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Abstract. We study a discrete version of a geometric stable marriage problem
originally proposed in a continuous setting by Hoffman, Holroyd, and Peres, in
which points in the plane are stably matched to cluster centers, as prioritized by
their distances, so that each cluster center is apportioned a set of points of equal
area. We show that, for a discretization of the problem to an n× n grid of pixels
with k centers, the problem can be solved in time O(n2 log5 n), and we exper-
iment with two slower but more practical algorithms and a hybrid method that
switches from one of these algorithms to the other to gain greater efficiency than
either algorithm alone. We also show how to combine geometric stable match-
ings with a k-means clustering algorithm, so as to provide a geometric political-
districting algorithm that views distance in economic terms, and we experiment
with weighted versions of stable k-means in order to improve the connectivity of
the resulting clusters.

1 Introduction

A long line of research considers algorithms on objects embedded in n × n grids, in-
cluding problems in computational geometry (e.g., see [1,2,8,17,19,26,28,29]), graph
drawing (e.g., see [5,10,14,30]), geographic information systems (e.g., see [13]), and
geometric image processing (e.g., see [9,11,15,20]). Continuing this line, we consider
in this paper the problem of matching grid points (which we view as pixels) to k center
points in the grid. Pixels have a preference for centers closer to them, and centers prefer
closer pixels as well. The goal is to match every center to an equal number of pixels and
for the matching to be stable, meaning that no two elements prefer each other to their
specified matches. For example, the centers could be facilities, such as polling places,
fire stations, or post offices, that have assigned jurisdictions and equal operational ca-
pacities (in terms of how many pixels they can serve). Rather than optimizing some
computationally challenging global quality criterion based on distance or area, we seek
an assignment of pixels to centers that is locally stable. Figure 1 illustrates a solution to
this stable grid matching problem for a 900 × 900 grid and 100 random centers. Note
that some centers are matched to disconnected regions.

Stable grid matching is a special case of the classic stable matching problem [18],
which was originally described in terms of arranging marriages between N hetero-
sexual men and women in a closed community. In this case, stability means that no
man-woman pair prefers each other to their assigned mates, which is necessary (and
more important than, e.g., total utility) to prevent extramarital affairs. The Gale-Shapley
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Fig. 1: An example solution to the stable grid matching problem for a 900 × 900 grid
and 100 centers distributed randomly. Pixels of the same color are assigned to the same
center.

algorithm [18] finds a stable matching for arbitrary preferences in O(N2) time. For sta-
ble grid matching in an n × n grid this would give a running time of O(n4), since
each “man” would correspond to a pixel and each “woman” would correspond to one
of dn2/ke copies of a center. As we show, the geometric structure of the stable grid
matching problem allows for significantly more efficient solutions.

We also study the effect of integrating a stable matching with a k-means cluster-
ing method, which alternates between assigning points to cluster centers and moving
cluster centers to better represent their assigned points. Using stable matching for the
assignment stage of this method allows us to fix the size of the clusters (for instance, to
be all equally sized), which might be advantageous in some applications.

Prior Related Work. As mentioned above, there is considerable prior research on algo-
rithms involving objects embedded in an n× n grid. The stable grid matching problem
that we study can be viewed as a grid-restricted version of the classic “post office”
problem of Knuth [27], where one wishes to identify each point in the plane with its
closest of k post offices, with the added restriction that the region assigned to each
post office must have the same area. The continuous version of the stable grid match-
ing problem, which deals with points in R2 instead of discrete pixels, was studied by
Hoffman et al. [21]. They showed that there is a unique solution, and there is a simple
numerical method to find it: Start growing a circle from each center at the same time,
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all growing at the same speed. When a yet-unmatched point is reached by a circle, it is
assigned to the corresponding center. When a center reaches its quota (its region cov-
ers 1/k of the area of the square), its circle halts. (Note that if the halting condition is
removed, we obtain the Voronoi diagram of the centers instead, as in the well-known
solution to Knuth’s post office problem, e.g., see [3].) Due to its continuous, numerical
nature, Hoffman et al. did not analyze the running time of their method; hence, there is
motivation to study the grid-based version of this problem.

With respect to the related problem of k-means clustering, we are interested in a
grid-based version of this problem as well, which has been studied extensively in non-
grid discrete contexts (e.g., see [24,22]). In the continuous version of this problem, one
is interested in partitioning a geometric region into subregions that all have the same
area (e.g., see [6]). One of the motivations for such partitions is in political districting,
for which there is additional related prior work (e.g., see [32]). The goal of political dis-
tricting is to partition a territory into regions (districts) which all have roughly the same
population size and are “compact”, which informally means that their shape should be
connected and resemble a circle rather than an octopus [32]. Ricca et al. [31] adapted
the concept of Voronoi regions to the discrete setting in order to use them for politi-
cal districting. Voronoi regions ensured good compactness but poor population balance,
however. Thus, there is motivation for a clustering algorithm based on the use of sta-
ble matchings, since such partitions enforce the property that all regions have the same
size (at the possible cost of connectivity). Finding a scheme that guarantees both size
equality and compactness is an open problem of interest.

Problem Definition. In the stable grid matching problem, we are given a square n× n
grid and k points called centers within the grid. The lattice points are called pixels
or sites. Sites implicitly rank the centers in increasing order of distance, and centers
similarly implicitly rank pixels in increasing order by distance. A matching is a mapping
from sites to centers. The goal is to find a matching with the following two properties
(see Figure 2, left column):

1. The region of each center (the set of sites assigned to it) must have the same size
up to roundoff errors. The quota of a center is the number of sites that must be in
its region. If n2 is a multiple of k, then all the quotas are n2/k. Otherwise, some
centers are allowed one extra site.

2. The matching must be stable. A matching is not stable when a pair of sites (p1, p2)
is assigned to centers c1 and c2 such that p1 prefers (i.e., according to some metric
is closer to) c2 over c1 and c2 prefers p1 over p2. This is unstable because p1 and
c2 prefer each other to their current matches.

Combining k-means with Stable Assignment. The k-means clustering method is to par-
tition a data set (which, in our case, is an n× n grid) into k regions, based on a simple
iterative refinement algorithm (which is called the k-means algorithm or Lloyd’s algo-
rithm, e.g., see [24]): We begin by choosing k points, called cluster centers, randomly
in the space. Then, we iteratively repeat the following two phases: 1) assignment step:
each object is assigned to its closest center, and 2) update step: each center is moved to
the centroid of the objects assigned to it.
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Fig. 2: Left: stable matching in a 300 × 300 grid with the same 50 random centers for
the Euclidean (top), Manhattan (center), and Chebyshev (bottom) metrics. Right: result
of the stable k-means algorithm with unweighted centroids for each metric.
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Lloyd’s algorithm converges to a (locally optimal) partition that minimizes the sum
of the squared distances from each object to its assigned center [24]. In this paper, we
propose a variation, which we call stable k-means, where the assignment step is re-
placed by a stable matching between objects and centers, so as to achieve the additional
property that the regions all have equal area (to within roundoff errors). Intuitively, the
goal is to implement Lloyd’s algorithm with stable grid matching so as to improve the
compactness of the regions while preserving equal-sized clusters.

We have found through experimentation that, although the stable k-means method
succeeds in improving compactness, centers can sometimes stop moving while we are
executing Lloyd’s algorithm before their regions became completely connected (e.g.,
see Figure 2). Thus, we introduce in this paper an additional heuristic, where we use
weighted centroids, which are more sensitive to the outlying parts of their region. The
usual centroid of a set of points S is defined as (

∑
q∈S q)/|S|, where the points are

regarded as two-dimensional vectors so that the sum makes sense. Instead, we can com-
pute a weighted centroid as (

∑
q∈S wqq)/(

∑
q∈S wq). A natural choice to use for the

weight wq of a point q assigned to the region of the center c is the distance from q
to c raised to some exponent p that we can choose, d(q, c)p. The larger p is, the more
sensitive the weighted centroids are to outliers. When p = 0, we get the usual centroid.
When p→ +∞, we get the circumcenter of the region, and when p→ −∞ we get the
current center.

Contributions. In this paper, we provide the following results:

– The stable grid matching problem, for a grid of n× n pixels with k centers, can be
solved by a randomized algorithm with expected running time O(n2 log5 n). Since
an n×n grid has Θ(n2) pixels, this quasilinear bound improves the O(n4) time of
the Gale-Shapley algorithm. However, this algorithm uses intricate data structures
that make it challenging to implement in practice.

– Given the pragmatic challenges of the above-mentioned quasilinear-time algorithm,
we provide two alternative algorithms, a “circle-growing algorithm” and a “distance-
sorting” method, both of which are simple to implement and have running times of
O(n2k).

– We provide an experimental analysis of these two practical algorithms, where we
observe that the circle-growing algorithm is more efficient at finding low-distance
matched pairs, while the distance-sorting based method is more efficient when pairs
are farther apart. Therefore, we show that it is advantageous to switch from one
algorithm to the other partway through the matching process, potentially achieving
running times with a sublinear dependence on k. We experiment with the optimal
cutoff for switching between these two algorithms.

– We also provide the results of experiments to test the connectivity of the clusters
obtained by our stable k-means algorithm, with weighted variants for finding cen-
troids. Our experiments support the conclusion that no choice of a weight exponent
p will always result in total connectivity. Nevertheless, our experiments provide
evidence that the best results come from the range −0.8 ≤ p ≤ 0.4. Empirically,
more highly negative values of p tend to make the algorithm converge slowly or fail
to converge, while more highly positive values of p lead to oscillations in the center
placement. See Appendix A for additional figures of these cases.
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2 Algorithms

Our stable grid matching algorithms start with an empty matching and add center–site
pairs to it. Given a partial matching, we say a site is available if it has not been matched
yet, and a center is available if the size of its region is smaller than its quota. A center–
site pair is available if both the center and site are available, and it is a closest available
pair if it is available and the distance from the center to the site is minimum among all
available pairs. It is simple to prove that if an algorithm starts with an empty matching
and only adds closest available pairs to it until it is complete, the resulting matching is
stable.

2.1 Circle-Growing Algorithm

In this section we describe our main practical algorithm, the circle-growing algorithm,
which mimics the continuous construction from [21]. First, we obtain the list of all the
lattice points with coordinates ranging from −n to n sorted by distance to the origin.
The resulting list P emulates a circle growing from the origin. When initializing P ,
we can gain a factor of eight savings in space by sorting and storing only the points in
the triangle 4(0, 0)(0, n)(n, n). The remaining points can be obtained by symmetry:
if p = (x, y) is a point in the triangle, the eight points with coordinates of the form
(±x,±y) and (±y,±x) are at the same distance from the origin as p. Moreover, in
applications where we find multiple stable grid matchings, such as in the stable k-
means method, we need only initialize P once. The way we use P depends on the type
of centers we consider.

Integer Centers (Algorithm 1). In this case we can use the fact that if we relocate the
points in P relative to a center, then they are in the order in which a circle growing
from that center would reach them. To respect that all the circles grow at the same rate,
we iterate through the points in P in order. For each point p, we relocate it relative to
each center c to form the site p + c (the order of the centers does not matter). We add
to the matching any available center–site pair (c, p+ c). We iterate through P until the
matching is complete.

We require O(n2) space and O(n2 log n) time to sort the points in P . For the Eu-
clidean metric instead of using distances to sort P we can use squared distances, which
take integer values between 0 and 2n2. Then, we can use an integer sorting algorithm
such as counting sort to sort in O(n2) time [12, Chapter 8.2]. Since each point in P
results in up to O(k) center–site pairs, we need O(n2k) time to iterate through P .

Real Centers (Algorithm 2). If centers have real coordinates, we cannot translate the
points in P relative to the centers, because p + c is not necessarily a lattice point. The
workaround is to associate each center c to its closest lattice point pc. Let δ be the
maximum distance d(c, pc) among all centers. Then, the center–site pairs “generated”
by each point p in P have the form (c, p + pc) and their distances can vary between
d(p,O) − δ and d(p,O) + δ (where O denotes the origin, (0, 0)). Consequently, the
distances of pairs generated by points pi, pj in P with i < j may intertwine, but only if
d(pj , O)−δ ≤ d(pi, O)+δ. The points in P after pi whose pairs might intertwine with
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Algorithm 1 Circle growing algorithm for k integer centers on an n× n grid.
Set all sites as unmatched.
Set the quota of the first n2 mod k centers to dn2/ke.
Set the quota of the remaining centers to bn2/kc.
Let P = list of points (x, y) such that − n < x, y < n.
Sort P by nondecreasing distance to (0, 0).
for all p ∈ P do until the matching is complete

for all centers c with quota > 0 do
s← p+ c
if 0 ≤ sx, sy < n and s is still available then

Match s and c.
Reduce the quota of c by 1.

those of pi form an annulus centered at O with small radius d(pi, O) and big radius
d(pi, O) + 2δ (see Figure 3).

Since δ is a constant (for the Euclidean metric, δ ≤
√
2/4), it can be derived from

the Gauss circle problem that such an annulus contains O(d(pi, O)) = O(n) points.
The algorithm processes the points in P in chunks of n at a time, adding available

center–site pairs generated by points in the chunk (or points after it, as we will see) to
the matching in order by distance. The invariant is that after a chunk is processed, its
points do not generate any more available pairs, and we can move on to the next one
until the matching is complete. To do this, for each chunk we construct the list L of all
the pairs generated by its points. Let d be the maximum distance among these pairs.
If pi is the last point in the chunk, the points in P from pi+1 up to the last point at
distance to the origin at most d(pi, O) + 2δ can generate pairs with distance less than

(0, 0)

pi

2m

Fig. 3: The set of lattice points appearing after pi in P whose pairs might intertwine
with those of pi form an annulus centered at O with small radius d(pi, O) and big
radius d(pi, O) + 2δ. In the figure, they are marked with an ×.
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d. We add any such pair to L. We have to check O(n) additional points, so L still has
size O(kn). We sort all these pairs and consider them in order, adding any available
pair to the matching. Since each chunk has size n, there will be O(n) chunks. Each one
requires sorting a list of O(kn) pairs, which requires O(kn log n) time (since k ≤ n2)
and O(kn) space. In total, we need O(n2k log n) time and O(n2 + nk) space.

Algorithm 2 Circle growing algorithm for k real centers on an n× n grid.
Set all sites as unmatched.
Set the quota of the first n2 mod k centers to dn2/ke.
Set the quota of the remaining centers to bn2/kc.
Let P = list of points (x, y) such that − n < x, y < n.
Sort P by nondecreasing distance to (0, 0).
For each center c, let pc = (round(cx), round(cy)).
Let δ = max{dist(c, pc)} among all centers.
j ← 1
while the matching is not complete do

L← empty list
i← min(j + n, |P |)
for all p ∈ Pj , . . . , Pi do . Add to L pairs generated by points in the next chunk

for all centers c with quota > 0 do
s← p+ pc
if 0 ≤ sx, sy < n and s is still available then

Add (c, s) to L.
Let d = max{dist(c, s)} among all pairs (c, s) ∈ L.
for all p ∈ Pi+1, . . . , P|P | do . Add to L pairs closer than pairs already in L

if dist(p,O) > dist(Pi, O) + 2δ then
break

for all centers c with quota > 0 do
s← p+ pc
if 0 ≤ sx, sy < n and s is still available and dist(c, s) ≤ d then

Add (c, s) to L.
Sort L by nondecreasing center–site distance.
for all (c, s) ∈ L do

if c and s are available then
Match s and c.
Reduce the quota of c by 1.

j ← i+ 1

2.2 Distance-Sorting Methods

Unless the centers are clustered together, the circle-growing algorithm finds many avail-
able pairs in the early iterations. However, it reaches a point in which most circles over-
lap. Even if the centers are randomly distributed, in the typical case a large fraction of
centers have “far outliers”, sites which belong to their region but are arbitrarily far be-
cause all the area in between is claimed by other centers. Consequently, many centers
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have to scan a large fraction of the square. At some point, thus, it is convenient to switch
to a different algorithm that can find the closest available pairs quickly. In this section,
let m and k ≤ m denote, respectively, the number of available sites and centers after a
matching has been partially completed.

Pair Sort (Algorithm 3). This algorithm simply sorts all the center–site pairs by dis-
tance and considers them in order, adding any available pair to the matching until it is
complete. This algorithm is convenient when we can use integer sorting techniques, as
in the case of the Euclidean metric and integer centers. Then, it requires O(mk) time
and space.

While the pair sort algorithm has a big memory requirement to be used starting
with an empty matching, used after the circle-growing algorithm has matched a large
fraction of sites results in improved performance.

Algorithm 3 Pair Sort algorithm for k centers and m sites.
L← empty list
for all centers c do

for all sites s do
Add (c, s) to L.

Sort L by nondecreasing center–site distance.
for all (c, s) ∈ L do

if c and s are available then
Match s and c.
Reduce the quota of c by 1.

Pair Heap (Algorithm 4). When centers have real coordinates, sorting all the pairs takes
O(mk logm) time, but we can do better. We find for each site s its closest center cs,
and build a min-heap with all the center–site pairs of the form (cs, s) using d(cs, s) as
key. Clearly, the top of the heap is a closest available pair. We can iteratively extract and
match the top of the heap until one of the centers becomes unavailable. When a center c
becomes unavailable, all the pairs in the heap containing c become unavailable. At this
point, there are two possibilities:

Eager update We find the new closest available center of all the sites that had c as
closest center and rebuild the heap from scratch so that it again contains one pair
for each available site and its closest available center.

Lazy update We proceed as usual until we actually extract a pair (cs, s) with an un-
available center. Then, we find the new closest available center only for s, and
reinsert the new pair in the heap.

In both cases, we repeat the process until the matching is complete.
We have not addressed yet how to find the closest center to a site. For this, we can

use a nearest neighbor (NN) data structure that supports deletions. Such a data structure
maintains a set of points and is able to answer nearest neighbor queries, which provide a
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query point q and ask for the point in the set closest to q. For the pair heap algorithm, we
initialize the NN data structure with the set of centers and delete them as they become
unavailable.

Since we need deletions we can use a dynamic NN data structure, i.e., with support
for insertions as well as deletions. The simplest NN algorithm is a linear search, and a
dynamic data structure based on it has O(k) time per query and O(1) time per update.
The best known complexity of a dynamic NN data structure is O(log5 k) amortized
time per operation [7,25].

Algorithm 4 Pair Heap algorithm with lazy updates for k centers and m sites.
Let C = nearest neighbor data structure with all the centers.
Let H = empty min-heap of center–site pairs using distance as key.
for all sites s do

Add (C.nearest(s), s) to H .
while H is not empty do

(c, s)← H.removeMin()
if c has quota > 0 then

Match s and c.
Reduce the quota of c by 1.

else
Remove c from C.
Add (C.nearest(s), s) to H .

Given that we know all the query points for our NN data structure ahead of time (the
sites), we can build for each site s an array As with all the centers sorted by distance to
s. Then, the closest center to a site s is As[is], where is is the index of the first available
center in As. When a center is deleted we simply mark it. When we get a query for
the closest center to a site s, we search As until we find an unmarked center. We can
start the search from the index of the center returned in the last query for s. This data
structure requires O(mk) space and has a O(mk log k) initialization cost to sort all the
arrays. The interesting property is that if we do O(k) queries for a given site s, we
require O(k) time for all of them, as in total we traverse As only once. We call this
data structure presort, although it is not strictly a NN data structure because it knows
the query points ahead of time.

In the pair heap algorithm, we can combine eager and lazy updates with any NN
data structure. In any case, the running time is influenced by α, the sum among all
centers c of the number of sites that had c as closest center when c became unavailable.
In the worst case α = O(km), but assuming that each center is equally likely to be the
closest center to each site, the expected value of α is O(m). In Appendix B we test the
value of α empirically.

With eager updates in total we have to initialize the NN data structure, perform m
extract-min operations, O(m+ α) NN queries, k NN deletions, and rebuild the heap k
times. Thus, the running time isO(P (k,m)+m logm+(m+α)Q(k)+kD(k)+km),
where P (k,m) is the cost of initializing the NN data structure of choice with k points
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(and m query points, in the case of the presort data structure), and Q(k) and D(k) are
the costs of queries and deletions, respectively. With lazy updates, instead of rebuilding
the heap we have O(α) extra insert and extract-min heap operations, which requires
O(α logm) time.

For real centers, the best worst-case bound is with eager deletions and the presort
NN data structure. In that case, we have that the NN queries take O(km) for any α, so
the total running time is O(mk log k +m logm). If we assume that α = O(m), then
the best time is with lazy deletions and the NN data structure from [7,25]. The running
time with this heuristic assumption is O(m log5 k +m logm).

2.3 Bichromatic Closest Pairs and Nearest Neighbor Chains

We now describe a less-practical solution based on bichromatic closest pairs which
achieves the best theoretical running time that we have been able to prove. A bichro-
matic closest pair (BCP) data structure maintains a set of points, each colored red or
blue, and is able to answer queries asking for the closest pair of different color.

The stable grid matching problem can be solved with a BCP data structure that
supports deletions, either on its own or after the circle-growing algorithm. We first
initialize the data structure with the available sites and centers as blue and red points,
respectively. Then, we repeatedly find and match the closest pair, remove the site, and
remove the center if it becomes unavailable. The running time is O(P (m)+mQ(m)+
mD(m)), where P (m), Q(m), and D(m) are the initialization, query, and deletion
costs, respectively, for the BCP data structure of choice containing m blue points and
k ≤ m red points.

Eppstein [16] proposed a fully dynamic BCP data structure that uses an auxiliary
dynamic NN data structure. Using it, the sequence of operations required to solve the
stable grid matching problem takes O(mT (m) log2m) time, where T (m) is the cost
per operation of the NN data structure. In particular, combining this with the dynamic
nearest neighbor data structure of Chan [7] and Kaplan et al. [25] gives a total time
bound of O(n2 log7 n) for this problem.

To improve this, we observe that (with a suitable tie-breaking rule to ensure that no
two distances are equal) it is not necessary to find the bichromatic closest pair in each
step: it suffices, instead, to find a mutual nearest neighbor pair: a pixel and a center that
are closer to each other than to any other pixel or center. The reason is twofold. First, in
the algorithm that repeatedly finds and removes closest pairs, every pair (c, p) of mutual
nearest neighbors eventually becomes a closest pair, because until they do, nothing else
that the algorithm does can change the fact that they are mutual nearest neighbors. So
(c, p) will eventually become matched by the algorithm. Second, if we find a pair (c, p)
that will eventually become matched (such as a mutual nearest neighbor pair), it is safe
to match them early; doing so cannot affect the correctness of the rest of the algorithm.

To find these, we may adapt the nearest-neighbor chain algorithm from the theory
of hierarchical clustering [4,23] which uses a stack to repeatedly find pairs of mutual
nearest neighbors at a cost ofO(1) nearest neighbor queries per pair. In more detail, the
algorithm is as follows.

1. Initialize two dynamic nearest neighbor structures for the pixels and centers, and
an empty stack S.
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2. Repeat the following steps until all pixels have been matched:
(a) If S is empty, push an arbitrary point (either a pixel or a center) onto S.
(b) Let p be the point at the top of S, and use the nearest neighbor data structure to

find the nearest point q of the opposite color to p.
(c) If q is not already on S, push it onto S. Otherwise, q must be the second-from-

top point on S, and is a mutual nearest neighbor with p. Pop p and q, match
them to each other, and remove one or both of p or q from the nearest neighbor
data structure (always remove the pixel, and remove the center if it becomes
unavailable).

Note that in step 2. (c) q must be second-from-top because we have a cycle of (non-
mutual) nearest neighbors starting with p → q and then up the stack back to p. At
each step along this cycle, the distance decreases or stays equal. But it cannot decrease,
because there would be no way to increase back again, and nothing but q → p can be
equal to p → q, because we are using a tie-breaking rule. So the cycle has length two
and q is second-from-top.

Each step that pushes a new point onto S can be charged against a later pop op-
eration and its associated matched pixel, so the number of repetitions is O(n2). This
algorithm gives us the following theorem.

Theorem 1. The stable grid matching problem can be solved in O(n2) operations of a
dynamic nearest neighbor data structure. In particular, with the structure of Chan [7]
and Kaplan et al. [25], the time is O(n2 log5 n).

3 Experiments

Datasets. Table 1 summarizes the parameters used in the different experiments. We
use the following labels for the algorithms: CG the circle-growing algorithm alone,
and PS and PH for the combination of CG and the pair sort and pair heap algorithms,
respectively. Moreover, for the pair heap algorithm we consider the following varia-
tions: eager/presort (PHE,P ), eager/linear search (PHE,L), lazy/presort (PHL,P ), and
lazy/linear search (PHL,L).

We focus on the Euclidean metric, but Appendix C has all the same figures for
the Manhattan and Chebyshev metrics. The parameter n is the length of the side of the
square grid, and k is the number of centers. In all the experiments, the centers are chosen
uniformly and independently at random. Moreover, every data point is the average of
10 runs, each starting with different centers.

The cutoff is the parameter used to determine when to switch from the circle-
growing algorithm to a different one. We define it as a ratio between the number of
available pairs and the number of pairs already considered by the circle-growing algo-
rithm.

The algorithms were implemented in C++ (gcc version 4.8.2) and the interface in
Qt. The experiments were executed by a Intel(R) Core(TM) CPU i7-3537U 2.00GHz
with 4GB of RAM, on Windows 10.
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Algorithm Comparison. Figure 4 contains a comparison of all the algorithms. Pair heap
is generally better than pair sort, even for integer distances where it has a higher theo-
retical complexity. Among pair heap variations, lazy/linear is the best for both types of
centers. In general lazy updates perform better, but eager/presort is also a strong com-
bination because they synergize: eager updates require more NN queries in exchange
for less extract-min heap operations, and the presort data structure has fast NN queries.
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Fig. 4: Execution time of the various algorithms for integer (left) and real (right) centers.
For all the methods but CG, the cutoff is 0.15. Each data point is the average of 10 runs
with 10n randomly distributed centers and the L2 metric.

Optimal Cutoff. When combining the circle-growing algorithm with another algorithm,
the efficiency of the combination depends on the cutoff used to switch between both. If
we switch too soon, we don’t exploit the good behavior of the circle-growing algorithm
when circles are still mostly disjoint. If we switch too late, the circle-growing algorithm
slows down as it grows the circles in every direction just to reach some outlying region.

Figure 5 illustrates the role of the cutoff. It shows that most of the execution time
of the circle-growing algorithm is spent with the very few last available pairs, so even
a really small cutoff prompts a substantial improvement. After that, the additional time
spent in the pair heap algorithm slightly beats the savings in the circle-growing algo-
rithm, resulting in a steady increase of the total running time. In addition, Figure 6

Table 1: Summary of parameters used in the experiments section.
Experiment Algorithms Metric n k Cutoff
Exec. time (Fig. 4) All L2 varies 10n 0.15
Cutoff (Fig. 5) CG,PHL,L L2 1000 varies varies
Cutoff (Fig. 6) CG,PHL,L L2 1000 10000 varies
Value of α (Appendix B) PH with lazy deletions L2 1000 varies —
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Fig. 5: Execution time of the circle-growing algorithm for integer (left) and real (right)
centers, combined with the pair heap algorithm with lazy updates and a linear search
NN data structure. The dotted lines denote the running time of the circle-growing algo-
rithm alone, i.e., with cutoff 0. Each data point is the average of 10 runs with randomly
distributed centers, n = 1000, and the L2 metric.

shows in more detail how this execution time is divided among the circle-growing al-
gorithm and the pair heap algorithm.

4 Discussion

We have defined the stable grid matching problem, developed efficient theoretical algo-
rithms and practical implementations of slower but simpler algorithms for this problem,
and used our implementation to test different strategies for center placement in k-means
like stable clustering algorithms. However, this work leaves several open questions:

– For which n and k does the stable grid matching problem have a placement of
centers for which all clusters are connected, and how can such centers be found?

– Can the worst-case running time of our theoretical O(n2 log5 n)-time algorithm be
improved? Is it possible to achieve similar runtimes without going through fully-
dynamic bichromatic closest pair data structures?

– Can we obtain practical algorithms whose runtime has lower worst-case depen-
dence on k than our O(n2k)-time circle-growing and distance-sorting methods?

– Our bichromatic closest pair and distance-sorting algorithms can be made to work
for arbitrary point sets (not just pixels) but the circle-growing method assumes that
the points form a grid, and its time analysis depends on the fact that the grid is a fat
polygon (so that the area of each circle is proportional to the number of grid points
that it covers) and that testing whether a point belongs to the grid is trivial. Can this
method be extended to pixelated versions of more complicated polygons?

– How efficiently can we perform similar distance-based stable matching problems
for graph shortest path distances instead of geometric distances? Can additional
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Fig. 6: Execution time of the circle-growing algorithm for integer (left) and real (right)
centers, combined with the pair heap algorithm with lazy updates and a linear search
NN data structure. In addition to the total execution time, we show the execution time
spent in each algorithm. Each data point is the average of 10 runs with n = 1000,
k = 10000 randomly distributed centers, and the L2 metric.

structure (such as the structures found in real-world road networks) help speed up
this computation?
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A Stable k-means method with weighted centroids
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Fig. 7: Average distance among sites and their matched center after 100 iterations of
stable k-means for different exponents p of the weighted centroid. We consider integer
centers, the Euclidean metric, and grid size n = 300. The blue dotted line denotes
the average distance with random centers, and the red dashed line denotes the average
distance in an ideal region (i.e., a disk). Each data point is the average of 10 runs starting
with randomly distributed centers.

Figure 7 shows how the exponent of the weighted centroid affect the result of the
stable k-means method. As evaluation measure, we use the average distance among
sites and their matched center. The best results are with −0.8 < p < 0.4 (for different
metrics and grid sizes, we obtain similar results). Figure 8 shows the result of the stable
k-means method for the stable grid matching problem for values of p (the exponent
in the formula for the weighted centroids) between −2 and 0.5. Figure 9 shows the
transient behavior of stable k-means with p ≥ 1.

On a related note, if we set p = −1 and repeatedly move a center to its weighted
centroid (keeping its region unchanged), we get Weiszfeld’s algorithm, a known itera-
tive method for finding the geometric median (the point minimizing the sum of distances
to its region) [33]. In our case, we are not doing the same thing, because we are also
recomputing the regions after each update of the centers, but it is still the case that for
p = −1 the algorithm converges to a state where each center is the geometric median
of its region.

B Value of α.

The running time of the pair heap algorithm depends on α, the sum among all centers c
of the number of sites that had c as closest center when c became unavailable. There is
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Fig. 8: Top left: Same matching from Figure 2 with n = 300 and 50 random centers.
Other figures, from top to bottom and left to right: Result of the stable k-means method
with weighted centroids for p = −2,−1, 0.1, 0.2, and 0.5.
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Fig. 9: Top: Two consecutive iterations of the stable k-means method with weighted
centroids for p = 1, for the same matching from Figure 2 with n = 300 and 50 random
centers. Bottom: same for p = 10.
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a gap between the worst case α = O(km) and the expected case α = O(m) when sites
and centers are distributed randomly. Even with randomly located centers, the distribu-
tion of remaining sites and centers after the circle-growing algorithm is not random, so
here we are interested in the actual value of α in such cases. More precisely, we are in-
terested in β, the total number of extra extract-min operations (i.e., operations returning
an unavailable pair) when using the pair heap algorithm with lazy updates. Note that
β ≤ α, because with lazy updates when a center becomes unavailable some of the sites
that would have it as closest center still have a previously unavailable center instead.

First, we observe the value of β/m when using the pair heap algorithm on its own
in an n = 100 (m = 10000) grid, using randomly distributed integer centers and the L2

metric. The maximum values of β/m among 10 runs for each k were 0.64 for k = 10,
0.80 for k = 100, and 0.82 for k = 1000. We obtained similar values for the L1 and
L∞ metrics; in every case, β < m.

Second, we observed the values of β/m when using the pair heap algorithm after
the circle-growing algorithm, again using randomly distributed integer centers and the
L2 metric. We switched between algorithms when there were m = 10000 available
pairs. The maximum values of β/m among 10 runs for each k were 1.20 for k = 100
(with 4 remaining centers), 4.42 for k = 1000 (with 31 remaining centers), and 7.86
for k = 10000 (with 275 remaining centers). We also obtained similar values for the
L1 and L∞ metrics.

The reason for the worse-than-random behavior when matching the last remaining
sites is that outlying zones tend to cluster together, and then all the sites in those zones
are likely to have the same center as closest center. Overall, the experiments show that
α = O(m) is a reasonable assumption.

C Additional results for Manhattan and Chebyshev metrics.

We repeated the experiments from the experiments section for the Manhattan (L1) and
Chebyshev (L∞) metrics: Figure 10 extends Figure 4, Figure 11 extends Figure 5, and
Figure 12 extends Figure 6.

The figures in this section show that the metric used does not play a major role in
the optimal cutoff nor the execution time.
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Fig. 10: Execution time of the various algorithms. We consider integer (left) and real
(right) centers, and Euclidean (top), Manhattan (middle), and Chebyshev (bottom) met-
rics. For all the methods but CG, the cutoff is 0.15. Each data point is the average of 10
runs with 10n randomly distributed centers.
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Fig. 11: Execution time of the circle-growing algorithm for combined with the pair
heap algorithm with lazy updates and a linear search NN data structure. We consider
integer (left) and real (right) centers, and Euclidean (top), Manhattan (middle), and
Chebyshev (bottom) metrics. The dotted lines denote the running time of the circle-
growing algorithm alone, i.e., with cutoff 0. Each data point is the average of 10 runs
with randomly distributed centers, n = 1000, and the L2 metric.
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Fig. 12: Execution time of the circle-growing algorithm combined with the pair heap
algorithm with lazy updates and a linear search NN data structure. We consider integer
(left) and real (right) centers, and Euclidean (top), Manhattan (middle), and Chebyshev
(bottom) metrics. In addition to the total execution time, we show the execution time
spent in each algorithm. Each data point is the average of 10 runs with n = 1000 and
10000 randomly distributed centers.
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