Skip to main content

Construction of Persistent Voronoi Diagram on 3D Digital Plane

  • Conference paper
  • First Online:
  • 915 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10256))

Abstract

Different distance metrics produce Voronoi diagrams with different properties. It is a well-known that on the (real) 2D plane or even on any 3D plane, a Voronoi diagram (VD) based on the Euclidean distance metric produces convex Voronoi regions. In this paper, we first show that this metric produces a persistent VD on the 2D digital plane, as it comprises digitally convex Voronoi regions and hence correctly approximates the corresponding VD on the 2D real plane. Next, we show that on a 3D digital plane D, the Euclidean metric spanning over its voxel set does not guarantee a digital VD which is persistent with the real-space VD. As a solution, we introduce a novel concept of functional-plane-convexity, which is ensured by the Euclidean metric spanning over the pedal set of D. Necessary proofs and some visual result have been provided to adjudge the merit and usefulness of the proposed concept.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graph. Models Image Process. 59(5), 302–309 (1997)

    Article  Google Scholar 

  2. Aurenhammer, F.: Voronoi diagrams–a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  3. Aurenhammer, F., Klein, R., Lee, D.: Voronoi Diagrams and Delaunay Triangulations. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  4. Biswas, R., Bhowmick, P.: On different topological classes of spherical geodesic paths and circles in \({\mathbb{{Z}}}^3\). Theor. Comput. Sci. 605, 146–163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biswas, R., Bhowmick, P.: From prima quadraginta octant to lattice sphere through primitive integer operations. Theor. Comput. Sci. 624, 56–72 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theor. Comput. Sci. 283(1), 151–170 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theor. Comput. Sci. 319(1–3), 203–227 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brimkov, V.E., Barneva, R.P.: Plane digitization and related combinatorial problems. Discrete Appl. Math. 147(2–3), 169–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity–a review. Discrete Appl. Math. 155(4), 468–495 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, T.T., Edelsbrunner, H., Tan, T.S.: Triangulations from topologically correct digital Voronoi diagrams. Comput. Geom. 48(7), 507–519 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coeurjolly, D., Sivignon, I., Dupont, F., Feschet, F., Chassery, J.M.: On digital plane preimage structure. Discrete Appl. Math. 151(1–3), 78–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models Image Process. 57(6), 453–461 (1995)

    Article  Google Scholar 

  13. Kim, C.E., Rosenfeld, A.: Digital straight lines and convexity of digital regions. IEEE Trans. Pattern Anal. Mach. Intell. 4(2), 149–153 (1982)

    Article  MATH  Google Scholar 

  14. Klette, R., Stojmenović, I., Žunić, J.: A parametrization of digital planes by least square fits and generalizations. Graph. Models Image Process. 58, 295–300 (1996)

    Article  Google Scholar 

  15. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  16. Rong, G., Tan, T.S.: Jump flooding in GPU with applications to Voronoi diagram and distance transform. In: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, pp. 109–116 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranita Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Biswas, R., Bhowmick, P. (2017). Construction of Persistent Voronoi Diagram on 3D Digital Plane. In: Brimkov, V., Barneva, R. (eds) Combinatorial Image Analysis. IWCIA 2017. Lecture Notes in Computer Science(), vol 10256. Springer, Cham. https://doi.org/10.1007/978-3-319-59108-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59108-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59107-0

  • Online ISBN: 978-3-319-59108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics