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Abstract. Controlled random tests, methods of their generation, main
criteria used for their synthesis, such as the Hamming distance and the
Euclidean distance, as well as their application to the testing of both
hardware and software systems are discussed. Available evidences sug-
gest that high computational complexity is one of the main drawbacks
of these methods. Therefore we propose a technique to overcome this
problem. In the paper we propose the algorithm for optimal controlled
random tests generation. Both experimental and analytical investigation
clearly show the high efficiency of proposed solution especially for the
multi-run tests with small number of iterations. The given tests can be
applied for hardware and software testing but it seems they may be
particularly interesting from the perspective of the effective detection of
pattern sensitive faults in RAMs.

Keywords: random tests, controlled tests, multi-run tests, Hemming
distance, Euclidean distance, pattern sensitive faults, RAM

1 Introduction

It is known that the testing problem is computationally most expensive and
mathematically NP-complete [1, 2]. The same time the complexity of the modern
embedded systems is steadily growing. It is, therefore, important to consider how
testing can be performed more effectively.

In case of single hard to detect faults that may have just a handful of unique
tests in the entire search space there have been proposed probability based al-
gorithms where new test vectors are generated based on the input probability
correlation of previously unsuccessful test vectors [3].

In case of systems with limited number of inputs we can use exhaustive
testing. However the exponential growth of the test length restricts the concept
of the exhaustive testing to circuits with a limited number of inputs [4].

Locally exhaustive [5] or pseudo exhaustive [6–8] testing is a concept to avoid
the restricted number of inputs of the circuit under test. These approaches are
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the real alternatives to exhaustive testing. They allow for sufficiently reducing
the number of the test vectors. It is possible by taking advantage of the fact
that often many or all output variables depend only on a small subset of input
variables [5].

As a good approximation of exhaustive and pseudo exhaustive testing the
random testing have been widely used [9–12]. The advantages of random test-
ing include its low cost, ease of implementation, ability to generate numerous
test cases automatically, generation of test cases in the absence of the object
specification and apart from these; it brings randomness into the testing pro-
cess. Random testing and its variations have been extensively used and studied
for both hardware and software systems. Unfortunately random testing is much
less effective than other testing techniques such as equivalence partition testing,
boundary value analysis testing [13].

Standard random testing does not exploit some information that is avail-
able in black box testing environment. Therefore controlled approach to random
testing (Controlled Random Tests) may be used. One of the approaches for con-
trolled random testing is Antirandom Testing [14]. Antirandom Testing is based
on various empirical observations showing that many faults result in failures in
contiguous areas of the input domain [15]. Therefore one way to improve the
failure-detection effectiveness of random testing is somehow taking advantage
of this fact. In this case each test vector is chosen such that its total distance
from all previous vectors is maximum [14, 16]. This approach has proved more
efficient than random testing [14]. Unfortunately the basic antirandom method
essentially requires enumeration of the input space and computation of distances
for each potential input vector [14]. Therefore many modification of antirandom
tests have been proposed [15–24]. But even for improved version of the method,
very often computations become too expensive for real dimension N of the test
vectors [25].

In this paper the efficiency of controlled random tests is investigated and
validated. Unlike our parallel proposals presented in [26, 27] where we focus on
multiple controlled random tests consisting of r single controlled random tests, in
this paper we investigate a single optimal controlled random test and we present
the greedy-like algorithm for its generation. By optimal controlled random test
we understand the set of test patterns where each pattern is chosen such that its
total distance from all previous patterns is the greatest possible value. So, unlike
the known solutions, our approach keeps the distances between the current and
previous test patterns as large as possible. All the analytical results are validated
through extensive simulation-based experiments.

This paper is divided into four more sections. Section 2 provides a brief
overview of the principle concept behind Controlled Random Tests. Section 3
highlights the main idea of our algorithm. We analyze and discuss the experi-
mental results in Section 4, and make a conclusion in Section 5.
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2 Controlled Random Tests Investigations

The key feature of controlled random tests generation is the information, which
can be obtained from the test and used for test patterns generation. There are
numerous different useful approaches which exploited the information from the
test itself [14, 25, 28]. For all this methods, considering the binary case, the next
definitions can be done.

Definition 1. Test (T ) is a set of test patterns {T0, T1, T2, . . . , Tq−1}, where
Ti = ti,N−1, ti,N−2, . . . , ti,2, ti,1, ti,0, with ti,l ∈ {0, 1}, and N is the size of pat-
terns in bits.

Definition 2. Controlled Random Test T = {T0, T1, T2, . . . , Tq−1} (CRT) is a
test with randomly chosen the test patterns Ti, i ∈ {0, 1, 2, . . . , q − 1}, such that
Ti satisfies some criterion.

The first formally define approach for controlled random test generation have
been presented in [14] by Y. Malaiya. The proposed approach was called antiran-
dom testing, since selection of each test explicitly depends on the test patterns
already generated. The next formal definition for antirandom tests have been
used:

Definition 3. Antirandom test (AT) is a test with a test pattern Ti, i ∈ {0, 1, 2,
. . . , q − 1}, is chosen such that it satisfies some criterion with respect to all
patterns T0, T1, T2, . . . , Ti−1 have been obtained before.

To make each new pattern different compare with previously generated the Ham-
ming and Cartesian distances as the measure of differences have been chosen,
which can be defined as [14].

Definition 4. The Hamming Distance HD(Ti,Tj) (HD) between two binary vec-
tors Ti and Tj is calculated as a weight w(Ti ⊕ Tj) (number of ones) of vector
Ti ⊕ Tj.

HD(Ti, Tj) = w(Ti ⊕ Tj) =

N−1
∑

l=0

(ti,l ⊕ tj,l). (1)

Definition 5. The Cartesian Distance CD(Ti, Tj) (CD) between two binary vec-
tors Ti and Tj is given by:

CD(Ti, Tj) =
√

(ti,0 − tj,0)2 + (ti,1 − tj,1)2 + . . .+ (ti,N−1 − tj,N−1)2 =

=
√

|ti,0 − tj,0|+ |ti,1 − tj,1| + . . .+ |ti,N−1 − tj,N−1| = (2)

=
√

HD(Ti, Tj).

The antirandom testing scheme attempts to keep testing procedure as efficient as
possible, taking into account the hypothesis that if two patterns have only a small
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distance between them then the sets of faults encountered by the two patterns is
likely to have a number of faults in common. Conversely, if the distance between
two patterns is large, then the set of faults detected by one is likely to contain
only a few of the faults detected by the other[14, 29]. For the set of more then
two test patterns the next definitions have been proposed [14].

Definition 6. Total Hamming Distance (THD), Total Cartesian Distance (TCD)
for any pattern Ti is the sum of its Hamming (Cartesian) distances with respect
to all previous patterns T0, T1, T2, . . . , Ti−1.

THD(Ti) =
i−1
∑

j=0

HD(Ti, Tj), TCD(Ti) =
i−1
∑

j=0

CD(Ti, Tj). (3)

Definition 7. Maximal Distance Antirandom Test (MDAT) is a test such that
each pattern Ti is chosen to make the total distance THD or TCD between Ti

and patterns T0, T1, T2, . . . , Ti−1 maximal.

The main properties of MHDAT and MCDAT are the following:

any permutation the patterns bits ti,j within the antirandom test T
MHDAT (MCDAT) for all i patterns simultaneously will results in new
MHDAT (MCDAT) antirandom test [14, 29],

any MHDAT (MCDAT) will always contain complementary pair of pat-
terns, i.e. T2k will always be followed by T2k+1 which is complementary
for all bits in T2k where k = 1, 2, . . . , [14, 29].

Above presented properties allow reducing the complexity of MHDAT (MC-
DAT) generation but, for general case, unfortunately the basic antirandommethod
essentially requires enumeration of the input space and computation of distances
for each potential input pattern [14, 29]. Even for improved version of the method
computations, it becomes too expensive for real dimension N of the test pat-
terns [16].

3 Optimal Controlled Random Test Generation

The key feature of controlled random test generation is the information obtained
from the test and used for the current pattern Ti generation.

As shown in the previous section, the controlled random tests are generated
based on a restricted number of metrics, including the Hamming distance be-
tween two patterns Ti and Tj (HD(Ti, Tj)), the Cartesian distance (CD(Ti, Tj)),
the total Hamming distance for the next test pattern Ti (THD(Ti)), the to-
tal Cartesian distance (TCD(Ti)), the total Hamming distance for the test T
(THD(T )), and the total Cartesian distance (TCD(T ))[14, 28, 29]. These met-
rics are used for proposed greedy-like methods of controlled random test gen-
eration[14, 16, 25, 28–30]. In all these algorithms, the best immediate, or local,
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solution has been taken to reach a globally optimal solution. The optimal choice
at each stage based on simple metrics has been performed with the hope of
finding the global optimum. The greedy-like algorithm was the only solution for
controlled random test generation because it is faster than other optimization
methods, like dynamic programming for example.

Based on the presented metrics, an optimal controlled random test (OCRT)
will be constructed. Step by step, starting from one test pattern T0, the consec-
utive patterns will be selected in terms of adopted earlier metrics according to
the greedy-like algorithm.

At the beginning, the first test pattern T0 is chosen as any arbitrary random
N -bit binary vector out of 2N possible. For example, let T0 = 000. . .0. This does
not result in any loss of generality[14, 16, 28].

As the second pattern T1, according to all metrics, an optimal value is the
complement of T0, then T1 = T 0, and T = {T0, T1} for the previously adopted
example T1 = 111. . .1. The optimality of this choice is supported by the maximal
values of all metrics: HD(T0, T1) = THD(T1) = THD(T ) = N , and CD(T0, T1)
= TCD(T1) = TCD(T ) =

√
N .

To obtain the third pattern T2, the HD(Ti, Tj) and CD(Ti, Tj) measures
cannot be used because the maximization of this value leads to the confusing
result that T2 = T0. That is why, in our investigation, both characteristics will
not be used. The same conclusion can be made for THD(Ti) and THD(T ). It
follows from the fact that for T = {T0, T1, T2}, where T1 = T 0, any value of T2

gives THD(T2) = N and THD(T ) = 2N . It should be noticed that, even in cases
T2 = T0 and T2 = T1, these metrics have the same values THD(T2) = N and
THD(T ) = 2N .

As the candidate for the third optimal pattern T2, any pattern that satisfies
to the next relations T2 6= T0 and T2 6= T1 can be chosen. For example, we take
T2 with HD(T0, T2) = Z, then HD(T1, T2) = N − Z. For Cartesian functions,
the following results are TCD(Ti) = CD(T0, T2) + CD(T1, T2)=

√
Z +

√
N − Z,

TCD(T )=CD(T0, T1) + CD(T0, T2) + CD(T1, T2) =
√
N+

√
Z+

√
N − Z . Then,

maxTCD(Ti) and maxTCD(T ) can be achieved as the solution Z = N/2 of the
equation δ(

√
Z +

√
N − Z)/δZ = 0. For further investigation, suppose that

N is an even number, so that, in our example, the first N/2 bits of pattern
T2 = 000. . .01111 take the value 0, and the rest take value 1.

To summarize the third pattern construction, it is quite important to empha-
size that, for our test T = {T0, T1, T2} = {000. . .0, 111. . .1, 000. . .0111. . .1}, the
next patterns (fourth, fifth, and so on) should be selected from the set of patterns
with the weight w(Ti) = N/2 due to the maximum values of TCD(T2) = 2

√

N/2

and TCD(T ) =
√
N + 2

√

N/2 for three pattern tests T . In this case, for new
consecutive pattern Ti, the Hamming distances HD(Ti, T0) and HD(Ti, T1) have
the values N/2, which allow for TCD(Ti) and TCD(T ) maximization.

According to the previous discussion, as the potential fourth pattern, T3 is
the pattern with the weight w(T3) = N/2 and should maximize the value of
TCD(T3) and TCD(T ). The obvious solution exists, namely, T3 = T 2 and for
our example T3 = 111. . .1000. . .0.
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The same result can be obtained based on the FAR algorithm [25]. Ac-
cording to this algorithm, using three previous patterns T0 = 000. . .0, T1 =
111. . .1 and T2 = 000. . .0111. . .1, a centroid pattern will be obtained C =
cN−1, cN−2, . . . , c2, c1, c0 = 1/3, 1/3, 1/3, . . . , 1/3, 2/3, 2/3, 2/3, . . . , 2/3. Thus, the
FAR algorithm creates a binary centroid pattern 000. . . 01111 [25]. At the final
step of the FAR algorithm, a new anti-random pattern T3 = 111. . .10000 is
constructed by complementing each bit of the binary centroid pattern.

For the pattern T3, the total Cartesian distance is TCD(T3) =
√
N+2

√

N/2

and TCD(T ) = 2
√
N + 4

√

N/2 for four pattern tests T .
This procedure can be generalized for the following steps. At all consecutive

stages, the next pattern will be chosen to maximize two metrics TCD(Ti) and
TCD(T ). When pattern Ti with an even subscript number i ∈ {0, 2, 4, . . . , 2k−2}
is chosen, the following relation should be true:

maxTCD(Ti) = i×
√

N/2

maxTCD(T ) = (i/2)×
√
N + (i2/2)×

√

N/2.
(4)

The pattern with the even subscript i is chosen so that HD(Ti, Tj) = N/2
between pattern Ti and all previous patterns Tj , j < i. The pattern with an odd
subscript i ∈ {1, 3, . . . , 2k − 1} is the complement value of the previous pattern
with an even subscript (i.e., Ti = T i−1). Then, both metrics are

maxTCD(Ti) =
√
N + (i− 1)×

√

N/2

maxTCD(T ) = ((i + 1)/2)×
√
N + ((i2 − 1)/2)×

√

N/2.
(5)

As an example, we take N = 2m, then the number q of patterns within the
OCRT T = {T0, T1, T2, . . . Tq−1} equals 2(m+ 1). For m = 3, OCRT consisting
of 2(m + 1) = 2(3 + 1) = 8 patterns with both metrics (maxTCD(Ti) and
maxTCD(T ) are presented in Table 1.

Table 1: Optimal controlled random test for q = 8.
Ti ti,7 ti,6 ti,5 ti,4 ti,3 ti,2 ti,1 ti,0 maxTCD(Ti) maxTCD(T )

T0 0 0 0 0 0 0 0 0 – –

T1 1 1 1 1 1 1 1 1
√

8
√

8

T2 0 0 0 0 1 1 1 1 2
√

4
√

8 + 2
√

4

T3 1 1 1 1 0 0 0 0
√

8 + 2
√

4 2
√

8 + 4
√

4

T4 0 0 1 1 0 0 1 1 4
√

4 2
√

8 + 8
√

4

T5 1 1 0 0 1 1 0 0
√

8 + 4
√

4 3
√

8 + 12
√

4

T6 0 1 0 1 0 1 0 1 6
√

4 3
√

8 + 18
√

4

T7 1 0 1 0 1 0 1 0
√

8 + 6
√

4 4
√

8 + 24
√

4

For the general case, the number OCRT patterns is calculated as q = 2(⌈log2N⌉+
1), and the constructive algorithm for pattern generation is presented in [7].

The presented procedure of OCRT construction, based on the greedy-like
algorithm, is the best solution that can be obtained according to the procedure of
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all known algorithms for controlled random test generation, namely, anti-random
test generation [14], fast anti-random test generation [25], orderly random test
construction [28], and numerous modifications, like the maximal distance anti-
random test, maximal Hamming distance test, and so on.

To summarize, the optimal controlled random test generation (Algorithm 1)
for construction of OCRT forN = 2m is proposed. By optimal controlled random
test we understand the set of test patterns where each pattern is chosen such
that its total distance (TCD(Ti) and TCD(T )) from all previous patterns is the
greatest possible value.

ALGORITHM 1: Construction of OCRT for N = 2m

1. Initial matrix M with N columns and q = 2(m+ 1) rows should be constructed
based on the trivial divide and conquer algorithm [31]. The first row M0 takes
the value with N zeros, and the second row (M1) is all ones. The consecutive
rows with even subscripts i > 0 are the set of even number blocks, where half are
all zero blocks and another half are all blocks with one. The next row with an
odd subscript is the negation of the previous row with an even subscript (e.g.,
M1 is complement of M0). On each iteration of this algorithm, the current row of
matrix M with an even subscript is constructed from the previous row with an
even subscript, so that all its blocks are divided into two equal blocks, when the
first new block is all zeros and the second is all ones.

2. Based on some permutations, the algorithm conducts column reordering for
matrix M to obtain matrix M∗, which is called a mask vector matrix.

3. Randomly chosen N bits pattern P out of 2N possible patterns is regarded as the
first pattern T0 = P .

4. Each new i-th pattern T1, T2, T3, . . . , T2m+1 is the bit-wise exclusive or sum
Ti = P

⊕
M∗

i .
5. Repeat Step 4 until all 2(m+ 1) patterns have been constructed.

It should be mentioned that column reordering for any matrix does not change
the value of the Hamming distance between any two rows (patterns), which
follows from the equation (1). We consider the random matrix M with three
rows and four columns and the matrixM1

∗ that is obtained by column reordering
from the matrix M .

M
C1 C2 C3 C4

T0 0 0 1 0
T1 1 0 0 1
T2 1 1 0 0

M1
∗

C3 C4 C1 C2

T0
∗ 1 0 0 0

T1
∗ 0 1 1 0

T2
∗ 0 0 1 1

We notice that the value of the Hamming distance between any two rows of
matrix M equals the distance between corresponding rows of matrix M1

∗:

HD(T0, T1) = HD(T0
∗, T1

∗) = 3,
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HD(T0, T2) = HD(T0
∗, T2

∗) = 3
HD(T1, T2) = HD(T1

∗, T2
∗) = 2.

The same observation can be made for the operation used in Step 4 of Algo-
rithm 1. Let us again consider the random matrix M , the random pattern Tr,
and the matrix M2

∗, where each row is bit-wise exclusive of the corresponding
row of matrix M and pattern T .

M
C1 C2 C3 C4

T0 0 0 1 0
T1 1 0 0 1
T2 1 1 0 0

Tr = 1 0 1 1

M2
∗

C1
∗ C2

∗ C3
∗ C4

∗

T0
∗ 1 0 0 1

T1
∗ 0 0 1 0

T2
∗ 0 1 1 1

We again notice that the value of the Hamming distance between any two rows
of matrix M equals the distance between the corresponding rows of matrix M2

∗:

HD(T0, T1) = HD(T0
∗, T1

∗) = 3,
HD(T0, T2) = HD(T0

∗, T2
∗) = 3

HD(T1, T2) = HD(T1
∗, T2

∗) = 2.

We conclude that Steps 2-4 of the Algorithm 1 do not affect the main char-
acteristic of the test patterns generated in Step 1. However, at the same time,
the above steps allow us to generate different sets of test patterns characterized
by maximum distances between the patterns. We can use those patterns to ef-
fectively detect different sorts of faults, for example, pattern sensitive faults in
RAM.

Now, as an example, we generate OCRT for N = 2m = 23 using Algorithm 1,

Example 3.1. OCRT generating for N = 2m = 23

1. Initial matrix M with N = 8 columns and q = 8 rows is constructed, so
that M0 = 00000000 and M1 = 11111111. The new M2 row is obtained from
M0 by the dividing it on two blocks: one with all zero code and the second
with all ones, where M3 is the complement value of M2, The next rows of
matrices M (M4, ..., M7) are obtained in the same way (see Table 1).

2. Mask vector matrices M∗, as a result of column reordering of M (Table 1)
are presented in Table 2.

3. If the randomly chosen N = 8-bit pattern is P = 01111010, then T0 = P =
01111010.

4. Each new i-th pattern T1, T2, T3, . . . , T7 is the bit-wise exclusive or sum Ti =
P ⊕M∗

i , where M∗

i is taken from Table 2.

5. All q = 2(m+ 1) = 8 patterns for OCRT are presented in Table 3 with the
corresponding values of the metrics.



Optimal Controlled Random Tests 9

Table 2: Masks vector matrices M∗ for m = 3
M∗

i ti,2 ti,6 ti,1 ti,4 ti,3 ti,7 ti,5 ti,0

M∗

0 0 0 0 0 0 0 0 0
M∗

1 1 1 1 1 1 1 1 1
M∗

2 1 0 1 0 1 0 0 1
M∗

3 0 1 0 1 0 1 1 0
M∗

4 0 0 1 1 0 0 1 1
M∗

5 1 1 0 0 1 1 0 0
M∗

6 1 1 0 1 0 0 0 1
M∗

7 0 0 1 0 1 1 1 0

Table 3: OCRT patterns for m = 3
Ti ti,7 ti,6 ti,5 ti,4 ti,3 ti,2 ti,1 ti,0 maxTCD(Ti) maxTCD(T )

T0 0 1 1 1 1 0 1 0 – –

T1 1 0 0 0 0 1 0 1
√

8
√

8

T2 1 1 0 1 0 0 1 1 2
√

4
√

8 + 2
√

4

T3 0 0 1 0 1 1 0 0
√

8 + 2
√

4 2
√

8 + 4
√

4

T4 0 1 0 0 1 0 0 1 4
√

4 2
√

8 + 8
√

4

T5 1 0 1 1 0 1 1 0
√

8 + 4
√

4 3
√

8 + 12
√

4

T6 1 0 1 0 1 0 1 1 6
√

4 3
√

8 + 18
√

4

T7 0 1 0 1 0 1 0 0
√

8 + 6
√

4 4
√

8 + 24
√

4

�

The brief analyses demonstrate that the presented procedure can construct a set
of OCRT depending on the initial pattern P . For the general case, the number of
OCRT patterns is calculated as q = 2(⌈log2N⌉+1), and the algorithm for OCRT
pattern generation is slightly different for the mask vector matrix generation.

The proposed algorithm seems to be efficient in terms of computation com-
plexity. For any value of N , the most difficult procedure is the mask vector
matrix (M) generation and performing column reordering to obtain M∗. In-
deed, increasing N by two times needs only two additional rows for M . Then,
the new M is constructed so that all N -bit rows for the previous M are extended
to 2N bits using the simple doubling of all blocks with the same values 0 or 1
and adding two final rows M2m−2 = 010101. . .01 and M2m−1 = 101010. . .10.

4 Experimental results

Finally, to confirm the proposed solution we have compared the coverage of
several controlled random tests strategy (OCRT, pure antirandom tests [14],
concatenated antirandom tests [14], STPG [22]) and random one in terms of
number of generated binary combinations for all arbitrary k out of N bits. Using
different methods, we had generated test sets consisting of eight test patterns and
then we compared their coverage with each other. In the case of pure antirandom
tests THD was used as a fitness function whilst concatenated antirandom vectors
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were employed from Example 7 in [14]. Due to the fact that the authors of
STPG algorithm have not indicated how to determine the adding factors [22], a
random value was used. The experiments have been done for k = 3 and k = 4.
The obtained results are shown in the Figure 1a and 1b. The x-axis represents
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Fig. 1: The coverage of all arbitrary k out of N bits for different antirandom test
schemes: a) k=3 and N=64, b) k=4 and N=64

the number of the test patterns, and the y-axis – the number (in percent) of
binary combinations for all arbitrary k = 3 and k=4 out of N = 64 bits. For
Fig. 1, we observe that all coverages curves rise sharply and them exhibits a
smooth behavior. We observe high efficiency of OCRT especially for the first few
patterns of the test. At the end of the test process OCRT gives us the same or
slightly lower (see Fig. 1b) level of fault coverage as in case of pure antirandom
patterns. The same time we should noted that OCRT is characterized by easier
computational method in compare to other analyzed techniques. Most known
antirandom techniques still need a lot of resources (strong CPU for computation
of distances between vectors, additional memory to collect generated vectors,
etc) that may be unavailable in case of embedded systems and BIST technique.

5 Conclusions

In the paper a new approach called as Optimal Controlled Random Test has been
introduced. It uses previously adopted metrics attempting to make all known
Greedy like controlled random testing more effective. Unlike the known solu-
tions the new approach keeps the distances TCD(Ti) and TCD(T ) as large as
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possible. Both experimental and analytical investigation clearly show the high
efficiency of proposed solution especially for the first few iterations of the multi-
run test. However the OCRT has an obvious advantageous compare with all
known methods. It is more efficient in terms of computation complexity.
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