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Abstract. The acquisition of Magnetic Resonance Imaging (MRI) is in-
herently slow. Inspired by recent advances in deep learning, we propose a
framework for reconstructing MR images from undersampled data using
a deep cascade of convolutional neural networks to accelerate the data
acquisition process. We show that for Cartesian undersampling of 2D car-
diac MR images, the proposed method outperforms the state-of-the-art
compressed sensing approaches, such as dictionary learning-based MRI
(DLMRI) reconstruction, in terms of reconstruction error, perceptual
quality and reconstruction speed for both 3-fold and 6-fold undersam-
pling. Compared to DLMRI, the error produced by the method proposed
is approximately twice as small, allowing to preserve anatomical struc-
tures more faithfully. Using our method, each image can be reconstructed
in 23 ms, which is fast enough to enable real-time applications.

Keywords: Deep Learning, Convolutional Neural Network, Magnetic
Resonance Imaging, Image Reconstruction

1 Introduction

In many clinical scenarios, medical imaging is an indispensable diagnostic and
research tool. One such important modality is Magnetic Resonance Imaging
(MRI), which is non-invasive and offers excellent resolution with various contrast
mechanisms to reveal different properties of the underlying anatomy. However,
MRI is associated with a slow acquisition process. This is because data samples
of an MR image are acquired sequentially in k-space and the speed at which
k-space can be traversed is limited by underlying MR physics. A long data
acquisition procedures impose significant demands on patients, making the tool
expensive and less accessible. One possible approach to accelerate the acquisition
process is to undersample k-space, which in theory provides an acceleration rate
proportional to a reduction factor of a number of k-space traversals required.
However, undersampling in k-space violates the Nyquist-Shannon theorem and
generates aliasing artefacts when the image is reconstructed. The main challenge
in this case is to find an algorithm that takes into account the undersampling
undergone and can compensate missing data with a-priori knowledge on the
image to be reconstructed.



Using Compressed Sensing (CS), images can be reconstructed from sub-
Nyquist sampling, assuming the following: firstly, the acquired images must be
compressible, i.e. they have a sparse representation in some transform domain.
Secondly, one must ensure incoherence between the sampling and sparsity do-
mains to guarantee that the reconstruction problem has a unique solution and
that this solution is attainable. In practice, this can be achieved with random
sub-sampling of k-space, which translates aliasing patterns in the image domain
into patterns that can be regarded as correlated noise. Under such assumptions,
images can then be reconstructed through nonlinear optimization or iterative
algorithms. The class of methods which applies CS to the MR reconstruction
problem is termed CS-MRI [13]. A natural extension of these has been to en-
able more flexible representations with adaptive sparse modelling, where one
attempts to obtain the optimal representation from data directly. This can be
done by exploiting, for example, dictionary learning (DL) [17].

To achieve more aggressive undersampling, several strategies can be consid-
ered. One way is to further exploit the inherent redundancy of the MR data.
For example, in dynamic imaging, one can make use of spatio-temporal redun-
dancies [2], 9], [16]. Similarly, when imaging a full 3D volume, one exploit re-
dundancy from adjacent slices [6]. An alternative approach is to exploit sources
of explicit redundancy of the data and solve an overdetermined system. This
is the fundamental assumption underlying parallel imaging [24]. Similarly, one
can make use of multi-contrast information [7] or the redundancy generated by
multiple filter responses of the image [14]. These explicit redundancies can also
be used to complement the sparse modelling of inherent redundancies [8], [12].

Recently, deep learning has been successful at tackling many computer vi-
sion problems. Deep neural network architectures, in particular convolutional
neural network (CNN), are becoming the state-of-the-art technique for various
imaging problems including image classification [4], object localisation [18] and
image segmentation |19]. Deep architectures are capable of extracting features
from data to build increasingly abstract representations that are useful for the
end-goal being considered, replacing the traditional approach of carefully hand-
crafting features and algorithms. For example, it has already been demonstrated
that CNNs outperform sparsity-based methods in super-resolution [3], not only
for its quality but also in terms of the reconstruction speed [21]. One of the
contributions of our work is to explore the application of CNNs in undersampled
MR reconstruction and investigate whether they can exploit data redundancy
through learned representations. In fact, CNNs have already been applied to
compressed sensing from random Gaussian measurements |11]. Despite the pop-
ularity of CNNs, there has only been preliminary research on CNN-based MR
image reconstruction [22], [25], hence the applicability of CNNs to this problem
is yet to be qualitatively and quantitatively assessed in detail.

In this work we consider reconstructing 2D static images with Cartesian
sampling using CNNs. Similar to the formulations in CS-MRI, we view the re-
construction problem as a de-aliasing problem in the image domain. However,
reconstructing an undersampled MR image is challenging because the images



typically have low signal-to-noise ratio, yet often high-quality reconstructions
are needed for clinical applications. To resolve this issue, we propose a very
deep network architecture which forms a cascade of CNNs. Our cascade network
closely simulates the iterative reconstruction of DL-based methods, however,
our approach allows end-to-end optimisation of the reconstruction algorithm.
We show that under the Cartesian undersampling scheme, our CNN approach
is capable of producing high-quality reconstructions of 2D cardiac MR images,
outperforming DL-based MRI reconstruction (DLMRI) [17]. Moreover, using
the proposed method, each images can be reconstructed in about 23 ms, which
enables the real-time applications.

2 Problem Formulation

Let x € CY represent a complex-valued MR image composed of v N x v/N pixels
stacked as a column vector. Our problem is to reconstruct x from y € CM | the
measurements in k-space, such that:

y = F,x (1)

Here F, € CM*N is an undersampled Fourier encoding matrix. For un-
dersampled k-space measurements (M << N), the system of equations is
underdetermined and hence the inversion process is ill-defined. In order to re-
construct x, one must exploit a-priori knowledge of its properties, which can be
done by formulating an unconstrained optimisation problem:

min. R(x) +Ally — Fux|3 2)

R expresses regularisation terms on x and A allows the adjustment of data
fidelity based on the noise level of the acquired measurements y. For CS-based
methods, the regularisation terms R typically involve ¢y or ¢; norms in the
sparsifying domain of x. Our formulation is inspired by DL-based reconstruction
approaches, in which the problem is formulated as:

i . Rz —D ; 2 1 )\ _Fu 3
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Here R; is an operator which extracts an image patch at ¢, ~y, is the cor-
responding sparse code with respect to a dictionary D. In this approach, the
regularisation terms enforce x to be approximated by the reconstructions from
the sparse code of patches. By taking the same approach, for our CNN formula-
tion, we enforce x to be well-approximated by the CNN reconstruction:

min % foun 0 0)]3 + AFux — y 3 1)

Here fenn is the forward mapping of the CNN parameterised by @, which
takes in the zero-filled reconstruction x, = FZy and directly produces a recon-
struction as an output. Since x,, is heavily affected by aliasing from sub-Nyquist



sampling, the CNN reconstruction can therefore be seen as solving de-aliasing
problem in the image domain.

The approach of eq. , however, is limited in the sense that the CNN recon-
struction and the data fidelity are two independent terms. In particular, since
the CNN operates in the image domain, it is trained to reconstruct the image
without a-priori information of the acquired data in k-space. However, if we al-
ready know some of the k-space values, then the CNN should be discouraged
from modifying them. Therefore, by incorporating the data fidelity in the learn-
ing stage, the CNN should be able to achieve better reconstruction. This means
that the output of the CNN is now conditioned on (2, an index set indicating
which k-space measurements have been sampled in y. Then, our final reconstruc-
tion is given simply by the output, Xenn = fenn (X |0, A, 2). Given training data
D of input-target pairs (x,,X;), we can train the CNN to produce an output
that attempts to accurately reconstruct the fully-sampled data by minimising
an objective function:

LO)= > (Xt Xemn) (5)

(Xu,x¢)ED

where £ is a loss function. In this work, we consider an element-wise squared
loss, which is given by £ (X4, Xenn) = [|X¢ — Xennl|3-

3 Data Consistency Layer

In order to incorporate the data fidelity in the network architecture, we first

note the following: for a fixed 6, eq. has a closed-form solution in k-space,
given as in [17]:

. Xenn (k) ifk &

Xrec k) = X %< . 6

(k) { Shiben ey g (6)

where Xcnn = F fonn (%4]0), X, = Fx,, and F is the Fourier encoding matrix.
The final image is reconstructed by applying the inverse of the encoding matrix
Xrec = F71%cc. In the noiseless setting (i.e. A — 00), we simply replace the ith
predicted coefficient by the original coefficient if it has been sampled. For this
reason, this operation is called data consistency step in k-space (DC).

Since the DC step has a simple expression, we can in fact treat it as a
layer operation of the network, which we denote as DC layer. When defining a
layer of a network, the rules for forward and backward passes must be specified.
This is because CNN training can effectively be performed through stochastic
gradient descent, where one updates the network parameters 6 to minimise the
objective function £ by descending along the direction given by the derivative
oL/ 907 . For this, it is necessary to define the gradients of each network layer
relative to the network’s output. In practice, one uses an efficient algorithm called
backpropagation [20], where the final gradient is given by the product of all the
Jacobians of the layers contributing to the output. Hence, in general, it suffices



to specify a layer operation f; for the forward pass and derive the Jacobian of
the layer with respect to the layer input df;/9xT for the backward pass.

Forward pass The data consistency in k-space can be simply decomposed into
three operations: Fourier transform, data consistency and inverse Fourier trans-
form. In our case, we take our Fourier transform to be a two-dimensional (2D)
discrete Fourier transform (DFT) of the 2D image representation of x, which is
written as X = Fx in matrix form. The inverse transformation is defined anal-
ogously, where x = F~'%. The data consistency fy. performs the element-wise
operation defined in eq. @ We can write it in matrix form as:

L. . AL
fac(X, Xy, A) = AX + T 3 Xu (7
Here A is a diagonal matrix of the form:
1 ifk¢f
A =19 , . ¢ (8)

Combining the three operations defined above, we can obtain the forward
pass of the layer performing data consistency in k-space:

fr(x,%,,A) = F 'AFx + H%F_lfcu (9)
Backward pass In general, one requires Wirtinger calculus to derive a gradient
in complex domain [1], however, in our case, the derivation greatly simplifies
due to the linearity of the DFT matrix and the data consistency operation. The
Jacobian of the DC layer with respect to the layer input x is therefore given by:
oft 1
T — F'AF (10)
There are several points that deserve further explanation: firstly, unlike many
other applications where CNNs process real-valued data, MR images are complex-
valued and the network needs to account for this. One possibility would be to
design the network to perform complex-valued operations. A simpler approach,
however, is to accommodate the complex nature of the data with real-valued op-
eration in a dimensional space twice as large (i.e. we replace CV by R?V). In the
latter case, the derivations above still hold due to the fundamental assumption
in Wirtinger calculus. Secondly, even though the DC layer does not have any
additional parameters to be optimised, it allows end-to-end training of CNN,
hence benefiting our final reconstruction.

4 Cascading Network

For CS-based methods, in particular for DLMRI, the optimisation problem is
solved using a coordinate-descent type algorithm, alternating between the de-
aliasing step and the data consistency step until convergence. In contrast, with
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Fig.1. A cascade of CNNs. The depth of architecture and the depth of cascade is
denoted by ng and n. respectively.

CNNs, we are performing one step de-aliasing and the same network cannot be
used to de-alias iteratively. While CNNs may be powerful enough to learn one
step reconstruction, such network could indicate signs of overfitting, unless we
have vast amounts of training data. In addition, training such networks may
require a long time as well as careful fine-tuning steps. It is therefore best to be
able to use CNNs for iterative reconstruction approaches.

A simple solution is to train a second CNN which learns to reconstruct from
the output of the first CNN. In fact, we can concatenate a new CNN on the
output of the previous CNN to build extremely deep networks which iterate
between intermediate de-aliasing and the data consistency reconstruction. We
term this a cascading network. In fact, one can essentially view this as unfold-
ing the optimisation process of DLMRI. If each CNN expresses the dictionary
learning reconstruction step, then the cascading CNN can be seen as a direct
extension of DLMRI, where the whole reconstruction pipeline can be optimised
from training.

5 Architecture and Implementation

Incorporating all the new elements mentioned above, we can devise our cascad-
ing network architecture. Our CNN takes in a two-channeled image RV™*Vnx2
where each channel stores real and imaginary parts of the undersampled image.
Based on literature, we used the following network architecture for CNN, illus-
trated in Figure I} it has ngy — 1 convolution layers C;, which are all followed by
Rectifier Linear Units (ReL.U) as a choice of nonlinearity. For each of them, we
used a kernel size k = 3 23] and the number of filters were set to ny = 64. The
network is followed by another convolution layer Ci.. with kernel size k = 3 and
ny = 2, which projects the extracted representation back to image domain. We
also used residual connection [5]|, which sums the output of the CNN module
with its input. Finally, we form a cascading network by using the DC layers
interleaved with the CNN reconstruction modules. For our experiment, we chose
ng = 5 and n, = 5. We found that our choice of hyperparameters work suf-
ficiently well, however, by no means were they optimised. Hence the result is
likely to be improved by changing the architecture and varying the parameters
such as kernel size and stride [19], [26].



As mentioned, pixel-wise squared error was used as our objective function.
The minibatch size was set to 10, however, for the deeper models with large
number of cascades, the minibatch size was reduced to fit the model on a single
GPU memory. We initialised our network weights using He initialisation [5].
Adam optimiser [10] was used to train all models, with the parameters o =
1074, 8, = 0.9 and By = 0.999. We also added ¢y weight decay of 10~7. The
network was implemented in Python using Theano and Lasagne libraries.

6 Experimental Results

6.1 Setup

Dataset Our method was evaluated using the cardiac MR dataset used in [2],
consisting of 10 fully sampled short-axis cardiac cine MR scans. Each scan con-
tains a single slice SSFP acquisition with 30 temporal frames with a 320 x 320
mm field of view and 10 mm slice thickness. The raw data consists of 32-channel
data with sampling matrix size 192 x 190, which was zero-filled to the matrix
size 256 x 256. The data was combined into a single complex-valued image using
SENSE [15] with no undersampling, retrospective gating and the coil sensitivity
maps normalised to a body coil image. The images were then retrospectively
undersampled using Cartesian undersampling masks, where we fully sampled
along the frequency-encoding direction but undersample in the phase-encoding
direction. The strategy was adopted from [9]: for each frame we acquired eight
lowest spatial frequencies. The sampling probability of other frequencies along
the phase-encoding direction was determined by a zero-mean Gaussian distri-
bution. The acceleration rates are stated with respect to the matrix size of the
raw data. Note that similarly to previous studies, [17], |2], since the raw data
was combined prior to the simulation, the coil sensitivities were not directly
addressed in our reconstruction. This is set for future investigation, where we
plan to incorporate the explicit redundancy created by parallel imaging into our
model.

Although the dataset is a dynamic sequence, we restrict our experiments to
the 2D case only. Therefore, each time frame was treated as an independent im-
age, yielding a total of 300 images. We found that applying rigid transformations
as a data augmentation was crucial, as without it, the network quickly overfit-
ted the training data. Moreover, for a fixed undersampling rate, we generated
an undersampling mask on-the-fly to allow the network to learn diverse patterns
of aliasing artefact.

Metric We evaluated our method by reconstructing undersampled images from
3-fold and 6-fold acceleration rates. We used mean squared error (MSE) as our
quantitative measure. During our experiment, we noticed that even for the same
undersampling rate, different undersampling masks yield considerable differences
in the reconstruction’s signal-to-noise. To take this into consideration for fair
comparison, we assigned an arbitrary but fixed undersampling mask for each



Table 1. DLMRI vs. CNN across 10 scans

3-fold 6-fold
Models [MSE (SD) x107*||MSE (SD) x1073
DLMRI|  2.12 (1.27) 6.31 (2.95)
CNN | 0.89 (0.46) 3.42 (1.65)

image in test data. Apart from the quantitative measure, we also inspected the
visual aspect of the reconstructed images for qualitative assessment.

Models For CNN, we selected the hyperparameters described above. To en-
sure a fair comparison, we reported the aggregated test result from 2-fold cross-
validation (i.e. train on five subjects and test on the other five). For each iter-
ation of the cross validation, the network was initialised using He initialisation,
trained end-to-end. For 6-fold undersampling, we initialised the network using
the parameters obtained from the trained models from 3-fold acceleration and
fine-tuned using Adam optimiser. Fach network converged within 3 days on
GeForce TITAN X.

We compared our method to DLMRI, a representative of the state-of-the-
art CS-based methods. For DLMRI, we simplified the implementation of DLTG
from [2], with patch size 6 x 6. We switched off any de-aliasing along the temporal
axis. Since DLMRI is quite time consuming, in order to obtain the results within
a reasonable amount of time, we trained a joint dictionary for all time frames
within the subject and reconstructed them in parallel. Note that we did not
observe any decrease in performance from this approach. For each subject, we
ran 400 iterations and obtained the final reconstruction.

6.2 Results

The means of the reconstruction errors across 10 subjects are summarised in ta-
ble[l] For both 3-fold and 6-fold acceleration, one can see that CNN consistently
outperformed DLMRI, and that the standard deviation of the error made by
CNN was smaller. The reconstruction from 3-fold acceleration can be found in
Figure[2] It can be seen that the CNN approach produced a smaller overall error.
The CNN reconstruction produced a more homogeneous reconstruction. On the
other hand, DLMRI gave a blocky reconstruction. In some cases, both CNN and
DLMRI suffered from small losses of important anatomical structures in their
reconstructions (orange), but CNN was able to recover more details (red). The
reconstructions from 6-fold acceleration is in Figure [3] Although both methods
suffered from significant loss of structures (orange), CNN was still capable of
better preserving the texture than DLMRI (red). On the other hand, DLMRI
created extremely block-like artefacts due to over-smoothing. 6x undersampling
for these images typically approaches the limit of sparsity-based methods, how-
ever, CNN was able to predict some anatomical details which was not possible



Fig. 2. The comparison of reconstruction from DLMRI and CNN. (a) The original,
(b) 3x undersampled, (c)-(d) DLMRI reconstruction and its error map x5 and (e)-(f)
CNN reconstruction and its error map Xx5.

by DLMRI. This could be due to the fact that CNN has more free parameters
to tune with, allowing the network to learn complex but more accurate trans-
formations of data.

Comparison of Reconstruction Speed While training CNN is time consuming,
once it is trained, the inference can be done extremely quickly on a GPU. Re-
constructing each slice took 23 4 0.1 milliseconds on GeForce GTX 1080, which
enables real-time applications. To produce the above results, DLMRI took about
6.1 4+ 1.3 hours per subject on CPU. Even though we do not have a GPU imple-
mentation of DLMRI, it is expected to take longer than 23ms because DLMRI
requires dozens of iterations of dictionary learning and sparse coding steps. Us-
ing a fixed, pre-trained dictionary could remove this bottleneck, in exchange of
lowering the reconstruction capacity.

7 Discussion and Conclusion

In this work, we evaluated the applicability of CNNs for the MR image recon-
struction problem. From the experiment, we have shown that using the network
with interleaved data consistency stages, we can obtain a model which can recon-
struct images sufficiently well. The CS framework offers mathematical guarantee
for the signal recovery, which makes the approach appealing in theory as well as



Fig. 3. The comparison of reconstructions from DLMRI and CNN. (a) The original,
(b) 6x undersampled, (c)-(d) DLMRI reconstruction and its error map x5 and (e)-(f)
CNN reconstruction and its error map x5.

in practice even though the required sparsity cannot be genuinely achieved in
medical imaging. However, even though this is not the case for CNNs, we have
empirically shown that a CNN-based approach can outperform DL-based MR
reconstruction. In addition, at very aggressive undersampling rates, the CNN
method was capable of reconstructing most of the anatomical structures more
accurately, while CS-based methods do not guarantee such behaviour.

The limitation of this work is that the data was first reconstructed by SENSE,
which was then used to simulated the acquisition process. It is, however, more
practical to consider images with sensitivity map of the surface coils, which
allows the model to be used for parallel imaging reconstruction directly. In fact,
a better approach is to exploit the redundancy of the coil sensitivity maps and
combine directly into our model, which will be addressed in our future work.

In this work, we were able to show that the network can be trained using
arbitrary Cartesian undersampling masks of the fixed sampling rate rather than
selecting a fixed number of undersampling masks for training and testing. This
suggests that the network was capable of learning a generic strategy to de-alias
the images. A further investigation should consider how tolerant the network
is for different undersampling rates. Furthermore, it is interesting to consider
other sampling patterns such as radial and spiral trajectories. As these trajec-
tories provide different properties of aliasing artefacts, a further validation is
appropriate to determine the flexibility of our approach.



Finally, Although CNNs can only learn local representations which should
not affect global structure, it remains to be determined how the CNN approach
operates when there is a pathology present in images, or other more variable con-
tent. We have performed a two-fold cross-validation to ensure that the network
can handle unseen data acquired through the same acquisition protocol. Gen-
eralisation properties must be evaluated carefully on a larger dataset, however,
CNNs are flexible in a way such that one can incorporate application specific
priors to its objective to allocate more importance on preserving any features of
interest in the reconstruction, provided that such expert knowledge is available
at training time. For example, analysis of cardiac images in clinical settings of-
ten employs segmentation and/or registration. Multi-task learning is a promising
approach to further improve the utility of CNN-based MR reconstructions.
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