
HAL Id: hal-01656230
https://inria.hal.science/hal-01656230

Submitted on 5 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

State Assignment of Finite-State Machines by Using the
Values of Input Variables
Valery Salauyou, Michal Ostapczuk

To cite this version:
Valery Salauyou, Michal Ostapczuk. State Assignment of Finite-State Machines by Using the Values of
Input Variables. 16th IFIP International Conference on Computer Information Systems and Industrial
Management (CISIM), Jun 2017, Bialystok, Poland. pp.592-603, �10.1007/978-3-319-59105-6_51�.
�hal-01656230�

https://inria.hal.science/hal-01656230
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


State assignment of finite-state machines by using the 

values of input variables 

Valery Salauyou, Michal Ostapczuk 

Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland 

valsol@mail.ru 

Abstract. In this paper, we propose the method of FSM synthesis on field pro-

grammable gate arrays (FPGAs) when input variables are used for state assign-

ment. For this purpose we offer a combined structural model of class A and 

class E FSMs. This paper also describes in detail the algorithms for synthesis a 

class AE FSM which consists of splitting of internal states for performance of 

necessary conditions for synthesis of the class E FSM and state assignment of 

the class AE FSM. It is shown that the proposed method reduces the area for all 

families of FPGAs by a factor of 1.19–1.39 on average and by a factor of three 

for certain families. Practical issues concerning the method and the specific fea-

tures of its use are discussed, and possible directions of the elaboration of this 

approach are proposed. 

Keywords: finite state machine (FSM), field programmable gate array (FPGA), 

state assignment, area minimization, state splitting, look up table 

1 Introduction 

In the general case, a digital system can be represented by a set of combinational cir-

cuits and finite state machines (FSMs). FSMs are also widely used as individual units 

as controllers and control devices. Usually, when working on a project, the designer 

has to develop new FSMs each time. It is clear that the parameters of FSMs used in a 

digital system to a large extent determine the success of the whole project. For this 

reason, the issue of minimization of FSMs is very important. As the FSM optimiza-

tion criteria, one typically uses area, delay, and power consumption. Presently, field 

programmable gate arrays (FPGAs) are widely used in digital systems; for this reason, 

many FSM optimization methods are designed for the implementation of FSMs based 

in FPGAs. 

The idea of using the values of the input and output variables of the FSM for en-

coding its internal states was first proposed in [1]. Later, this approach was elaborated 

in [2], where various combinations of the input and output variables that can be used 

for encoding the internal states are considered. The choice of the minimum number of 

input and output variables for encoding is an NP-hard problem. In [3], it was pro-

mailto:valsol@mail.ru


posed to use the values of the output variables of the Moor FSM as the codes of the 

internal states. 

In [4], structural models of FSMs based on the architectural capabilities of FPGAs 

were proposed; these models make it possible to use the values of the FSM input and 

output variables as internal state codes. A new classification of structural models of 

FSMs is given. Here the class A and B FSMs are traditional of Mealy and Moore 

FSMs accordingly. In the class C (Mealy) and the class D (Moore) FSMs the value of 

an output vector completely coincides with the code of the present state of the FSM. 

In the class E (Mealy) and class F (Moore) FSMs the value of an input vector com-

pletely coincides with the code of the next state of the FSM. 

In [5], the synthesis method of Mealy FSMs was proposed, where the values of 

output variables are used as the codes of FSM states. In this paper, we present the 

method of FSM synthesis which allows, unlike [5], to use the values of input varia-

bles as the codes of FSM states. For this purpose, the structural model of the class E 

FSM [4] is used.  

2 Structural FSM models 

The most general model of the Mealy FSM can be described by means of following 

equations: 

),,(

);,(1

ttt

ttt

azw

aza




 

where Φ is the transition function, Ψ is the output function, at is the present state of 

the FSM at time t (t=1,2,3,...), at+1 is the next state of the FSM, zt is a collection of 

values of the input variables (the input vector) on the FSM input at time t, and wt is a 

collection of values of the output variables (the output vector) formed at time t. 

The Mealy FSM in classification [4] received a title the class A FSM. The structur-

al model of the Mealy FSM show on fig. 1,a, where CLΦ is the combinational circuit 

forming the values of the transition functions, CLΨ is the combinational circuit form-

ing the values of the output functions, and RG is the FSM’s memory. 

 

CL

CL

zt

zt

wt

wt

at+1

at+1

at

at

a)

b)

CL RGA

RGE

CLK

CLK  

Fig. 1. The structural models of FSMs: a – the class A FSM;  b – the class E FSM 



In the class E FSM the value of the input vector zt determines the code of the next 

state at+1; therefore, the equations of functioning of the class E FSM have the follow-

ing view: 

),,(

;1

ttt

tt

azw

za




 

In contrast to the Mealy FSM, the structure of the class E FSM does not include the 

combinational circuit CLΦ (fig. 1,b) that allows to build FSMs of a low cost (an area) 

and a high-speed performance. 

However in practice, the “pure” type of the class E FSM meets very rarely. There-

fore, in the present work we offer the combined model of the class AE FSM. In the 

class AE FSM the codes of internal states are divided on two parts: one part is defined 

by the value of input variables, and the second part is formed the same as in the class 

A FSM, by means of combinational circuit CLΦ (fig. 2). 

 

CL

zt
wt

a"t+1 a"t

a't+1 a't

CL

RGE

RGA

CLK

CLK

 

Fig. 2. The structural model of the class AE FSM 

The memory of the class AE FSM is presented by two registers RGA and RGE 

which correspond to the class A and the class E FSMs. The internal state at of the 

class AE FSM is defined by a concatenation of two states: a’t and a”t, i.e. at = {a’t, 

a”t}, where a’t is the value on outputs of the register RGE, and a”t is the value on 

outputs of the register RGA. The code of the next state at+1 also is defined by the con-

catenation of two states: a’t+1 and a”t+1, i.e. at+1 = {a’t+1, a”t+1}. Here the code of the 

state a’t+1 coincides with the value of the input vector zt, and the code of the state 

a”t+1 is formed by the combinational circuit CLΦ on the basis of the input vector zt 

and the code of the state at. Functioning of the class AE FSM can be described by 

means of following equations: 

).,(

);,(

;

"
1

'
1

ttt

ttt

tt

azw

aza

za











 



3 The synthesis method of the class AE FSM 

Let us present the class AE FSM by the structural diagram on fig. 3 that consists of 

two registers RGA and RGE, and the combinational circuit CL. Here, in contrast to the 

structure on fig. 2, the combinational circuits CLΦ and CLΨ are united in one circuit C 

L. The combinational circuit CL receives the values of the input variables X = 

{x1,…,xL}, the values of the variables G = {g1,…,gL}, which define the state a’t code, 

and the values of the feedback variables E = {e1,…,eR}, which define the state a”t 

code. Based on FSM algorithm functioning and arriving the values of the variables, 

the combinational circuit CL forms values of the output functions Y = {y1,…,yN} and 

the transition functions D = {d1,…,dR} which define the state a”t+1 code.  

 

CLRGE

RGA
CLK

CLK

X Y

D

G

E

 

Fig. 3. The structural diagram of the class AE FSM 

Let A is a set of internal states of the FSM. Let us denote by U (ai) the set of all the 

transition conditions in the state ai, ai  A: 

 U(ai) = {X(am,ai) | am  B(ai)}, (1) 

where X(am,ai) is a collection of values of the input variables (a transition condition or 

an input vector) that initiates the transition from the state am to the state ai, B(ai) is the 

set of states, transitions from which terminate in the state ai.  

The state ai, ai  A, is a state of the class E FSM, i.e. ai  AE, if next conditions are 

satisfied: 

 | U(ai) | = 1 (2) 

 U(ai)  U(aj) =  at i  j for all aj  A, (3) 

where |M| is the cardinality (the number of elements) of the set M,  is an empty set. 

A performance of the condition (2) guarantees that all transitions to the state ai are 

carried out by the same transition condition (i.e. the state ai has only one code), and a 

performance of the condition (3) provides a determinacy of a FSM behavior (i.e. the 

transition condition in some state ai does not initiate passages to other FSM states).  

The FSM is the class E FSM if all its states are states of the class E FSM, i.e. AE = 

A. In other words, the finite state machine is the class E FSM if for all its states condi-

tions (2) and (3) are satisfied. 

The satisfaction of the conditions (2) is carried out by splitting of FSM states. Let, 

for example, for some state ai, ai  A, takes place |U(ai)| = Q  1. It is possible to split 



a state ai on states ai_1,...,ai_Q so that the transitions in each state ai_q were defined only 

by one transition condition, i.e. was fulfilled |U(ai_q)| =1, q= Q,1 . Now instead of one 

state ai, we have Q states for which conditions (2) are satisfied. 

In case of violations of the conditions (3), the synthesis of the class E FSM is im-

possible, since the determinacy of the FSM behavior is broken. In this case, it is of-

fered to use the combined model of the class AE FSM (fig. 2). For this purpose, the 

second part of the code of the class A FSM is added to the code of each internal state 

of the class E FSM, which corresponds to the states a”t and a”t+1. The last is carried 

out by special state assignment of the FSM.  

4 Splitting of internal states for performance of necessary 

conditions for synthesis of the class E FSM 

Note that splitting the internal states is an equivalent transformation of the FSM and it 

does not change the operation algorithm of the FSM. Let M be the number of internal 

states of the FSM, P(ai) be the set of transitions of the FSM from the state ai, i= M,1 , 

C(ai) be the set of transitions of the FSM that terminate in the state ai, ai  A, and 

X(ai) be some a transition condition to the state ai, X(ai)  U(ai). Then the algorithm 

splitting of internal states for performance of necessary conditions for synthesis of the 

class E FSM has the following view. 

Algorithm 1. 

1. For each internal state ai, ai  A, according to (1) the set U(ai) is defined. 

2. In the set A, find a state ai for which condition (2) are not satisfied. If such a 

state is found, then go to Step 3; otherwise, go to Step 7. 

3. Put Q := |U(ai)|. Introduce Q new states ai_1,…,ai_Q. 

4. Determine the subsets C(ai_1),…,C(ai_Q) of transitions to the states 

ai_1,…,ai_Q. Each subset C(ai_q) is assigned transitions which is initiated by 

the condition X
q
(am,ai)  U(ai), am  B(ai), q= Q,1 . 

5. The subsets P(ai_1),…,P(ai_Q) of transitions from the states ai_1,…,ai_Q are de-

terminated in the following way: P(ai_q) := P(ai) for all q= Q,1 .  

6. Put A:=A\{ai}, A:=A { ai_1,…,ai_Q}, and M:=M+Q-1; go to Step 2. 

7. Stop. 

5 State assignment of the class AE FSM 

The main purpose of encoding the internal states when designing the class AE FSMs 

is to ensure the mutual orthogonality of these codes. To encode the internal states of a 

class AE FSM, a ternary matrix W is constructed in which the rows correspond to the 

internal states and the columns correspond to the variables of the set G. A unit is put 

on intersection of the row i and the column j of the matrix W, if the input variable xj 

has the value 1 in the condition X(ai), a zero, if the input variable xj has the value 0 in 

the condition X(ai), and an undetermined value (the dash), if the variable xj does not 



influence on the transition condition X(ai). Later, the rows of the matrix W will deter-

mine the codes of the internal states of the class AE FSM. 

To make the codes of internal states of the class AE FSM orthogonal it is necessary 

to solve the following task. 

Task 1. To add in matrix W the minimum number of the columns, which corre-

sponding to the variables e1,...,eR, and to encode the rows of the matrix W by binary 

values of the variables e1,...,eR so that all the rows of the matrix W were mutually 

orthogonal. 

In order to solve the Task 1 and to encode the internal state of the class AE FSM 

the following algorithm is offered. 

Algorithm 2. 

1. The graph H for the orthogonalization of the rows of the matrix W is con-

structed. The vertices of H correspond to the rows of W (internal states of the 

FSM). Two vertices of H are connected by an edge if the corresponding rows 

of W are orthogonal.  

2. The vertices connected to all other vertices (the rows of W corresponding to 

these vertices are orthogonal to all other rows) are removed from H.  

3. The graph H is decomposed into the minimum number of complete sub-

graphs H1,…,HT using Algorithm 3. 

4. The subgraphs H1,…,HT are encoded by binary codes of the minimum length 

R = intlog2T using Algorithm 5. 

5. R columns that correspond to the variables e1,...,eR of the codes of the sub-

graphs H1,…,HT are added to the matrix W. In row i of W, the positions of the 

additional columns are filled by the code of the subgraph Ht, t= T,1 , contain-

ing the vertex ai, i= M,1 . The other positions of the additional columns in W 

are filled by zeros. 

6. The contents of the row i of W is used as the code of the internal state ai, 

i= M,1 . 

7. Stop.  

The decomposition of the graph H into the minimum number of complete graphs 

H1,…,HT (at Step 3 of Algorithm 2) is made by the following algorithm. 

Algorithm 3. 

1. Set T : = 0. 

2. Set T : = T + 1. In the graph H, find a complete graph HT with the maximum 

number of vertices. 

3. Remove the vertices of HT from the graph H. 

4. If the set of vertices of H is not empty, the go to Step 2; otherwise, go to Step 

5. 

5. Stop. 

The maximal complete subgraph Ht, t= T,1 , at Step 2 of Algorithm 3 can be found 

using the following algorithm. 

Algorithm 4. 

1. Find a vertex ai in H with the greatest local degree. 

2. Include ai into the graph Ht. 



3. Among all the vertices of H not included in Ht, find a node ai connected to 

all the nodes of the subgraph Ht. If several such nodes are found, choose a 

node with the greatest local degree among them. 

4. If a vertex connected to all the vertices of the subgraph Ht was found at Step 

3, then go to Step 2; otherwise, go to Step 5. 

5. Stop. 

To encode the subgraphs H1,…,HT (Step 4 of Algorithm 2) the following algorithm 

is used to minimize the area of implementing the transition functions. 

Algorithm 5. 

1. Calculate the length R of the codes of the subgraphs H1,…,HT: R = intlog2T. 

2. Form the set K of binary codes of length R. 

3. The subgraph containing the initial state a1 is encoded by the zero code from 

K. 

4. If all the subgraphs H1,…,HT are encoded, then go to Step 5; otherwise, find 

among the not yet encoded subgraphs H1,…,HT a subgraph Ht for which 

∑|C(ai)|=max for all ai  Ht. 

To encode the subgraph Ht, the code with the minimum number of unities is 

chosen in the set K. Go to Step 4. 

5. Stop. 

Example. Let us apply the proposed method for designing the FSM described by 

the state diagram shown in Fig. 4. The vertices correspond to the internal states 

a1,…,a5 of this FSM, and the arcs correspond to the FSM transitions. Beside each arc, 

the value of the input vector that initiates the transition and, separated by a slash, the 

value of the output vector that formed on this transition are indicated. In this example, 

the FSM has five states, three input variables, and two output variables. 

 

a a

a

aa

00-/10

--0/00 10-/00

01-/01

--
1/
01

00
-/0
1

10-/10

11-/00

1 3

2

45
 

Fig. 4. The state diagram of the initial FSM 

In this example, conditions (2) are violated for the state a2 because U(a2) = {01-,--

1}, i.e. |U(a2)| = 2, therefore, a2 is split into two states a2_1 and a2_2. The state diagram 

of the FSM obtained upon splitting the state a2 is shown in Fig. 5. 

 



a a

a

a

aa

00-/10

--0/00 10-/00

11-/00

01-/01

--1
/01

00
-/0
1

00
-/
01

10-/10

10-/10

1 3

5 4

2_1

2_2

 

Fig. 5. The state diagram of the FSM after splitting the state a2 

The encoding of the internal states begins with constructing the matrix W (Table 

1). Figure 5 shows the orthogonality graph H of the rows of W. The graph H is de-

composed into two complete subgraphs H1 and H2. As the number of subgraphs T is 

equal 2, then one variable e1 has enough for coding of two subgraphs. According to 

Step 4 of algorithm 5, the subgraph H1 is encoded by binary code "1", and the sub-

graph H2 is encoded by the code “0”. The matrix W with an additional column e1 for 

orthogonalization of rows is resulted in Table 2. 

Table 1. The matrix W for state assignment of a class AE FSM 

 g1 g2 g3 

a1 - - 0 

a2_1 0 1 - 

a2_2 - - 1 

a3 0 0 - 

a4 1 0 - 

a5 1 1 - 

 

a

a

a

a

a

a

1

3

5

4

2_1

2_2

H1 H2

 

Fig. 6. The graph H for orthogonality of rows of the matrix W 



Table 2. The matrix W after orthogonalization of rows 

 g1 g2 g3 e1 

a1 - - 0 1 

a2_1 0 1 - 0 

a2_2 - - 1 1 

a3 0 0 - 0 

a4 1 0 - 0 

a5 1 1 - 0 

The logical equations implemented by combinative circuit CL (fig. 3) for our ex-

ample have the following view: 

 

.

;

;

312121132112121132

21132112121131

1211

xeggxxegxxeggxxegy

xxegxxeggxxegy

eggd







 

As it is possible to see from the resulted equations, the transition functions for the 

class AE FSM are very simple. The implementation cost of the given system of Bool-

ean functions (it is traditionally defined as the number of inputs of the necessary for 

implementation gates) is equal 40, while at traditional implementation of the class A 

FSM, the implementation cost is equal 74. Thus, for the considered example usage of 

structural model of the class AE FSM, in comparison with the traditional approach, 

allowed to reduce the implementation cost by a factor of 1.85 or by 54 %.  

The efficiency of the proposed method for designing the class AE FSMs was tested 

by implementing the FSM described in the example above in the FPGAs manufac-

tured by Altera using the CAD tools Quartus Prime version 16.0. It is the synthesis 

parameters by default of CAD Quartus were used. The initial FSM of class A and the 

synthesized FSM of class AE have been described in language Verilog. 

Table 3. Results of experimental researches at implementation on FPGA of the FSMs from the 

considered example 

 

FPGA LEA FmaxA LEAE FmaxAE LEA/LEAE FmaxAE/FmaxA 

MAX II 12 517.06 10 417.19 1.20 0.807 

MAX V 12 261.57 10 260.15 1.20 0.996 

MAX 10 13 592.42 11 581.40 1.18 0.981 

Arria II 8 1025.64 4 1022.49 2.00 0.997 

Cyclone IV E 12 738.01 10 801.92 1.20 1.085 

Cyclone IV GX 12 726.74 10 727.27 1.20 1.001 

Cyclone V 6 640.20 4 640.20 1.50 1.000 

mid     1.35 0.981 

 

Tables 3 show the results of experiments for various FPGA families manufactured 

by the companies Altera, where LEA and LEAE are the numbers of the logical elements 



(functional generators LUT — look-up table) used in the implementation of the class 

A FSM and the class AE FSM, FmaxA and FmaxAE are the maximum operation frequen-

cies (in MHz) of these FSMs, LEA/LEAE and FmaxAE/FmaxA are the ratio of the corre-

sponding parameters, and mid is the mean value of the parameter. The data in Tables 

3 show that the proposed method for designing the  class AE FSM reduced the im-

plementation area of the FSM from the example on the Altera FPGAs by a factor of 

1.35 on average and by a factor of 3.00 for the Arria II family. Thus the maximum 

operation frequency of the class AE FSM concedes to the maximum operation fre-

quency of the class A FSM a little. 

6 Experimental study 

The synthesis method of the class AE FSM was researched at implementation on 

FPGA for the FSM benchmarks MCNC [6]. For this purpose to each benchmark of 

the FSM the considered synthesis method was applied. Both finite state machines, the 

initial class A FSM and synthesized the class AE FSM, were described in language 

Verilog. Then standard implementation on FPGA of FSMs by means of CAD Quartus 

II version 13.1 was fulfilled. It is the synthesis parameters by default of CAD Quartus 

were used. As criteria of optimization the implementation cost (C), defined by the 

number of used logical elements LUT, and the maximum operation frequency (F) was 

considered. 

In Table 4 and 5, the parameter relations are presented for eleven FSM benchmarks 

for which usage of the synthesis method of the class AE FSM is the most effective. 

Here relation CA/CAE shows in how many time the synthesis method of the class AE 

FSM, in comparison with the class A FSM, improves the implementation cost; FAE/FA 

– the frequency.  

The analysis of Table 4 and 5 shows that the synthesis method of the class AE 

FSM allows to reduce a implementation cost by a factor of 3.00 for the benchmark 

shiftreg for all FPGA families, a time delay by a factor of 1.60 for the benchmark lion 

for family Cyclone, and an operation frequency by a factor of 2.93 for the benchmark 

train4 for family Stratix. 

An average improving is of a cost by a factor from 1.19 (Cyclone, Stratix) to 1.39 

(Arria, Stratix II, (III), of a time delay – from 0.97 (Cyclone II) to 1.05 (Cyclone), of a 

frequency – from 1.92 (Cyclone II) to 1.10 (Stratix). 



Table 4. Results of experimental researches of the synthesis method of the class AE FSM for 

families Arria GX and Cyclone 

FSM Arria GX Cyclone Cyclone II Cyclone III 

CA/ 

CAE 

FAE/ 

FA 

CA/ 

CAE 

FAE/ 

F

A 

CA/ 

CAE 

FAE/ 

FA 

CA/ 

CAE 

FAE/ 

FA 

dk15 0.86 1.55 0.71 1.45 0.71 1.18 0.71 1.06 

dk16 1.31 0.85 0.63 0.80 0.55 0.74 0.55 0.69 

dk17 1.67 1.06 0.96 0.70 0.96 0.91 0.96 1.12 

dk27 1.33 1.05 1.25 0.97 1.25 0.99 1.25 1.04 

dk512 1.42 0.82 0.68 0.91 0.78 0.82 0.78 0.77 

ex5 0.79 0.61 0.64 0.67 0.64 0.68 0.64 0.69 

lion 1.00 0.65 0.71 0.54 0.77 0.63 0.77 0.64 

lion9 1.43 0.81 1.82 1.16 1.82 1.08 1.82 0.91 

shiftreg 3.00 0.62 3.00 0.55 3.00 0.75 3.00 0.64 

train4 0.75 1.77 1.00 1.60 1.00 1.45 1.00 1.56 

train11 1.71 1.49 1.71 1.56 1.92 0.94 1.92 0.84 

mid 1.39 1.03 1.19 0.99 1.22 0.92 1.22 0.91 

max 3.00 1.77 3.00 1.60 3.00 1.45 3.00 1.56 

 

Table 5. Results of experimental researches of the synthesis method of the class AE FSM for 

families MAX II and Stratix 

FSM MAX II Stratix Stratix II Stratix III 

CA/ 

CAE 

FAE/ 

FA 

CA/ 

CAE 

FAE/ 

FA 

CA/ 

CAE 

FAE/ 

FA 

CA/ 

CAE 

FAE/ 

FA 

dk15 0.70 1.18 0.71 1.07 0.86 1.02 0.86 0.66 

dk16 0.63 0.83 0.63 0.73 1.31 0.77 1.31 0.82 

dk17 1.39 0.98 0.96 0.75 1.67 1.21 1.67 1.02 

dk27 1.25 1.20 1.25 0.95 1.33 0.89 1.33 1.00 

dk512 0.70 0.89 0.68 0.98 1.42 1.03 1.42 0.78 

ex5 0.62 0.77 0.64 0.63 0.79 0.48 0.79 0.68 

lion 0.71 0.77 0.71 0.84 1.00 0.66 1.00 0.54 

lion9 1.82 0.82 1.82 0.75 1.43 0.95 1.43 0.87 

shiftreg 3.00 1.14 3.00 0.31 3.00 0.66 3.00 0.71 

train4 1.00 0.95 1.00 2.93 0.75 1.77 0.75 1.91 

train11 1.77 0.97 1.71 2.15 1.71 1.74 1.71 1.65 

mid 1.24 0.95 1.19 1.10 1.39 1.02 1.39 0.97 

max 3.00 1.20 3.00 2.93 3.00 1.77 3.00 1.91 

 



Conclusions 

The considered method of synthesis of the class AE FSM showed the high effi-

ciency at minimization of implementation cost of FSMs for various FPGA families, 

by a factor of 1.19–1.39 on average and by a factor of 3.00 for certain families. Be-

sides, in certain cases the method allows to increase the FSM performance (by a fac-

tor of 2.93 for benchmark train4 for family Sratix). An application of the given meth-

od is the most effective for FSMs with the many of input variables, especially when 

the transitions in the various states are initiated by different transition conditions. 

The proposed method for the minimization of FSMs based on the use of the struc-

tural model of the class AE FSM is universal because it is applicable to Mealy FSMs 

(i.e., to arbitrary FSMs), does not change the operational algorithm of the FSM, and is 

efficient for all FPGA families. Therefore, this method can be recommended for in-

clusion in industrial CAD tools in order to minimize the area of implementation. The 

given method can be used not only at implementation of FSMs on FPGA, but also on 

other an element basis, for example on ASIC (Application Specific Integrated Cir-

cuit). We see perspective a direction of the further researches when values of input 

and output variables of the FSM are shared for states assignment.  

Acknowledgements. The present study was supported by a grant S/WI/1/2013 from 

Bialystok University of Technology and founded from the resources for research by 

Ministry of Science and Higher Education. 

References 

1. McCluskey E. J.: Reduction of Feedback Loops in Sequential Circuits and 

Carry Leads in Iterative Networks. Information and Control. 2,  99–118 

(1963) 

2. Pomeranz I., Cheng K.T.: STOIC: State Assignment Based on Output/Input 

Functions. IEEE Trans. on CAD. 8, P. 613–622 (1993) 

3. Forrest J.: ODE : Output Direct State Machine Encoding. In: European De-

sign Automation Conference (EURO-DAC’95). pp. 600-605 Brighton. UK 

(1995) 

4. Solovjev V.: Synthesis of Sequential Circuits on Programmable Logic De-

vices Based on New Models of Finite State Machines. In: Euromicro Sym-

posium on Digital Systems Design (DSD’2001). pp. 170-173. Warsaw. Po-

land (2001) 

5. Solov’ev V. V.: Minimization of Mealy Finite-State Machines by Using the 

Values of the Output Variables for State Assignment. Journal of Computer 

and Systems Sciences International. 1, 96–104 (2017) 

6. Yang S.: Logic synthesis and optimization benchmarks user guide. Version 

3.0. Microelectronics Center of North Carolina (MCNC). North Carolina. 

USA (1991) 

 


