal edge epk; and Area(fdk ) is the area of facet fdk , given by the
voxel dimensions. In our case, due to the choice of gl in Eq. 2, the weight is the
same for both orientations of the edge, but this does not need to be the case in
general. We have kept the weights {wl} separated in the notation (even if they
are the same for all ROIs) for practical reasons in the implementation of the
algorithm (Section 3.2 below). The total cost to minimize is then given by:

min
{zl}

∑
l

wT
l zl =

∑
l

∑
k

wlkzlk. (3)

Constraints: We need to consider two sets of constraints. First, we must ensure
that the boundaries of the surfaces correspond to the contours of the specified
2D segmentations. This can be achieved through the edge-facet incidence matrix
of the dual graph B, which yields the discrete 3D boundary operator:

Bmk =


1, if edm borders fdk with coherent orientation,

−1, if edm borders fdk without coherent orientation,

0, otherwise,

(4)

where orientation coherence is given by the right-hand rule. Next, we define the
contour vectors {rl : l = 1, . . . , L}, also on the dual graph, which represent the
boundaries of the user-defined segmentations on one or more slices:

rlm =


1, if edm is on the lth contour with coherent orientation,

−1, if edm is on the lth contour without coherent orientation,

0, otherwise.

(5)

With these definitions of B and rl, we can write the constraints simply as:

Bzl = rl, ∀l. (6)
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The second set of constraint specifies that the union of the enclosed volumes
needs to be equal to the image domain Ω, while the intersection must be the
empty set. We define the matrix C and vector t as:

Ckk′ =


1, if k′ = k,

−1, if k′ = k̃(k),

0, otherwise,

, tk =


1, if fdk ∈ δΩ[inwards],

−1, if fdk ∈ δΩ[outwards],

0, otherwise,

(7)

where k̃(k) is the index of facet fd
k̃

with opposite orientation to fdk , whereas
δΩ[inwards] and δΩ[outwards] are the sets of dual facets on the external boundary
of Ω whose associated normals point towards the inside and outside of the image
domain, respectively. We also define C∗ = [C C · · ·C], and z∗ = [zT

1 · · · zT
L ]T .

Then, the constraints can be encoded in the following system of linear equations:

C∗z∗ = t. (8)

Forcing
∑L

l=1

(
zlk − zlk̃

)
in Eq. 8 to be zero inside Ω ensures that, if a facet is

part of a surface on one side, it must also be part of another on the other side,
thus avoiding holes and overlaps in the segmentation. Forcing the sum to be ±1
(depending on the orientation) on the walls ensures that the whole image domain
will be covered by the surfaces. In practice, including one of the orientations in
C and t is sufficient, since swapping k and k̃ yields the same constraints.

2.3 Integer program and linear programming relaxation

We can combine the cost function in Eq. 3 with the constraints defined in Eq. 6
and 8 to define the following integer program (IP):

min
z∗

W Tz∗

s.t. Az∗ = v (9)

z∗ � 0,

z∗ ∈ ZL×K ,

where we have defined:

W =


w1

w2

...
wL

 , A =


B 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · B

C∗

 , v =


r1
r2
...
rL
t

 . (10)

Integer programming is notoriously an NP-hard problem [19]. Therefore, solv-
ing (9) directly is impractical. However, it can be shown [20] that, if the equality
constraint matrix A is totally unimodular3 (TU) and the equality constraint

3 A matrix is TU if it is integer and every square submatrix has determinant 1 or -1.
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vector v is integer valued, then the linear programming (LP) relaxation of the
IP is guaranteed to produce an integer solution, which is equal to the solution
of the original IP (note that this condition is sufficient, but not necessary).

Lemma. The equality constraint matrix A in IP (9) is TU.

Proof. It can be shown [21] that a sufficient condition for TU is that the columns
of the matrix add up to zero while all its elements are in the set {−1, 0, 1}. Here,
we first observe that the matrix B can be partitioned into B = [B1|B2], such
that B1 includes each dual facet only once – no matter with which of the two
possible orientations. Then, if we sort the columns of B2 such that they follow the
same facet order as B1, we have that B2 = −B1, since the columns correspond
to the same facets but with opposite edge orientations. Hence, the columns of
B add up to the zero vector. The columns of C∗ also add up to the zero vector,
since each row contains L elements equal to 1 and L equal to −1. Therefore, the
columns of A also add up to zero (Eq. 10). Since all elements of A are in the
set {−1, 0, 1} (from the definitions of B and C∗ in Eqs. 4 and 7), then A is TU.

Since A is TU and v is integer (see the definitions of rl and t in Eqs. 5
and 7), the following LP relaxation yields the same solution as (9):

min
z∗

W Tz∗

s.t. Az∗ = v (11)

z∗ � 0,

z∗ ∈ RL×K ,

Linear programming has polynomial complexity, and efficient solvers exist to
compute the globally optimal solution of (11) in practical times.

3 Experiments and results

3.1 Data

We used two publicly available datasets in our experiments. The first dataset
consists of 35 T1-weighted brain MRI scans from the 2013 MICCAI SATA chal-
lenge4. The images were acquired on a 3T scanner with an MP-RAGE sequence
at 1 mm isotropic resolution. Fourteen structures were labeled by experts in coro-
nal plane: left and right amygdala, caudate, accumbens, hippocampus, putamen,
thalamus and pallidum. We refer to these data as the “brain dataset”.

The second dataset consists of five ex vivo MRI scans of single human
hippocampi (3 right, 3 left) [22]. The scans were acquired on a 9.4T scanner
with a multi-spin echo sequence at 0.2×0.2×0.3 mm resolution (coronal). Five
hippocampal subfields were manually delineated on the images by an expert:
CA1; CA2 and CA3 (CA23); hilus of the dentate gyrus (DG:H); stratum ra-
diatum, stratum lacunosum-moleculare and the vestigial hippocampal sulcus

4 https://www.synapse.org/#!Synapse:syn3193805/wiki/217780



8 Iglesias

(SR+SLM+VHS); and stratum moleculare of the dentate gyrus (DG:SM). The
manual segmentations were mostly made on the coronal plane, with verification
in the sagittal plane. We refer to these images as the “hippocampal dataset”.

3.2 Experimental setup

We evaluated the performance of our algorithm as a function of nskip, the number
of unlabeled slices between each pair of labeled slices. As baseline approach, we
applied Grady’s algorithm to each label independently, and then merged the
resulting L binary segmentations into a multi-label volume – if two segmentations
overlapped in given region, we selected the label that gave the lowest cost (Eq. 3).

For each value of nskip, we randomly sampled 10 and 50 stacks of nskip + 2
coronal slices from each scan of the brain and hippocampal datasets, respec-
tively. This yielded 600 test volumes (350 brain, 250 hippocampal), in which the
segmentation was assumed to be known for the first and last slice. We then used
the two competing methods to segment the rest of the slices in each volume, and
measured the overlap with the ground truth using Dice scores. We merged the
results of the left and right side of each ROI for simplicity of presentation.

Implementation details: We min-max normalized the images to [0, 255], and
manually tuned the parameters (on a separate brain MRI dataset) to β = 0.005
and α = 10−5/nskip. We solved the LP (11) with Gurobi 7.0 (www.gurobi.com).
To handle the boundaries δΩ for which no segmentation was specified by the
user (e.g., the “walls” completing the surface of the cuboid between two labeled
slices), we assumed that the background ROI surrounded all others (which was
the case in all our experiments) and set the costs wlk of the corresponding surface
facets (with the normal facing inwards) to a large negative constant:

W =

 w̃1

...
w̃L

 , where w̃lk =


−∞, if l = background, fdk ∈ δΩ[inwards] and fdk

does not correspond to a segmented voxel

wlk, otherwise.

This setup also enabled us to drop the rows corresponding to the dual facets on
δΩ from the C matrix (Eq. 7), speeding up convergence of the solver in practice.

3.3 Results

Figures 3 and 4 show the results for the brain and hippocampal datasets, re-
spectively, whereas Figs. 5 and 6 display sample outputs for the two competing
algorithms. In the brain dataset, the proposed method exploits the neighboring
relationships between the structures in order to outperform the baseline algo-
rithm for every ROI. The differences between the two methods become larger as
the separation nskip grows, averaging 5% Dice at nskip = 5. The gap is particu-
larly large (>11% at nskip = 5) for the pallidum; this structure is often heavily
undersegmented when processed on its own, but frequently emerges when seg-
mented jointly with the neighboring, high-contrast putamen (as in Fig. 5).
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Fig. 3. Brain dataset: Dice score as a function of the number of unlabeled slices between
manually segmented slices for each brain structure, as well as average across structures.
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Fig. 4. Hippocampal dataset: Dice score as a function of the number of unlabeled slices
between manually segmented slices for each subfield, as well as average across subfields.

The results are similar in the hippocampal dataset. For the larger, high-
contrast CA1, both methods produce almost identical results. However, for the
internal, lower-contrast subfields, the proposed method outperforms the baseline,
averaging 4% higher Dice by nskip = 5. The difference is largest for the stra-
tum moleculare (DG:SM) and hilus (DG:H) of the dentate gyrus, which share a
boundary that is practically invisible in the images (see example in Fig. 6).
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Fig. 5. Sample segmentations from brain dataset with nskip = 4. Green is hippocampus,
orange is putamen, blue is pallidum, dark red is thalamus, brown is caudate, and purple
is amygdala. Note the missing pallidum in the baseline approach.

In absolute terms, the proposed algorithm yields satisfactory results (Dice
above 85-90%) for many structures all the way to nskip = 5 (hippocampus,
putamen, thalamus, CA1, CA23, DG:H), and for most structures at nskip ≤ 3.
Exceptions are ROIs with faint boundaries and poor reliability (e.g., amygdala,
SR+SLM+VHS). However, even low values of nskip can be very useful in prac-
tice, since they can save 100×nskip/(1+nskip) percent of manual labeling effort.

4 Conclusion

We have presented a semi-automated segmentation method that can compute a
globally optimal set of discrete coupled surfaces, whose boundaries are specified
by the contours of user-provided delineations on one or more (typically parallel)
slices. The results have shown that the method outperforms the application of
the binary version to each ROI independently.

The proposed method can easily be made interactive: if the segmentation is
not satisfactory, feedback can be provided to correct the output. More specif-
ically, the user can mark an oriented boundary between two voxels, specifying
which label l should be found on a given side of it. Then, the weight of the facet
at hand wlk (with the appropriate orientation) can be set to a large, negative
constant. This procedure effectively forces the surfaces to go through the speci-
fied points when the LP in (11) is solved to update the segmentation – since the
solver is guaranteed to yield the global optimum.

In addition to the difficulties to handle surfaces with high curvature (inherited
from [15]), the main limitation of the method is its computational requirements.
The null-space of A in Eq. 10 does not yield a concatenation of volume-facet
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Fig. 6. Sample segmentations from the hippocampal dataset with nskip = 4. Blue is
CA1, white is CA23, red is DG:H, violet is DG:SM and pink is SR+SLM+VHS. Note
the missing DG:SM in the baseline method.

incidence matrices due to the coupling terms introduced by Eq. 8. This prevents
rewriting the optimization as a minimum-cost flow problem, which can be more
efficiently solved [15]. We were able to solve the LP relaxation relatively quickly
in our experiments (minutes in the worst cases), but computation times grow
quickly with image size. This is not a problem when “interpolating” segmen-
tations across slices (a task the can be carried out offline), but it is a limiting
factor for the interactive extension of the algorithm discussed above.

Future work will follow four directions. First, we will investigate ways of
further simplifying the LP relaxation (Eq. 11). If we identify the graph for which
A is the incidence matrix, we can device a faster optimization algorithm based on
its dual graph. Second, we will implement and validate the interactive version of
the algorithm. Third, we will evaluate the algorithm more extensively, including
experiments with multiple orientations (e.g., 2.5D) and comparisons with other
methods (e.g., alpha-expansion [11]). And fourth, we will explore other possible
definitions of gl (Eq. 2); while a simple exponential captures most visible edges
(relying on the regularizer around ill-defined boundaries), ROI-specific weights
computed with supervised edge detectors should yield higher performance.

As the amounts of available imaging data and their resolution grow, and as
the requirements of labeled data to train state-of-the art supervised algorithms
increase, we believe that semi-automated approaches like the method proposed
in this paper will become increasingly important in medical image analysis.

Acknowledgement: This research was supported by the European Research
Council (Starting Grant 677697, project BUNGEE-TOOLS), and would not have
been possible without the suggestions from Dr. Leo Grady (HeartFlow, Inc.).

References

1. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models– their training
and application. Computer Vision and Image Understanding 61(1) (1995) 38–59



12 Iglesias

2. Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R.: Evaluation of atlas selec-
tion strategies for atlas-based image segmentation with application to confocal
microscopy images of bee brains. NeuroImage 21(4) (2004) 1428–1442

3. Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a
survey. Medical Image Analysis 24(1) (2015) 205–219

4. Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26 (2005) 839–851
5. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin

classifiers. In: Proceedings of the 5th annual workshop on Computational learning
theory. (1992) 144–152

6. Breiman, L.: Random forests. Machine learning 45(1) (2001) 5–32
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