Skip to main content

From Label Maps to Generative Shape Models: A Variational Bayesian Learning Approach

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10265))

Included in the following conference series:

  • 6522 Accesses

Abstract

This paper proposes a Bayesian treatment of a latent variable model for learning generative shape models of grid-structured representations, aka label maps, that relies on direct probabilistic formulation with a variational approach for deterministic model learning. Spatial coherency and sparsity priors are incorporated to lend stability to the optimization problem, thereby regularizing the solution space while avoiding overfitting in this high-dimensional, low-sample-size scenario. Hyperparameters are estimated in closed-form using type-II maximum likelihood to avoid grid searches. Further, a mixture formulation is proposed to capture nonlinear shape variations in a way that balances the model expressiveness with the efficiency of learning and inference. Experiments show that the proposed model outperforms state-of-the-art representations on real datasets w.r.t. generalization to unseen samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Downloaded from the DIADIST project page: rbg-web2.rbge.org.uk/DIADIST/.

  2. 2.

    Downloaded from the national alliance for medical image computing (NAMIC) project page: https://www.na-mic.org/Wiki/index.php/DBP3:Utah.

References

  1. Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. MedIA 13(4), 543–563 (2009)

    Google Scholar 

  2. Bredbenner, T.L., Eliason, T.D., Potter, R.S., Mason, R.L., Havill, L.M., Nicolella, D.P.: Statistical shape modeling describes variation in tibia and femur surface geometry between control and incidence groups from the osteoarthritis initiative database. J. Biomech. 43(9), 1780–1786 (2010)

    Article  Google Scholar 

  3. Balestra, S., Schumann, S., Heverhagen, J., Nolte, L., Zheng, G.: Articulated statistical shape model-based 2D-3D reconstruction of a hip joint. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds.) IPCAI 2014. LNCS, vol. 8498, pp. 128–137. Springer, Cham (2014). doi:10.1007/978-3-319-07521-1_14

    Chapter  Google Scholar 

  4. Shen, K.K., Fripp, J., Mériaudeau, F., Chételat, G., Salvado, O., Bourgeat, P.: Detecting global and local hippocampal shape changes in Alzheimers disease using statistical shape models. Neuroimage 59(3), 2155–2166 (2012)

    Article  Google Scholar 

  5. Rousson, M., Paragios, N., Deriche, R.: Implicit active shape models for 3D segmentation in MR imaging. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 209–216. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30135-6_26

    Chapter  Google Scholar 

  6. Pohl, K.M., Fisher, J., Bouix, S., Shenton, M., McCarley, R.W., Grimson, W.E.L., Kikinis, R., Wells, W.M.: Using the logarithm of odds to define a vector space on probabilistic atlases. MedIA 11(5), 465–477 (2007)

    Google Scholar 

  7. Cremers, D., Schmidt, F.R., Barthel, F.: Shape priors in variational image segmentation: Convexity, Lipschitz continuity and globally optimal solutions. In: CVPR, pp. 1–6. IEEE (2008)

    Google Scholar 

  8. Rousson, M., Cremers, D.: Efficient kernel density estimation of shape and intensity priors for level set segmentation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 757–764. Springer, Heidelberg (2005). doi:10.1007/11566489_93

    Chapter  Google Scholar 

  9. Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. IJCV 69(3), 335–351 (2006)

    Article  Google Scholar 

  10. Wimmer, A., Soza, G., Hornegger, J.: A generic probabilistic active shape model for organ segmentation. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 26–33. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04271-3_4

    Chapter  Google Scholar 

  11. Dasgupta, S.: Learning mixtures of Gaussians. In: FCS, pp. 634–644. IEEE (1999)

    Google Scholar 

  12. Ashburner, J., Friston, K.J.: Computing average shaped tissue probability templates. Neuroimage 45(2), 333–341 (2009)

    Article  Google Scholar 

  13. Sabuncu, M.R., Yeo, B.T., Van Leemput, K., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. TMI 29(10), 1714–1729 (2010)

    Google Scholar 

  14. Dambreville, S., Rathi, Y., Tannenbaum, A.: A Shape-based approach to robust image segmentation. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 173–183. Springer, Heidelberg (2006). doi:10.1007/11867586_17

    Chapter  Google Scholar 

  15. Dambreville, S., Rathi, Y., Tannenbaum, A.: A framework for image segmentation using shape models and kernel space shape priors. TPAMI 30(8), 1385–1399 (2008)

    Article  Google Scholar 

  16. Welling, M., Chemudugunta, C., Sutter, N.: Deterministic latent variable models and their pitfalls. In: SIAM-DM, pp. 196–207 (2008)

    Google Scholar 

  17. Eslami, S.A., Heess, N., Williams, C.K., Winn, J.: The shape Boltzmann machine: a strong model of object shape. IJCV 107(2), 155–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Freund, Y., Haussler, D.: Unsupervised learning of distributions on binary vectors using two layer networks. In: NIPS, pp. 912–919 (1992)

    Google Scholar 

  19. Wipf, D.P., Nagarajan, S.S.: A new view of automatic relevance determination. In: NIPS, pp. 1625–1632 (2008)

    Google Scholar 

  20. Marlin, B.M., Khan, M.E., Murphy, K.P.: Piecewise bounds for estimating Bernoulli-logistic latent Gaussian models. In: ICML, pp. 633–640 (2011)

    Google Scholar 

  21. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford Press, Oxford (1995)

    MATH  Google Scholar 

  22. Du Buf, H., Bayer, M., Droop, S., Head, R., Juggins, S., Fischer, S., Bunke, H., Wilkinson, M., Roerdink, J., Pech-Pacheco, J., et al.: Diatom identification: a double challenge called ADIAC. In: ICIAP, pp. 734–739. IEEE (1999)

    Google Scholar 

  23. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analyzers. NECO 11(2), 443–482 (1999)

    Google Scholar 

  24. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC-MI 15(1), 29 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shireen Y. Elhabian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Elhabian, S.Y., Whitaker, R.T. (2017). From Label Maps to Generative Shape Models: A Variational Bayesian Learning Approach. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59050-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59049-3

  • Online ISBN: 978-3-319-59050-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics