N

N
N

HAL

open science

Task Allocation Strategies for FPGA Based
Heterogeneous System on Chip

Atanu Majumder, Sangeet Saha, Amlan Chakrabarti

» To cite this version:

Atanu Majumder, Sangeet Saha, Amlan Chakrabarti. Task Allocation Strategies for FPGA Based
Heterogeneous System on Chip. 16th IFIP International Conference on Computer Information Systems
and Industrial Management (CISIM), Jun 2017, Bialystok, Poland. pp.341-353, 10.1007/978-3-319-
59105-6_29 . hal-01656204

HAL Id: hal-01656204
https://inria.hal.science/hal-01656204
Submitted on 5 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01656204
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Task Allocation Strategies for FPGA Based
Heterogeneous System on Chip

Atanu Majumder, Sangeet Saha, Amlan Chakrabarti

A .K.Choudhury School of IT, University of Calcutta
a.majumder007@gmail.com, sangeet.saha870gmail.com, amlanc@ieee.org

Abstract. FPGA based heterogeneous System On Chips (SOCs) have
become a prospective processing platform for modern performance-sensitive
systems, like automotive, avionics, chemical reactor etc. In such system,
“makespan” time minimization plays a crucial role to achieve higher
throughput as well as performance efficiency and thus, efficient task allo-
cation schemes are indeed essential. This paper presents two task alloca-
tion algorithms for such FPGA based heterogeneous SOCs. The first al-
location strategy is based on well known “Branch and Bound” optimiza-
tion technique. Secondly, we proposed a novel heuristic based allocation
mechanism, TAMF (Task Allocation Mechanism for FPGA based het-
erogeneous SOC). The simulation based experimental results reveal that
both the strategies are able to provide lower makespan time over var-
ious simulation scenarios with acceptable runtime overheads. Achieved
simulation results are further tested through a validation, carried out on
practical ZYNQ SOC platform using standard benchmark task sets.

Keywords: Tasks allocation, FPGA, Branch and Bound, makespan time

1 Introduction

Embedded systems are now-a-days employing FPGAs as a prospecting comput-
ing platform in various fields, ranging from avionic and automotive systems,
nuclear reactors [1] to synthetic vision, object tracking [2] etc. These FPGAs
provide the performance efficiency of a dedicated hardware as well as flexibil-
ity of a general purpose processor. Recently, FPGAs are also being integrated
in System on Chip (SOC) along with pre-fabricated Hard-core processors and
Soft-core processors (Constructed using FPGA logic) [3]. Such “Heterogeneous”
systems contain different Processing Elements (PEs) with certain performance
characteristic and can execute a set of tasks by assigning them on suitable PEs

As an interesting example, such heterogeneous SOCs may be used as a per-
formance efficient processing platform for automotive systems. In automotive
systems [4], an ample amount of routine tasks need to be executed at system
instantiation before its full phase functioning begins. Suppose, this SOC will
perform the parallel execution of those initial set of tasks by appropriately as-
signing them on individual PEs, such that the completion time of all tasks are

2 Atanu Majumder, Sangeet Saha, Amlan Chakrabarti

minimized and the system can quickly start functioning , after its instantiation.
Therefore, it is essential to have well defined tasks allocation strategy, feasibility
criteria for achieving high resource utilization with performance efficiency.

In this paper, we propose two novel static tasks allocation strategies for
FPGA based heterogeneous SOCs. The first strategy is optimal “Branch and
Bound” [5] based task allocation technique and the second one, is based on
heuristic approach, coined as TAMF allocation strategy. The contributions of
this work can be summarized as follows:

— ILP based problem formulation for tasks assignments on FPGA based het-

erogeneous SOCs.

— Employing the optimal “Branch and Bound” strategy for tasks assignments.
Proposal of a new TAMF heuristic for faster tasks allotments.
The experimental results reveal the efficacy of the proposed approaches in
various simulation scenarios and also showed that the performance of TAMF
is comparable to optimal Branch and Bound technique in most of the cases.
— Validation of the proposed tasks allocation strategies on actual FPGA based

heterogeneous SOC named ZYNQ [3], using benchmark task sets.

The rest of the paper is organized as follows. The next section provides a brief
discussion on important related works conducted. This is followed by a discussion
on the system model adopted in this work in section 3. In section 4, we present
the formulation of the tasks allocation problem. The proposed Branch and Bound
based strategy and TAMF with illustrating examples, are discussed in section 5
and 6, respectively. Section 7 presents simulation based experimental results
along with analysis and discussion on the same. The validation of the approaches
on ZYNQ platform is discussed in section 8. The paper finally concludes in
section 9.

2 Related Work

The generic problem of efficient task allocation on heterogeneous multiprocessor
systems (with CPUs and GPUs or Processors having different instruction sets)
have drawn considerable research interest in last few years [6,7]. One stream of
researchers [8,9] have delved towards finding out the efficient allocation schemes
for dependent task sets. On the other hand, a plethora of research works [10,11]
are available which dealt with independent tasks sets. Authors in [10], present an
Integer Linear Programming (ILP) based tasks allotment scheme which guaran-
tees the execution speedup upto a certain bound. In [11], authors proposed two
tasks assignment algorithms and discussed about the performance between mi-
grative allocation approach which allows tasks migration among different types
of processors and the non-migrative approach. Further, the problem of tasks han-
dling in heterogeneous multiprocessor systems has spun-off in another direction
where tasks could be static or dynamic in nature. In [12], authors considered
static allocation where the tasks remain quantitatively constant through out the
schedule. Similarly in [13], authors proposed a dynamic allocation technique for
heterogeneous multiprocessor system where tasks arrive in arbitrary instances.

Task Allocation Strategies for FPGA Based Heterogeneous System on Chip 3

Minimization of the makespan' time remains one of the principal research
focus for researchers during allocation of tasks on heterogeneous multiprocessors.
Thus, the researchers reported both fast heuristic based algorithms as well as
optimal algorithms. Heuristics based independent task allocation strategies such
as greedy approach, ant colony optimization techniques can be found in [14].
In [15], authors proposed “Branch and Bound” based optimization strategy to
achieve optimal solution. However, literatures about tasks allocation on FPGA
based heterogeneous SOCs with proper optimization technique is merely a hand-
ful. The existing research works [16,17] mainly employed hardware and software
tasks partitioning as a tasks allocation strategy. The computation intensive tasks
are being executed using FPGA fabric as a hardware task whereas tasks having
less computation requirements are assigned to CPUs for execution as a software
task. However, such allotments are often plagued with some limitations.

3 System Model and Assumptions

The system model, considered in this work is a FPGA based heterogeneous SOC.
Our heterogeneous SOC contains an FPGA logic area and pre-fabricated Hard
Cores (HCs). Further, the FPGA logic consists of Reconfigurable Regions or
tiles (RRs) to execute hardware tasks and Soft Cores (SCs) (which constructed
using FPGA logic) for software tasks execution. Hence, the system model under
consideration contains three distinct types of PEs that is RR, SC, HC which
completely resembles with modern ZYNQ [3] architecture. Depending upon the
SOC architecture, a particular type of PE could exist in multiple units.

Being an embedded system, the initial distributions of tasks are known at de-
sign time and each task is capable of running on each type of PEs. The proposed
system model is further characterized by the following assumptions:

— A task cannot execute simultaneously on two distinct PEs at same instant
and will be strictly executed on a single PE (till it execution requirements
fulfills), which implies that tasks are non-migrative in nature.

— Tasks are independent and thus, each PEs can operate in parallel to execute
an individual task.

— The cost of execution of each task over each distinct type of PEs is calculated
through profiling and stored in offline.

— PEs are capable to suffice the memory and I/O requirements of any task.

At system instantiation (time, ¢ = 0), a fixed number of tasks will arrive for pos-
sible allotment on SOC and will be stored in a queue. Our strategy will attempt
to allocate tasks, such that the makespan time gets minimized. Algorithms will
operate through a dedicated HC (termed as allocator) and will allocate tasks on
respective PEs, as per the outcome. The pictorial representation of the proposed
system model is shown in figure 1. A practical validation of the proposed system
model on physical ZYNQ platform is illustrated in section 8.

1 It is the total length of the schedule i.e. when all the tasks have finished their
execution.

4 Atanu Majumder, Sangeet Saha, Amlan Chakrabarti

| Task Queue |

Fig. 1. System Model

4 Problem Formulation

Let us assume a task set 7 = {11, T5, ..., Ty }, arrives for possible allotment over
M distinct types of PEs where each j** type of PE is comprised of k7 units.
Such multiple units of a particular type of PE is individually referred as “core”.
It may be noted that the cost of execution of a task, will be same for all the
cores which belong to a particular type of PE.

At a particular instant ¢, we can allocate atmost (ij\il k7) tasks for parallel
execution over all resources. Let, C; ; denotes the cost of execution incurred by
T; when assigned to " type of PE. Let us define a binary variable t,;; as follows:

P 1, when Tj is assigned to any one of the k7 cores of j** type PE
w0, otherwise

Hence, we can illustrate the makespan time mk as:
n Kk
mk = Maz{» > Cijxty,}, VjeM (1)

i=14/=1

where, 77 denotes the number of tasks assigned to j** type of PE.

In order to achieve lower mk, the objective function can be defined as :
Minimize mk (2)
Subject to the following constraints :

— The maximum number of tasks that can operate in parallel at a particular
instant, can be atmost equal to the total number of available resources.

— No task can simultaneously execute on different resources. Thus, at a par-
ticular instant, following equation has to be satisfied.

M K

M
DDt <K (3)
j=1

j=14d=1

Task Allocation Strategies for FPGA Based Heterogeneous System on Chip 5
5 Branch and Bound Based Allocation Strategy

The above problem formulation clearly depicts that the proposed task allot-
ment phenomena turns into an ILP based optimization problem and hence, NP-
complete in nature [18]. Once a problem enrolls into the NP-complete category,
it is very unlikely that an algorithm with polynomial time complexity can be de-
signed in order to solve that one. The optimal Branch and Bound [5], implicitly
enumerates all of the feasible solutions by forming and traversing a “state space
tree.”? The tree is constructed using DFS [19] algorithm. At each node of the
state space tree, the Lower Bound (LB) has to be calculated such that, search
effort for probing the solution space can be reduced.

The cost incurred by the allocated tasks and the probable (underestimate)
cost that will be incurred by the remaining unallocated tasks, will reflect as a
sum in LB. Similarly, Upper Bound (UB), is calculated by considering the worst
case cost (instead of minimum cost) of the unallocated tasks.

At a particular node (Nt), if the calculated LB appears to be larger or equal
to the best solution result found so far, then the enumeration of the subtree
rooted at N can be skipped. It definitely implies that some nodes and subtrees
will be “pruned-off” but it will obviously not jeopardize the optimality.

The pseudo-code for the proposed Branch and Bound strategy is shown in
algorithm 1. In the following section, we will illustrate an example which will
depicts our proposed Branch and Bound allocation strategy through a test case.

Algorithm 1: Branch and Bound Based Allocation Strategy

Input: Task set 7, M types of PEs (including &7 units)
Output: Allocation of tasks which provide minimum mk.
1 For each PE, calculate the minimum task execution costs;
2 Sum up those minimum execution costs and assign to Start_Value;
3 while 7 is not empty do

4 for each task T; € 7 do

5 L Find the LB for each type of PEs;

6

7

8

9

Find task T3 which provides min-LB (minimum LB) for say, j\" PE;

{In case of multiple existence of min-LB, choose any arbitary Tg};
Calculate UB of Tp for that j** PE;

Allocated_Value = Summation of the costs of already allocated task/tasks ;
10 if (min-LB + Allocated_Value) > Start_Value AND min-LB < UB then
11 L Assign T3 to j'* PE;

12 Remove T from the T;
13 else

14 Choose the next min-LB;
15 Go to step 10;

16 Find mk using equation 1.

2 A tree constructed in the solution space.

6 Atanu Majumder, Sangeet Saha, Amlan Chakrabarti

5.1 An example of Branch and Bound (BnB) based Strategy

Let us consider six tasks, 7 = {11, T», ..., T} that appear for the possible allot-
ment (such that makespan time get minimized) in our proposed FPGA based
heterogeneous SOC. Let us assume that system under consideration contains,
one unit of RR (k! = 1), two units of SC (hence, k? = 2; core; and cores of SC)
and two cores of HC (k® = 2), one of which is dedicatedly acting as allocator.
The performance of each task over these three (M = 3) distinct types of PEs
is measured through profiling and displayed in Table 1.2 It may be noted that
the execution performance for both the cores of SC will be same and hence, not
explicitly shown in the Table 1.

Table 1. Tasks Parameters Table 2. Tasks LBs
Task: Task:
PEs S T | Ty | Ta | T5 | Ts - S Ty | T | Ta | Ts | Ts
HC 415|114 5]|5 HC 15(16(12(25|16 |14
SC 3|7 11143 SC 12116(15(20(13 |12
RR 7191519195 RR 14116(15|16 (16|12

The minimum execution cost demanded by HC is one time-unit for executing
T5. Similarly, SC demands minimum three time-units for both the cores and
RR demands minimum five time-units while executing the tasks T and T3,
respectively. Hence, Start_Value = 14+3+3+5 = 12.

A particular LB value can be calculated as follows: let us consider, Ty is
allocated in SC and thus, the incurred cost of T will be 3 time-units. This
allocation implies that, SC (core;) and T will be out of consideration for the
next course of calculation. The minimum cost that will be incurred by remaining
unallocated tasks can be found as: “minimum execution cost demand by HC”: 1 4
“minimum execution cost demand by SC (cores)”: 3 + “minimum execution cost
demand by RR”: 5 . Hence, the corresponding LB becomes : 3+(1+3+5)=12.
Similarly, by considering each individual allotment possibilities, LBs for each
task corresponding to each type of processing resource is calculated and shown
in tabular form in the Table 2.

Following the steps 6-8 of algorithm 1, min-LB can be found as 12 of Tj
for SC (corey). Hence, UB of Tg for SC can be calculated as follows: “maxi-
mum execution cost for HC”: (14) 4+ “maximum execution cost for SC (cores)”:
(11)+ “maximum execution cost for RR”: (9) + cost of Tg for SC (corey) (3).
Hence, UB of task Ty for SC becomes : 37. Before the task allocation procedure
begins, Allocated_Value is initialized as zero. Thus, it may be observed that Tj
is satisfying the conditions stated in step 10 of the algorithm 1. Hence, Ty suc-
cessfully assigned to SC (core;) and removed from the task set 7. In the same
way, following the steps of algorithm 1, the allocation procedure will continue

3 The values corresponding to tasks are depicting the execution cost in terms of time-
units.

Task Allocation Strategies for FPGA Based Heterogeneous System on Chip 7

Table 3. Tasks allotment and mk: BnB

Based Table 4. Tasks allotment by TAMF
PEs Allocated Consumed | mk Time
Task(s) Cost PEs 112|314(5| 6 [7]8]|9
HC T, T 5+1=6 HC T> T3
SC [Corey <=1, T5| 3+4=7 9 SC (corer) T ‘ Ts
Cores <= Ts 3 SC (cores) s |
RR Ty 9 RR Ty

until 7 becomes empty. The final task allocation scenario and corresponding mk
is shown in Table 3.

6 TAMF-Working Principle

It is worth mentioning that Branch and Bound strategy demands higher degree
of computations and may become computationally intensive when the number
of task increases. Hence, we propose a novel heuristic based tasks allocation
strategy called TAMF. TAMF will be executed once at system instantiation and
tasks will be allocated as per the achieved task-to-PE mapping information.

At the beginning of TAMF, the task set 7 gets ready with sorted execution
cost of each task (in non-decreasing order) for different types of PEs. We assume
that each type of PE provides minimum execution cost for atleast one task.
Hence, TAMF will choose the element of the sorted sequence for allocation. It
ensures that the task will be allocated to that particular PE for which it has the
minimum execution cost. Now as soon as core/cores of a PE, finishes its pre-
assigned execution, it will look for the next most eligible candidate task T,,. Ty,
can only be allocated to a “free”* PE, if and only if the following two conditions
hold alternatively:

i. The execution cost of the T, is minimum for the free PE (among all PEs).
ii. The execution cost of the T, for the free PE < average execution cost of Tj,.

Here, both the conditions attempt to ensure that T, should completes with
its lower execution requirement and thus, maximizing the probability of having
minimum mk. Moreover, the allocation of T, to any other PE might not be able
to provide better mk. TAMF will continue its own operation till any unallocated
task remains. The pseudo-code for TAMF is depicted in algorithm 2.

6.1 TAMEF in work: an example

Let us consider, the same set of tasks 7 as shown in Table 1. As stated earlier,
in this case 7 contains all the parameters in a sorted fashion. Let us consider T}
as a first candidate for allocation. It may be noted that the execution cost of 77,
related to each PEs is already being stored in a sorted sequence. 77 consumes
minimum execution cost 3 time units while executes in SC. On the other hand,
the average execution cost of 77 over all PEs becomes: {(3+4+7)/3}. It may

4 The PE finished its earlier execution and currently not executing any task.

8 Atanu Majumder, Sangeet Saha, Amlan Chakrabarti

Algorithm 2: TAMF

Input: Task set 7, M types of PEs
Output: Allocation of tasks for achiveing minimum mk.

1 {T,: next candidate task; Cq;: execution cost of T, in j'* PE; Cg}i” =
min{Cy;}, Vj € M : minimum execution cost of T}, in j** PE; C29 =
Z;Vil Caj/M: average execution cost of T, over all PEs };

2 while 7 is not empty do

for each j" free PE, j € M do
if Co; == CI" OR Cqo; < C3' then

Assign T, to the j'* PE;
Remove Ty, from T;

N O s W

jt" PE become free when Ca; completes.;

8 Find mk using equation 1;

be observed that T; satisfies the condition, stated in step 4 of the algorithm 2.
Hence, T} is allocated on SC (arbitrarily, core;) and removed from 7.

By following the same way, 15 gets allocated in HC but T3 could get allocated
in HC when T5 finishes. Similarly, other tasks will be allocated by the following
algorithm 2. The respective allocation and execution sequence of each task is
shown in Table 4. It is very much evident that all the tasks complete their
execution requirements within 9 time units and thus, mk = 9.

7 Experiments and Results

The performance of the Branch and Bound based strategy and TAMF have been
evaluated by conducting simulation based experiments using randomly generated
task sets whose execution cost corresponding to a PE have been taken from
normal distribution. The performance metrics used for evaluation are makespan
time as defined in equation 1 and the Computational Overheads, CO (measured
in terms of consumed clock cycles / CPU ticks). Data sets for various values of
N (10 to 30) 5, have been generated on systems containing total 2 to 8 cores of
three types of PEs. Each result is generated by executing 50 different instances
of each data set type and then taking the average over these 50 runs.

Table 5 shows the performance variation of Branch and Bound (BnB) based
strategy and TAMF over different number of processing resources. It may be
observed from the third and fourth column of the table, that BnB based tech-
nique can effectively eliminate the possible numbers of solution (by traversing
less number of nodes) through an intelligent pruning technique. Moreover, as N
increases, the computation overhead related to the LB estimation also increases
(lines 4-5, Algorithm 1) and thus, the COp,, g of overall strategy increases. An-
other notable observation reveals that when the number of processing resources

® routine tasks within an embedded system typically lies within this range [20]
5 PEs with individual number of cores

Task Allocation Strategies for FPGA Based Heterogeneous System on Chip 9

Table 5. Performance of Branch and Bound (BnB) based strategy and TAMF

PEs® N BF Prun AF prun COpgnB COTaMF
HC -2 10 > 1007 330 1080551 243112
15 > 1007 720 2775883 384098
SC-2 20 > 1002 1260 5490998 535518
25 > 1007 1950 9675934 679567
RR -2 30 > 1007 2790 15481722 832551
HC -3 10 > 1007 440 1755676 252107
15 > 1007 960 4621855 391578
SC-3 20 > 1007 1680 10279888 552077
25 > 1007 2600 17389423 724583
RR-2 30 > 1007 3720 28938997 877661

N: Number of tasks, BF Prun; AF Prun: Numbers of expected and actual nodes
traveled respectively, COprp: Computational overheads in terms of Clock ticks for
Branch and Bound based strategy, COranr: Computational Overheads for TAMF
increases by keeping N fixed, the number of traversed node (AF prun) as well as
COp,p also increases, this is mainly because the additional overheads incurred
in LB calculation for the increment in processing resources. This observations
is also supported by figure 2(a).

Table 5 also establishes the fact that TAMF demands less computational
overhead than Branch and Bound based strategy. This observation may be at-
tributed to the fact that being a heuristic based policy, TAMF does not implicitly
enumerate all possible solutions instead, employs task selection mechanism with
linear overhead and thus, costs less COr 4. Moreover, like BnB based strategy,
increase in N also endorses increment in TAMF’s overheads. However, if BnB
based strategy and TAMF runs on an allocator whose frequency is 1.5 GHz then
COpnp and COrypp for N = 10 (with six processing resources) becomes 0.72
and 0.16 in milliseconds, respectively. Figure 2(b), depicts bar chart showing

mk: BnB Based Vs TAMF

T
BnB Based m==m
TAMF

CO VS PES == 1%
a0 2 %6%
Ne10 ——
e (X
N=25 - %%
25 [N=30 —— 1%
20 b 1
K
2 5 :00
. - 5 o
g 53 K
£15 %% KRR
; K K
© KKd 5%
5 o
10 P! 190%
o [(%5
[X (%5
KKd 5%
5 o
: 5 s

0

R

o2
R I R KK
333585

O

%%
<K
7

4 5 6 7 8
Number of PEs 0

(a) CO vs PEs: BnB Based Strategy (b) mk vs N: BnB Based and TAMF

Fig. 2. Performance of BnB Based strategy and TAMF

makespan time (mk) produced by Branch and Bound based strategy and TAMF
for number of tasks (V) varying from 10 to 30 with constant number of process-

10 Atanu Majumder, Sangeet Saha, Amlan Chakrabarti

ing resources as 8. From the respective figure, it is very much evident that in most
of the cases, the efficiency of Branch and Bound based strategy and TAMF (in
terms of mk) is comparable. Through a deeper observation, it can be observed
that for N = 20 tasks, BnB based strategy provides mk = 18 (slightly lower)
while TAMF produces mk = 21. However, TAMF will cost COp s p=552112
clock cycle which is 18.6% lower than the BnB based strategy (refer, Table 5).

8 Validation in Physical ZYNQ platform

Besides of the thorough theoretical and simulation studies, we have also validated
the proposed strategies in actual FPGA based heterogeneous SOC (ZYNQ:ZC702)
with synthetic task sets. The platform contains three distinct types of PEs that is
the FPGA chip, dual core ARM Cortex-A9 processor and MicroBlaze (MB) pro-
cessor. In the ZYNQ board, these ARMs are located in PS (Processing System)
region and FPGA logics are separate as PL (Programmable logic) region [3]. In
PL, the Reconfigurable Regions (RRs) are done to carry out the hardware task
execution and Soft Core (SC) MB executes software tasks. In PS, ARMs are pre-
fabricated and hence, termed as Hard Core (HC). It may be observed that the
ZYNQ architecture resembles our adopted system model. Xilinx PlanAhead 14.4
and XPS, EDK, SDK 14.4 [3] tools are have been used for this validations.

8.1 Customization of the platform

For the purpose of the meaningful validation, the ZYNQ platform needs to be
architecturally customized.

e In the PL, RR was properly marked and the execution of each task on that
RR is ensured by properly maintaining the UCF [3] constraints.

e Two MBs are added in the PL using XPS IP-core. RR and MB are connected
through inter PL bus architecture.

e The RR, MB both are operated with PLs clock (FCCLK) of 50 MHz frequency.
e One ARM core (core-0) is kept for possible task allotment and another ARM
(core-1) works as allocator. These ARMs are operating using 667 MHz frequency.
e Both the PS and PL are communicating through GP0 and GP1 port. PS and
PL are also connected with OCM (On-Chip Memory) using AXI bus.

8.2 Synthetic Task Set Creation

To cope-up with the customized platform, it is essential to have proper set of
tasks. In our validation, we have constructed and profiled the sets of task. These
task sets are taken from well known Benchmark task set named ITC’99 bench-
marks [21]. This Benchmark consists of numerous task such as “Adder”, “De-
coder”, “Integer to Float conversion” etc.

e Synthetic hardware tasks are created using VHDL code and performance of
each such tasks is measured forming proper test-bench.

e Software tasks are written in system-c code. The execution performance of
those tasks are measured for both MB and ARM. The execution cost of sample

Task Allocation Strategies for FPGA Based Heterogeneous System on Chip 11

Table 6. Benchmark tasks execution over-

head (clock ticks unit) on ZYNQ Table 7. Performance on ZYNQ

PEs |N| BF | AF |COBnB|COrAMF

PEs| D Add I2F Lg2
S ec g Prun |Prun

HC |460158|455920(464819 (451817

HC - 1[10[> 1007] 330 [1268233] 483468
SC-2] - - -
RR - 2|20|> 1007|1260 |1988597| 791436

RR| 750 |35112 | 70089 (465335
SC | 41312 | 42736 | 87733 |581298

tasks is shown in Table 6

e At design time, each hardware task is stored in its executable format (as .bit)
in external memory. In ZYNQ), such .bit files are stored in SD card.

e Software tasks are stored in executable (.elf) format in the external SD card.
e This external memory is present in PS region and linked with the allocator.

8.3 Implementation and Outcomes

Both the strategies (Branch and Bound based and TAMF) are coded in system-
¢, compiled and stored (as respective executable format) in the SD card. At the
system instantiation, ZYNQ starts booting from SD card and core-1 of ARM
(allocator), initiates the execution of the respective strategy. After completion,
the tasks allocation information are stored in a log file, in the external memory.
Now core-1, will start allocation by transferring the respective .bit file to the PL
(if a task is assigned to PL region) and .elf to MB, core-0 of ARM respectively.
In the similar way, the allocator further reads the task assignment information
from the stored log file and allocates tasks (in their respective executable format)
from external memory to appropriate PEs.

Table 7 shows the performance of BnB based allocation strategy and TAMF
over different number of processing resources, on the ZYNQ platform. From the
table, it can be concluded that the trends of results in the actual platform concur
with the outcomes obtained through simulation studies.

9 Conclusion

In this paper, we presented methodologies for allocating task sets on FPGA based
heterogeneous SOC such that makespan is minimized. An optimal strategy and
heuristic based technique is discussed. We designed, implemented and evaluated
the algorithms using simulation based experiments and the simulation results
were further validated through real implementation on ZYNQ platform.

Acknowledgments

This work was supported in part by the TCS Research Fellowship Award, granted
to Sangeet Saha and TEQIP Phase-II project of University of Calcutta, India.

References

1. Hayashi, T., Kojima, A., Miyazaki, T., Oda, N., Wakita, K., Furusawa, T.: Appli-
cation of fpga to nuclear power plant i&c systems. In: Progress of Nuclear Safety
for Symbiosis and Sustainability. Springer (2014) 41-47

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Atanu Majumder, Sangeet Saha, Amlan Chakrabarti

Jin, J., Lee, S., Jeon, B., Nguyen, T.T., Jeon, J.W.: Real-time multiple object
centroid tracking for gesture recognition based on fpga. In: Proced. of the Tth Intl.
Conf. on Ubiquitous Info. Management and Communication, ACM (2013) 80
Crockett, L.H., Elliot, R.A., Enderwitz, M.A., Stewart, R.W.: The Zynq Book:
Embedded Processing with the Arm Cortex-A9 on the Xilinx Zyng-7000 All Pro-
grammable Soc. Strathclyde Academic Media (2014)

First, S., Méssinger, J., Bunzel, S., Weber, T., Kirschke-Biller, F., Heitkamper,
P., Kinkelin, G., Nishikawa, K., Lange, K.: Autosar—a worldwide standard is on
the road. In: 14th Intl. VDI Cong. Elec. Syst. for Vehicles. Volume 62. (2009)
Corréa, R., Ferreira, A.: Branch and bound. Parallel Algorithms for Irregular
Problems: State of the Art (2013) 157

Moreira, O., Valente, F., Bekooij, M.: Scheduling multiple independent hard-real-
time jobs on a heterogeneous multiprocessor. In: Proceedings of the 7th ACM &
IEEE international conference on Embedded software, ACM (2007) 57-66

Satish, N.R., Ravindran, K., Keutzer, K.: Scheduling task dependence graphs with
variable task execution times onto heterogeneous multiprocessors. In: Proceedings
of the 8th ACM intl. conf. on Embedded software, ACM (2008) 149-158
Dhingra, S., Gupta, S.B., Biswas, R.: Hybrid gasa for bi-criteria multiprocessor task
scheduling with precedence constraints. Computer Applications: An International
Journal 1(1) (2014) 11-21

Biswas, S.K., Rauniyar, A., Muhuri, P.K.: Multi-objective bayesian optimization
algorithm for real-time task scheduling on heterogeneous multiprocessors. In: Evo-
lutionary Computation (CEC), 2016 IEEE Congress on, IEEE (2016) 2844-2851
Baruah, S.K., Bonifaci, V., Bruni, R., Marchetti-Spaccamela, A.: Ilp-based ap-
proaches to partitioning recurrent workloads upon heterogeneous multiprocessors.
In: ECRTS, 2016. 215-225

Raravi, G., Andersson, B., Nélis, V., Bletsas, K.: Task assignment algorithms for
two-type heterogeneous multiprocessors. Real-Time Systems 50(1) (2014) 87-141
Kofler, K., Grasso, 1., Cosenza, B., Fahringer, T.: An automatic input-sensitive
approach for heterogeneous task partitioning. In: Proceed. of the 27th intl. ACM
conference on International conference on supercomputing. (2013) 149-160
Tabatabaee, H., Akbarzadeh-T, M.R., Pariz, N.: Dynamic task scheduling mod-
eling in unstructured heterogeneous multiprocessor systems. Journal of Zhejiang
University SCIENCE C 15(6) (2014) 423-434

Luo, P., Li, K., Shi, Z.: A revisit of fast greedy heuristics for mapping a class of
independent tasks onto heterogeneous computing systems. Journal of Parallel and
Distributed Computing 67(6) (2007) 695-714

Chow, K.W., Liu, B.: On mapping signal processing algorithms to a heteroge-
neous multiprocessor system. In: Acoustics, Speech, and Signal Processing, 1991.
ICASSP-91., 1991 International Conference on, IEEE (1991) 1585-1588

Pagani, M., Marinoni, M., Biondi, A., Balsini, A., Buttazzo, G.: Towards real-time
operating systems for heterogeneous reconfigurable platforms. OSPERT 2016 49
Li, L., Sun, J., Li, W., Lv, Z., Guan, F.: Hardware/software partitioning based on
hybrid genetic and tabu search in the dynamically reconfigurable system. Interna-
tional Journal of Control and Automation 8(1) (2015) 29-36

Papadimitriou, C.H.: Computational complexity. John Wiley and Sons Ltd. (2003)
Everitt, T., Hutter, M.: Analytical results on the bfs vs. dfs algorithm selection
problem. part i: Tree search. In: Australasian Jt. Conf. on Al

Chattopadhyay, S.: Embedded System Design. PHI Learning Pvt. Ltd. (2013)
Davidson, S.: Itc’99 benchmark circuits-preliminary results. In: Test Conference,
1999. Proceedings. International, IEEE (1999) 1125-1125

