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Abstract

We present an algorithm for creating high resolution anatomically plausible images consistent with 

acquired clinical brain MRI scans with large inter-slice spacing. Although large databases of 

clinical images contain a wealth of information, medical acquisition constraints result in sparse 

scans that miss much of the anatomy. These characteristics often render computational analysis 

impractical as standard processing algorithms tend to fail when applied to such images. Highly 

specialized or application-specific algorithms that explicitly handle sparse slice spacing do not 

generalize well across problem domains. In contrast, our goal is to enable application of existing 

algorithms that were originally developed for high resolution research scans to significantly 

undersampled scans. We introduce a model that captures fine-scale anatomical similarity across 

subjects in clinical image collections and use it to fill in the missing data in scans with large slice 

spacing. Our experimental results demonstrate that the proposed method outperforms current 

upsampling methods and promises to facilitate subsequent analysis not previously possible with 

scans of this quality.

1 Introduction

Increasingly open acquisition efforts in clinical practice are driving dramatic increases in the 

number and size of patient cohorts in clinical archives. Unfortunately, clinical volumes are 

typically of dramatically lower resolution than the research scans that motivate most 

methodological development. Specifically, while individual slices in the scan can be of high 

resolution, slice spacing is often significantly larger, resulting in missing voxels, as 

illustrated in Fig. 1. This presents significant challenges for even basic tasks, such as skull 

stripping and registration, which are often necessary for downstream analysis [4,9]. We 

present a novel method for constructing high resolution anatomically plausible volumetric 

images consistent with the available slices in sparsely sampled clinical scans. The restored 
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images promise to enable computational analysis of clinical scans with existing techniques 

originally developed for isotropic research scans. Importantly, our method does not require 

any high resolution scans or expert annotations, but instead imputes the missing structure by 

learning from the available collection of clinical scans.

Our work is motivated by a study that includes brain MRI scans of thousands of stroke 

patients acquired within 48 h of stroke onset. The study aims to quantify white matter 

disease burden, necessitating skull stripping and deformable registration into a common 

coordinate frame [16]. The volumes are severely under-sampled (0.85 mm × 0.85 mm × 6 

mm) due to clinical constraints of acute stroke care, as illustrated in Fig. 1. Such 

undersampling is typical of modalities that aim to characterize tissue properties such as T2-

FLAIR, even in research studies like ADNI2 [9].

Since clinically acquired scans violate many algorithms’ underlying assumptions, even basic 

tasks present significant challenges [6,20,21]. In undersampled scans, the image is no longer 

smooth, and the anatomical structure may change substantially between consecutive slices 

(Fig. 1). Application-specific algorithms promise to address these problems for certain 

clinical scans but do not generalize well across applications and imaging modalities. In 

contrast, we harness the data available in a given clinical image collection to reconstruct the 

high resolution images that represent plausible anatomy from the low resolution scans (Fig. 

2). The resulting images can then be analyzed by widely used algorithms that require nearly 

isotropic high resolution input. The imputed data acts as a medium for improving analysis 

tasks. For example, although imputed data should not be used in the clinical evaluation, the 

brain mask obtained through skull stripping of the restored scans can be applied to the 

original clinical scan for further analysis.

Prior Work

Traditional image restoration, or superresolution, techniques depend on having enough 

information in a single scan to synthesize data. Unfortunately, clinical slices are often 

sampled too sparsely for functional interpolation, such as linear, cubic or spline [19], to 

succeed. Similarly, patch-based methods that rely on redundancy within a single scan to 

“hallucinate” missing fine scale structure [13–15] fail to produce anatomically plausible 

reconstructions at this level of sparsity. Superresolution algorithms that use multiple images 

of the same subject to improve a single scan [2,10,15] are unsuitable for clinical data where 

multiple similar acquisitions are not commonly available.

Nonparametric upsampling methods proposed to tackle the problem of superresolution often 

rely on an external dataset of high resolution data or cannot handle extreme undersampling 

present in clinical scans. For example, some methods fill in missing data by matching a low 

resolution patch from the scan with a high resolution patch from the training dataset 

[3,7,10,11,18]. A recent approach to improve resolution from a collection of scans with 

sparse slices jointly upsamples all images using non-local means [17]. However this method 

has only been demonstrated on slice spacing of roughly three times the in-plane resolution, 

and in our experience similar non-parametric methods fail to upsample clinical scans with 

more significant undersampling.
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Parametric methods and low dimensional embeddings have been used to model the common 

structure of image patches from full resolution images, but are typically not designed to 

handle missing data. Specifically, priors [22] and Gaussian Mixture Models [23] have been 

used in both medical and natural images for classification [1] and denoising [5,23]. The 

procedures used for training these models rely on having full resolution patches with no 

missing data. Unfortunately, high (full) resolution training datasets are not readily available 

for many image contrasts and scanners, and may not adequately represent pathology or other 

properties of clinical populations. Acquiring the appropriate high resolution data is often 

infeasible, and here we explicitly focus on the realistic medical scenario where only low 

resolution image sets are available.

Overview

Our method takes advantage of the fact that local fine scale structure is intrinsically shared 

in a population of medical images, and each scan with sparse slices captures some partial 

aspect of this structure. We borrow ideas from Gaussian Mixture Model (GMM) patch priors 

[23], low dimensional Gaussian embeddings [8], and missing data models [8,12] to develop 

a probabilistic model that describes sparse 3D patches from all volumetric images in a 

collection around a particular location using a low-dimensional GMM with partial 

observations. We derive an iterative algorithm to learn the model parameters. We 

demonstrate our algorithm using scans from the ADNI cohort as well as the motivating 

stroke study, and also illustrate a preliminary illustration of potential improvements in the 

down-stream analysis using an example task of skull stripping. Finally, we discuss 

initialization tradeoffs and modelling choices.

2 Method

We employ a Gaussian Mixture Model (GMM) to capture local structure in sparse 3D 

patches in the vicinity of a particular location across the entire collection. We treat a patch as 

a high dimensional manifestation of a low dimensional representation, with the intuition that 

the covariation within image patches has small intrinsic dimensionality relative to the 

number of voxels in the patch. In this section, we describe the model, the resulting learning 

algorithm, and our image restoration procedure.

2.1 Generative Model

Let {Y1,…,YN} be an image collection of scans with large slice separation, roughly aligned 

into a common atlas space (we use affine transformations in our experiments). For each 

image Yi in the collection, only a few slices are known, and we seek to restore the 

anatomically plausible high resolution volume by imputing the missing voxel values.

We capture local structure using image patches. We assume a constant patch shape, and use 

yi to denote a D-length vector that contains voxels of the image patch centered at a certain 

location of image Yi. We perform inference at each location independently. We model the 

set of patches  = {yi} at a common location as drawn from a K-component multivariate 

GMM. If generated by cluster k, patch yi is a high dimensional observation of a low 

dimensional patch representation xi of length d:
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(1)

Here patch μk is the mean of cluster k, matrix Wk shapes the covariance structure of the 

cluster, and  is the variance of image noise. The likelihood of all patches at this location 

under the mixture model is

(2)

where  and π is a vector of cluster proportions.

Let  be the set of observed voxels, i.e., from the known slices, in patch yi, and  be the 

corresponding vector of their intensity values:

(3)

where  comprises rows of Wk that correspond to the observed voxel set . The 

likelihood of the observed data is therefore

(4)

where  and matrix  extracts the rows and columns of Ck that correspond to 

the observed voxel subset .

2.2 Learning

We learn the maximum likelihood estimates of the parameters {μk}, {Wk},  and π 
under the likelihood (4). As traditional Expectation Maximization for our model does not 

lead to closed form update equations, we employ the Expectation Conditional Maximization 

(ECM) [8,12] variant of the Generalized Expectation Maximization, where parameter 

updates depend on the previous parameter estimates. Due to space limitations, we omit the 

derivations and provide the resulting updates along with their interpretations.
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The expectation step updates the class memberships based on the observed voxels of the 

patches at this location:

(5)

Next, we compute the statistics of the low dimensional representation x for each patch as 

“explained” by each cluster:

(6)

(7)

The maximization step uses the observed voxels to update the model parameters. We let be 

the set of patches in which voxel j is observed,  be the jth element of vector yi, and  be 

the jth row of matrix Wk. We update the mean as the average residual of the predicted patch 

voxels  and the observed values yi:

(8)

The covariance factors and residual variance are updated based on the statistics of low 

dimensional representation from (6) and (7):

(9)

(10)

Finally, we update the cluster proportions:
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(11)

Throughout learning, we work in the atlas space, and approximate voxels as either observed 

or missing in this space by thresholding interpolation weights and ignoring interpolation 

effects due to affine alignment. Intuitively, learning such a model with sparse data is possible 

because each image patch provides a slightly different subset of voxel observations that 

contribute to the parameter estimation (Fig. 3). The estimation can be extended to carry out 

the learning by appropriately transforming model parameters into the subject-specific space 

in order to optimally use the observed voxels, but this leads to computationally prohibitive 

updates.

In our experiments, all subject scans have the same acquisition direction. Despite different 

affine transformations to the atlas space for each subject, some voxel pairs are still never 

observed in the same patch, resulting in missing entries of the covariance. Representing 

covariance using a low-rank approximation helps to alleviate this lack of observations.

2.3 Restoration

To restore an individual patch yi, we first estimate the most likely cluster  for patch yi by 

selecting the cluster with the highest membership γik. We then estimate the low dimensional 

representation  given the observed voxels  using (6). Finally, we reconstruct the high 

resolution patch:

(12)

using the estimates of the model parameters  and.  We average overlapping restored 

patches using standard techniques and form the restored volume Zi [13].

2.4 Implementation

We stack together the affinely registered sparse images from the entire collection and split 

the stack into overlapping subvolumes of 18 × 18 × 18 voxels in the isotropically sampled 

common atlas space. Subvolumes are centered 9 voxels apart in each direction. Within each 

subvolume, we learn the mixture model parameters. Instead of selecting just one patch from 

each volume at a given location, we collect all overlapping patches within the subvolume 

centered at that location. This aggregation provides more data for each model, which is 

crucial when working with severely undersampled volumes. Moreover, it offers robustness 

in the face of image misalignment. Given the learned parameters at each location, we restore 

all overlapping patches within a subvolume. We use a cubic patch of size 9 × 9 × 9 voxels, 

and found K = 5 clusters and d =21 to be sufficient. We use a hierarchical implementation, 

where the subvolume parameters are trained at three iterative scales.
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While learning is performed in the common atlas space, we restore each volume in its 

original subject space to limit effects of interpolation. We apply the inverse of the estimated 

subject-specific affine transformation to the cluster statistics, and use them to restore patches 

via (12) in the original subject space.

Our implementation is freely available at https://github.com/adalca/papago.

3 Experiments

We demonstrate the proposed imputation algorithm on two datasets and evaluate the results 

both visually and quantitatively. We also include a preliminary example of how imputation 

can aid in a skull stripping task.

3.1 Data

ADNI Dataset—We evaluate our algorithm using 326 Tl-weighted brain MR images from 

ADNI [9]. We downsample the isotropic 1 mm3 images to slice separation of 5 mm (1 mm × 

1 mm in-plane), and use these low resolution images as input. All subjects are affinely 

registered to a T1 atlas. The original images serve as the ground truth for quantitative 

comparisons.

Clinical Dataset—We also demonstrate our algorithm on a clinical set of 127 T2-FLAIR 

brain MR scans in a stroke patient cohort. These scans are severely anisotropic (0.85 × 0.85 

mm in-plane, slice separation of 6 mm). All subjects are affinely registered to a T2-FLAIR 

atlas and intensity normalized. The slices are resampled to 1.2 mm × 1.2 mm resolution.

3.2 Evaluation

We compare our algorithm to three upsampling methods: nearest neighbour (NN) 

interpolation, linear interpolation, and non-local means (NLM) upsampling [13]. For ADNI 

images, we found the hierarchical implementation was unnecessary and only ran the final 

scale of our algorithm. We compare the reconstructions to the original isotropic volumes 

both visually and quantitatively (ADNI images only). We use mean squared error 

 of the reconstructed image Z relative to the original high 

resolution scan Zo, and peak signal to noise ratio . Both metrics 

are commonly used in measuring the quality of reconstruction of compressed or noisy 

signals. Additionally, we illustrate a preliminary example application where skull stripping 

fails using the original scan and improves dramatically if an imputed image is used.

3.3 Results

Figure 4 illustrates representative restored images for typical subjects in the ADNI dataset. 

Our method produces more plausible structure both in coronal and saggital slices. The 

method restores anatomical structures that are almost entirely missing in the other 

reconstructions, such as the dura or the sulci of the temporal lobe. Figure 5 reports the error 

statistics in the ADNI data. Due to high variability among subject scans, we report 
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improvements of each method over the nearest neighbor interpolation baseline in the same 

scan. Our algorithm offers significant improvement compared to the linear interpolation and 

NLM.

We also show a preliminary result where imputed data facilitates downstream image 

analysis. Specifically, the first step in many analysis pipelines is brain extraction – isolating 

the brain from the rest of the anatomy. Typical algorithms assume that the brain consists of a 

single connected component separated from the skull and dura by cerebral spinal fluid [20], 

and often fail on sparsely sampled scans that no longer have clear contrast between these 

regions. Figure 6 illustrates an example result where the brain extraction fails on the original 

subject scan but succeeds on our reconstructed image.

Figure 7 illustrates representative restoration improvements in the clinical population. Our 

method produces more plausible structure, as can be especially seen in the close-up panels 

focusing on anatomical details.

4 Discussion and Conclusions

We propose an image imputation method that employs a large collection of low-resolution 

images to infer fine-scale anatomy of a particular subject. We introduce a model that 

captures structural similarity across subjects in large clinical image collections, and fills in 

the missing data in low resolution scans. The method produces anatomically plausible 

volumetric images consistent with sparsely sampled input scans.

Latent Structure

In this paper, we explicitly model and estimate the latent low-dimensional embedding for 

each patch. Additionally, we also explored an alternative choice that instead models each 

missing voxel as a latent variable. The resulting ECM algorithm estimates the expected 

missing voxel statistics directly, and then updates the cluster parameters. The most notable 

difference between this formulation and simpler algorithms that iteratively fill in missing 

voxels and then estimate GMM model parameters is in the estimation of the expected data 

covariance, which captures the covariance of the missing and observed data (c.f. [12], Chap. 

8). We found that this variant often got stuck in local minima and had difficulty moving 

away from the initial missing voxel estimates, and was an order of magnitude slower than 

the presented method. We provide both implementations in our code.

Initialization

In contrast to the classical EM algorithm, the M-step of the ECM algorithm employs 

previous parameter estimates to perform parameter updates. This makes the initialization 

more challenging compared to the classical GMM learning, where initializing cluster 

memberships is sufficient, and also leads to slower convergence than simpler GMMs. We 

experimented with several initialization schemes, and provide them in our implementation. 

The experimental results are initialized by first learning a simple GMM from the linearly 

interpolated volumes, and using the resulting parameter as initializations for our method. 

This leads to results that improve on the linear interpolation but still maintain slightly blocky 

effects caused by interpolation. More agnostic initializations, such as random parameter 
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values, lead to more realistic anatomy but noisier final estimates. Different methods perform 

well in different regions of the brain. Future research will further investigate the effects of 

initialization on the resulting reconstruction.

Restoration Method

Our restoration method, assumes that the observed voxels are noisy manifestations of low 

dimensional patch representations, and reconstructs the entire patch, including the observed 

voxels, leading to smoother images. We also explored an alternative reconstruction method 

of filling in just the missing voxels given the observed voxels (not shown). This formulation 

imputes the most likely missing voxels assuming the observed voxels are true observations, 

leading to sharper but noisier patches. The two restoration methods therefore yield images 

with different characteristics. This tradeoff is a function of the noise in the original 

acquisition: higher noise in the clinical acquisition leads to noisier reconstructions using the 

alternative method, whereas in the ADNI dataset the two methods perform similarly.

Varying Resolution

The proposed method can be used for general image imputation using datasets of various 

resolutions. For example, while acquiring a large high resolution dataset for a clinical study 

is often infeasible, our algorithm will naturally make use of any additional image data 

available. Even a small number of acquisitions in different directions or higher resolution 

than the study scans promise to improve accuracy of the resulting reconstruction.

Slice Thickness

In many clinical datasets the slice spacing is unknown or varies by site, scanner or 

acquisition. Therefore, throughout our model we simply treat the original data as high 

resolution planes. Explicitly modeling varying slice thickness is an interesting direction of 

future research.

Our method does not require high volumetric resolution scans or expert annotations, but can 

instead build the missing structure by learning from collections of clinical scans of similar 

quality to that of the input image. This enables the use of untapped clinical data for large 

scale scientific studies, promising to facilitate novel clinical analyses.
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Fig. 1. 
Axial, saggital and coronal slices from an example scan in our clinical dataset.
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Fig. 2. 
Problem setup and preview of the results. Top row: (unobserved) isotropic image Z that we 

seek to recover is sampled according to the sampling mask which produces observed image 

Y. Bottom row: restoration results for non-local means (NLM) upsampling, linear 

interpolation, and our method, respectively. The most dramatic improvement can be seen in 

restorations of the skull, dura matter, and ventricles.
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Fig. 3. 
Image imputation. (a) Full resolution images, for illustration only. These are unobserved by 

the algorithm. (b) Sparse planes acquired in clinical scans. (c) During learning, we train a 

GMM that captures the low dimensional nature of patch variability at a particular location 

(white dot). (d) Given an image from the collection, or a new image, we infer the most likely 

cluster for each 3D patch, and restore the missing data using the learned model and the 

observed voxels. We quilt the final volume from overlapping restored patches. 2D images 

are shown for illustration only, the algorithms operate fully in 3D.

Dalca et al. Page 13

Inf Process Med Imaging. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Representative ADNI restorations. Representative reconstruction by NLM, linear 

interpolation, and our method, and the original high resolution images for two representative 

subjects in the study. Our method reconstructs more anatomically plausible substructures as 

can be especially seen in the close-up panels, for example in the skull or temporal lobe.
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Fig. 5. 
Reconstruction accuracy statistics. Accuracy improvement over nearest neighbor 

interpolation for different image restoration methods. Left: MSE (lower is better), Right: 

PSNR (higher is better). Our method performs significantly better. For Nearest neighbor 

interpolation, MSE = 0.004± 0.001 and PSNR = 23.7± 1.1. All statistics were computed 

over 40 scans randomly chosen from the ADNI dataset. Image intensities are scaled to a [0, 

1] range.
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Fig. 6. 
Skull stripping example. Example of a skull stripping failure for linear and NLM 

interpolation. Skull stripping dramatically improves when applied to the imputed image for 

this example.
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Fig. 7. 
Representative clinical restorations. Reconstruction using NLM, linear interpolation and our 

method for two representative subjects. Our method reconstructs more plausible 

substructures, as can be especially seen in the close-up panels of the skull and 

periventricular regions.
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