Skip to main content

Real-Time Classification Through a Spiking Deep Belief Network with Intrinsic Plasticity

  • Conference paper
  • First Online:
Advances in Neural Networks - ISNN 2017 (ISNN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10261))

Included in the following conference series:

  • 2482 Accesses

Abstract

Deep Belief Networks (DBNs) has made a good effect in machine learning and object classification. However, the current question is how to reduce the computational cost without detrimental to accuracy. To solve this problem, this paper is undertaken to convert the Siegert neuron into LIF neuron in DBNs and analyze the effects of changing the value of parameters for spiking neurons such as thresholds and firing rates. Besides, we also add intrinsic plasticity (IP) into the network to render better adaptive capability. Besides, the most exciting results is the spiking DBN with intrinsic plasticity submits its first correct guess of the output label within an average of 2.5 ms after the onset of the simulated Poisson spike train input with the initial firing rates beyond 200 Hz, and the recognition accuracy is still more than 94 percent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohamed, A.R., Yu, D., Deng, L.: Investigation of full-sequence training of deep belief networks for speech recognition. In: Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, September, pp. 2846–2849. INTERSPEECH (2010)

    Google Scholar 

  2. Li, C., Li, Y.: A review on synergistic learning. IEEE Access 4, 119–134 (2016)

    Article  Google Scholar 

  3. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 22(12), 3207–3220 (2010)

    Article  Google Scholar 

  4. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11(3), 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Battenberg, E., Wessel, D.: Analyzing drum patterns using conditional deep belief networks. In: Ismir (2012)

    Google Scholar 

  6. Jug, F., Lengler, J., Krautz, C., Steger, A., Lengler, J., Krautz, C.: Spiking networks and their rate-based equivalents: does it make sense to use siegert neurons? Cadmo.ethz.ch

  7. Daoudal, G., Debanne, D.: Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn. Mem. 10(6), 456–465 (2003)

    Article  Google Scholar 

  8. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly, N., et al.: Deep neural networks for acoustic modeling in speech recognition. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  9. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahl, G.E., Dong, Y., Li, D., Acero, A.: Large vocabulary continuous speech recognition with context-dependent DBN-HMMS. IEEE Int. Conf. Acoust. Speech Sig. Process. 125, 4688–4691 (2011)

    Google Scholar 

  12. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning - a new frontier in artificial intelligence research [research frontier]. IEEE Comput. Intell. Mag. 5(4), 13–18 (2010)

    Article  Google Scholar 

  13. Triesch, J.: A gradient rule for the plasticity of a neurons intrinsic excitability. Int. Conf. Artif. Neural Netw.: Biol. Inspirations 3696, 65–70 (2005)

    Google Scholar 

  14. Desai, N.S., Rutherford, L.C., Turrigiano, G.G.: Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neurosci. 2(6), 515–520 (1999)

    Article  Google Scholar 

  15. Wallisch, P., Lusignan, M.E., Benayoun, M.D., Baker, T.I., Dickey, A.S., Hatsopoulos, N.G.: MATLAB for neuroscientists: an introduction to scientific computing in MATLAB (2014)

    Google Scholar 

  16. O’Connor, P., Neil, D., Liu, S.C., Delbruck, T., Pfeiffer, M.: Real-time classification and sensor fusion with a spiking deep belief network. Front. Neurosci. 7, 178 (2013)

    Google Scholar 

  17. Ponulak, F., Kasiński, A.: Supervised learning in spiking neural networks with resume: sequence learning, classification, and spike shifting. Neural Comput. 22(2), 467–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kourrich, S., Calu, D.J., Bonci, A.: Intrinsic plasticity: an emerging player in addiction. Nat. Rev. Neurosci. 16(3), 173–184 (2015)

    Article  Google Scholar 

  19. Siegert, A.J.F.: On the first passage time probability problem. Phys. Rev. 81(4), 617–623 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  20. Andrew, A.M.: Spiking neuron models: single neurons, populations, plasticity. Kybernetes 4(7/8), 277C–280 (2003)

    Google Scholar 

  21. Zhang, W., Linden, D.J.: The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat. Rev. Neurosci. 4(11), 885–900 (2003)

    Article  Google Scholar 

  22. Bengio, Y.: Learning deep architectures for ai. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  24. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61304165 and 61473051) and Natural Science Foundation of Chongqing (No. cstc2016jcyjA0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xue, F., Chen, X., Li, X. (2017). Real-Time Classification Through a Spiking Deep Belief Network with Intrinsic Plasticity. In: Cong, F., Leung, A., Wei, Q. (eds) Advances in Neural Networks - ISNN 2017. ISNN 2017. Lecture Notes in Computer Science(), vol 10261. Springer, Cham. https://doi.org/10.1007/978-3-319-59072-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59072-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59071-4

  • Online ISBN: 978-3-319-59072-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics