Skip to main content

Exploratory Analysis of Quality Assessment of Putative Intrinsic Disorder in Proteins

  • Conference paper
  • First Online:
Book cover Artificial Intelligence and Soft Computing (ICAISC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10245))

Included in the following conference series:

Abstract

Intrinsically disorder proteins are abundant in nature and can be accurately identified from sequences using computational predictors. While predictions of disorder are relatively easy to obtain there are no tools to assess their quality for a particular amino acid or protein. Quality assessment (QA) scores that quantify correctness of the predictions are not available. We define QA for the prediction of intrinsic disorder and use a large dataset of over 25 thousand proteins and ten modern predictors of disorder to empirically assess the first approach to quantify QA scores. We formulate the QA scores based on the readily available propensities of the intrinsic disorder generated by the ten methods. Our evaluation reveals that these QA scores offer good predictive performance for native structured residues (AUC > 0.74) and poor predictive performance for native disordered residues (AUC < 0.67). Specifically, we show that most of the native disordered residues that are incorrectly predicted as structured have high QA values that inaccurately suggest that these predictions are correct. Consequently, more research is needed to develop high-quality QA scores. We also outline three possible future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunker, A.K., Babu, M.M., Barbar, E., Blackledge, M., Bondos, S.E., Dosztányi, Z., Dyson, H.J., Forman-Kay, J., Fuxreiter, M., Gsponer, J., Han, K.-H., Jones, D.T., Longhi, S., Metallo, S.J., Nishikawa, K., Nussinov, R., Obradovic, Z., Pappu, R.V., Rost, B., Selenko, P., Subramaniam, V., Sussman, J.L., Tompa, P., Uversky, V.N.: What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disord. Proteins 1, e24157 (2013)

    Article  Google Scholar 

  2. van der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G.W., Dunker, A.K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D.T., Kim, P.M., Kriwacki, R.W., Oldfield, C.J., Pappu, R.V., Tompa, P., Uversky, V.N., Wright, P.E., Babu, M.M.: Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014)

    Article  Google Scholar 

  3. Peng, Z., Yan, J., Fan, X., Mizianty, M.J., Xue, B., Wang, K., Hu, G., Uversky, V.N., Kurgan, L.: Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell. Mol. Life Sci. 72, 137–151 (2015)

    Article  Google Scholar 

  4. Xue, B., Dunker, A.K., Uversky, V.N.: Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J. Biomol. Struct. Dyn. 30, 137–149 (2012)

    Article  Google Scholar 

  5. Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F., Jones, D.T.: Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635–645 (2004)

    Article  Google Scholar 

  6. Fuxreiter, M., Toth-Petroczy, A., Kraut, D.A., Matouschek, A., Lim, R.Y., Xue, B., Kurgan, L., Uversky, V.N.: Disordered proteinaceous machines. Chem. Rev. 114, 6806–6843 (2014)

    Article  Google Scholar 

  7. Xue, B., Blocquel, D., Habchi, J., Uversky, A.V., Kurgan, L., Uversky, V.N., Longhi, S.: Structural disorder in viral proteins. Chem. Rev. 114, 6880–6911 (2014)

    Article  Google Scholar 

  8. Kozlowski, L.P., Bujnicki, J.M.: MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinform. 13, 1–11 (2012)

    Article  Google Scholar 

  9. Peng, Z., Oldfield, C.J., Xue, B., Mizianty, M.J., Dunker, A.K., Kurgan, L., Uversky, V.N.: A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome. Cell. Mol. Life Sci. 71, 1477–1504 (2014)

    Article  Google Scholar 

  10. Xue, B., Mizianty, M.J., Kurgan, L., Uversky, V.N.: Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell. Mol. Life Sci. 69, 1211–1259 (2012)

    Article  Google Scholar 

  11. Pentony, M.M., Jones, D.T.: Modularity of intrinsic disorder in the human proteome. Proteins 78, 212–221 (2010)

    Article  Google Scholar 

  12. Wang, C., Uversky, V.N., Kurgan, L.: Disordered nucleiome: abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota. Bacteria and Archaea. Proteomics 16, 1486–1498 (2016)

    Google Scholar 

  13. Peng, Z., Xue, B., Kurgan, L., Uversky, V.N.: Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ. 20, 1257–1267 (2013)

    Article  Google Scholar 

  14. Oldfield, C.J., Xue, B., Van, Y.Y., Ulrich, E.L., Markley, J.L., Dunker, A.K., Uversky, V.N.: Utilization of protein intrinsic disorder knowledge in structural proteomics. Biochim. Biophys. Acta 1834, 487–498 (2013)

    Article  Google Scholar 

  15. Potenza, E., Domenico, T.D., Walsh, I., Tosatto, S.C.E.: MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res. 43, D315–D320 (2015)

    Article  Google Scholar 

  16. Di Domenico, T., Walsh, I., Martin, A.J.M., Tosatto, S.C.E.: MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics 28, 2080–2081 (2012)

    Article  Google Scholar 

  17. Oates, M.E., Romero, P., Ishida, T., Ghalwash, M., Mizianty, M.J., Xue, B., Dosztányi, Z., Uversky, V.N., Obradovic, Z., Kurgan, L., Dunker, A.K., Gough, J.: D2P2: database of disordered protein predictions. Nucleic Acids Res. 41, D508–D516 (2013)

    Article  Google Scholar 

  18. Deng, X., Eickholt, J., Cheng, J.: A comprehensive overview of computational protein disorder prediction methods. Mol. BioSyst. 8, 114–121 (2012)

    Article  Google Scholar 

  19. Monastyrskyy, B., Fidelis, K., Moult, J., Tramontano, A., Kryshtafovych, A.: Evaluation of disorder predictions in CASP9. Proteins 79(Suppl 10), 107–118 (2011)

    Article  Google Scholar 

  20. Monastyrskyy, B., Kryshtafovych, A., Moult, J., Tramontano, A., Fidelis, K.: Assessment of protein disorder region predictions in CASP10. Proteins 82(Suppl 2), 127–137 (2014)

    Article  Google Scholar 

  21. Peng, Z.L., Kurgan, L.: Comprehensive comparative assessment of in-silico predictors of disordered regions. Curr. Protein Pept. Sci. 13, 6–18 (2012)

    Article  Google Scholar 

  22. Walsh, I., Giollo, M., Di Domenico, T., Ferrari, C., Zimmermann, O., Tosatto, S.C.: Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics 31, 201–208 (2015)

    Article  Google Scholar 

  23. Noivirt-Brik, O., Prilusky, J., Sussman, J.L.: Assessment of disorder predictions in CASP8. Proteins 77(Suppl 9), 210–216 (2009)

    Article  Google Scholar 

  24. Kihara, D., Chen, H., Yang, Y.D.: Quality assessment of protein structure models. Curr. Protein Pept. Sci. 10, 216–228 (2009)

    Article  Google Scholar 

  25. Skwark, M.J., Elofsson, A.: PconsD: ultra rapid, accurate model quality assessment for protein structure prediction. Bioinformatics 29, 1817–1818 (2013)

    Article  Google Scholar 

  26. McGuffin, L.J., Buenavista, M.T., Roche, D.B.: The ModFOLD4 server for the quality assessment of 3D protein models. Nucleic Acids Res. 41, W368–W372 (2013)

    Article  Google Scholar 

  27. Cao, R., Bhattacharya, D., Adhikari, B., Li, J., Cheng, J.: Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11. Proteins 84(Suppl 1), 247–259 (2016)

    Article  Google Scholar 

  28. Kryshtafovych, A., Fidelis, K.: Protein structure prediction and model quality assessment. Drug Discov. Today 14, 386–393 (2009)

    Article  Google Scholar 

  29. UniProt Consortium: UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015)

    Article  Google Scholar 

  30. Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W.: CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012)

    Article  Google Scholar 

  31. Walsh, I., Martin, A.J., Di Domenico, T., Tosatto, S.C.: ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28, 503–509 (2012)

    Article  Google Scholar 

  32. Sickmeier, M., Hamilton, J.A., LeGall, T., Vacic, V., Cortese, M.S., Tantos, A., Szabo, B., Tompa, P., Chen, J., Uversky, V.N., Obradovic, Z., Dunker, A.K.: DisProt: the database of disordered proteins. Nucleic Acids Res. 35, D786–D793 (2007)

    Article  Google Scholar 

  33. Dosztanyi, Z., Csizmok, V., Tompa, P., Simon, I.: IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434 (2005)

    Article  Google Scholar 

  34. Linding, R., Jensen, L.J., Diella, F., Bork, P., Gibson, T.J., Russell, R.B.: Protein disorder prediction: implications for structural proteomics. Structure 11, 1453–1459 (2003)

    Article  Google Scholar 

  35. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  36. Yang, Z.R., Thomson, R., McNeil, P., Esnouf, R.M.: RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21, 3369–3376 (2005)

    Article  Google Scholar 

  37. Peng, K., Radivojac, P., Vucetic, S., Dunker, A.K., Obradovic, Z.: Length-dependent prediction of protein intrinsic disorder. BMC Bioinform. 7, 208 (2006)

    Article  Google Scholar 

  38. Linding, R., Russell, R.B., Neduva, V., Gibson, T.J.: GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res. 31, 3701–3708 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Silvio Tosatto and his research group from University of Padova for sharing their dataset and predictions of disorder, which they published in ref. [22]. This research was supported in part by the National Science Foundation grant 1617369 and by the Qimonda Endowed Chair from Virginia Commonwealth University to L.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz Kurgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wu, Z., Hu, G., Wang, K., Kurgan, L. (2017). Exploratory Analysis of Quality Assessment of Putative Intrinsic Disorder in Proteins. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10245. Springer, Cham. https://doi.org/10.1007/978-3-319-59063-9_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59063-9_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59062-2

  • Online ISBN: 978-3-319-59063-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics