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Abstract. We compare a set of convolutional neural network (CNN) ar-
chitectures for the task of segmenting and detecting human sperm cells
in an image taken from a semen sample. In contrast to previous work,
samples are not stained or washed to allow for full sperm quality analysis,
making analysis harder due to clutter. Our results indicate that training
on full images is superior to training on patches when class-skew is prop-
erly handled. Full image training including up-sampling during training
proves to be beneficial in deep CNNs for pixel wise accuracy and detec-
tion performance. Predicted sperm cells are found by using connected
components on the CNN predictions. We investigate optimization of a
threshold parameter on the size of detected components. Our best net-
work achieves 93.87% precision and 91.89% recall on our test dataset
after thresholding outperforming a classical image analysis approach.
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human sperm, fertility examination

1 Introduction

Sperm Quality Analysis (SQA) involves measuring concentration, morphology,
and motility [13] of sperm cells. For the application to animal sperm cells, there
exist a number of commercial Computer-Aided Sperm Analysis (CASA) systems,
such as the Hamilton-Thorne IVOS-II and CEROS-II 5 and the Sperm Class
Analyzer6.

Human semen samples have a significantly lower quality of sperm cells com-
pared to most animals [7], which increases the accuracy demand on the analysis.

5 http://www.hamiltonthorne.com/
6 http://www.micropticsl.com/products/sperm-class-analyzer-casa-system/
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Fig. 1: Examples of debris, variations, and morphological abnormalities: normal
sperm cell (a, b), aggregated cells out of focus (c), agglutinated cells (d), round
cells (e, f), headless sperm (g), sperm head seen from the side or morphologically
abnormal (h, i), circular tails (i), and other types of artifacts and debris (b, f, j).

Fig. 2: 1200× 300 pixel cut-out of image from the dataset

Moreover, human semen is often cluttered with debris and cells other than nor-
mal mature sperms. Fig. 1 shows examples of typical debris, variations and
morphological abnormalities of human sperm samples. Fig. 2 shows a section of
a typical image.

In practice, staining and smearing are often used for preparation of samples
to highlight specific properties of the cells [1,2,3,4,10], but the sample needs to be
in its natural form for motility estimation. This article focuses on the first step
of SQA, image segmentation and detection of non-stained human sperm cells
as analyzed by Ghasemian et al. (2015) [4] and Hidayahtullah et al. (2014) [6].
These algorithms apply classical image analysis techniques to solve the problem.
To our knowledge no deep learning techniques have been applied yet.

Our approach focuses on deep convolutional neural networks (CNN) to seg-
ment the sperm cells in the image. There are three main challenges in this ap-
proach: Firstly, every pooling layer in a CNN reduces resolution by at least 50%;
after three layers of pooling, every pixel of the result encodes the information of
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Fig. 3: Illustration of the 2-conv CNN

an 8×8 area of the original image. Secondly, CNNs are often trained on image
patches, however there is a huge class imbalance between background and sperm
pixels, where sperm pixels are significantly harder to detect. Lastly, we need to
cluster the segmentations to objects. Imperfect predictions of the networks of-
ten lead to spurious detections, which need to be removed. One way to do this
is to use thresholding on the size of clusters, leading to an arbitrary threshold
parameter. This parameter needs to be chosen carefully.

We investigate possible solutions to these challenges. While using max-pooling
layers is possible without reducing resolution [5], an exponential amount of time
in the number of pooling layers is required. This makes it infeasible in practice
as the results have to be computed quickly enough to allow video analysis. We
follow Long et al. (2015) [9] and investigate up-sampling on the output of the
CNN during training and testing. Ronneberger et al. (2015) [11] proposed a more
complex architecture, which we disregard since predictions would be too slow for
our application. Further, we compare training on image patches with training
on the full images, where class-labels are re-weighted to correct the class-skew.

For comparison we implemented the sperm head detection method proposed
by Ghasemian et al. (2015) [4]. This method has a similar threshold parameter as
our method which has to be adapted for a fair comparison. For this, we propose
a way to adapt the thresholding parameters using the product of precision and
recall on the final detections.

The paper is organized as follows: Section 2 describes the dataset and the
CNN architectures used. Experiments are described in Section 3. Results are
given in Section 4 and discussed in Section 5. Finally, we conclude in Section 6.

2 Method

Dataset. We have constructed a dataset of 765 grayscale images of 35 indepen-
dent sperm samples. The 35 samples were individually diluted using a solution of
Bicarbonate-Formalin (as devised by WHO [13]) to get an appropriate amount
of cells in each image (between 2 and 290 sperm cells) and to fixate them. Fixa-
tion facilitates sedimentation of the cells to the bottom of the counting chamber,
ensuring that all cells are roughly in the same focal plane. In order to have cells
both in and out of focus, reflecting the optical variation, Z-stacks of images
were acquired. The images were acquired using an image cytometer with 20×
optical magnification and a resolution of 1920×1440 pixels (0.2 µm/pixel). The



4

image intensities have been quantized from 14- to 8-bit images. In each image
the intensities where normalized to lie between zero and one.

The images were annotated by experts and registered into two classes: back-
ground and sperm cells. Round cells form an important part of the background
and were therefore also annotated. The tip of the head and the neck point was
registered for each sperm cell while the circumference was annotated for each
round cell. Pixel-segmentation ground truths are generated by creating an ellipse
at the center of each sperm cell head with radius r1 = 1

4 lcell and r2 = 2
3r1 where

lcell is the length of the cell head.
We split the samples into 70% train and 30% test data based on stratified

sampling on the average number of sperm cells in the full images of each sample.
This ensures that images from the same sample are part of the same split as
they contain correlated data. Hence, one sample being part of testing data is
never represented in the training data.

From the training dataset we generated an additional dataset of extracted
patches from the images using the annotated classes. This patch dataset contains
63×63 pixel patches which are labelled by their ground truth in the center pixel.
The size of the patches is chosen to allow the entire head, which is typically
25 pixels long, and a small part of the tail to be included. From each image,
we extract up to 3,000 patches, split into 40% sperm cells, 40% background
and 20% round cells. The numbers were chosen to cover the variety of debris
in the background class (round cells contribute a lot to the variability of the
background). Random rotation and flipping is applied before extracting each
patch. Table 1 shows statistics for the resulting datasets. Note that the dataset
contains a total of 38,708 sperm cells of which 23,997 are included in the train
set and 14,711 are included in the test set.

Networks. We define seven networks to test against each other. The first
network is called 2-conv. It is defined for input patches and illustrated in Fig.
3. It is a standard CNN with two convolutional, ReLU and max-pooling layers
followed by two fully connected layers separated by another ReLu layer and in-
cluding 50% dropout during training. The network 3-conv is obtained by adding
an additional set of convolution, ReLU, and max-pooling layers. The networks
are defined with receptive fields of size 63×63 using 20 filters in each of their
convolution layers and 100 filters in their fully convolutional layer.

For prediction on the full images, the fully connected layers are substituted
with fully convolutional layers as described by Long et al. (2015) [9] to allow
for faster computation. As each max-pooling layer divides the spatial resolution
of the output by a factor of 2 in each dimension, we further perform bilinear
upscaling of the network output probabilities to obain a pixel-wise segmentation.

To compare whether training on full images is beneficial compared to patch-
based training, we define the architectures 2-conv-full and 3-conv-full, which have
the same structure as 2-conv and 3-conv in the prediction phase and are trained
on full images with the final up-sampling removed. Finally, the architectures
2-conv-full-up and 3-conv-full-up also incorporate the bilinear up-sampling into
the training process. The networks trained on full images use a receptive field of
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Statistic Train Test Total

Images 540 225 765
Sperm cells 23, 997 14, 711 38, 708
Patches 1, 424, 341 601, 290 2, 025, 631

Table 1: Data statistics

Method mIU Threshold mpred (s)

2-conv 0.6658 200 0.145
2-conv-full 0.7080 200 0.143
2-conv-full-up 0.6805 250 0.143
3-conv 0.6556 200 0.119
3-conv-full 0.6497 150 0.119
3-conv-full-up 0.6661 300 0.116
3-conv-full-up-inc 0.7387 150 0.364
baseline [4] 0.5679 400 -

Table 2: Experiment results mIU , threshold, and mpred for all eight methods

size 64×64 and the same number of filters7. We further add a network 3-conv-
full-up-inc with the the same receptive field size but with 64, 128, and 256 filters
in the convolution layers and 1024 filters in the fully convolutional layer. We
omit the network 2-conv-full-up-inc due to limitations in the framework used.

When testing the networks, we perform post-processing of the full size output
probabilities in two steps: Firstly, we choose the most probable class as output for
each pixel. Secondly, we cluster pixel-wise segmentation to objects by computing
the 8-neighbourhood connected components and removing components smaller
than a threshold t. The value of this threshold is found in section 4.

3 Experiments

The 2-conv and 3-conv architectures have been trained on the patch dataset and
tested on the full image dataset, whereas all other networks have been trained
and tested on the full image dataset. The outputs of 2-conv-full and 3-conv-full
are smaller than the label masks of the full images. We therefore downsample
the label masks by factors 4 and 8 respectively. This is done by taking every 4th
or 8th pixel corresponding to the center of the receptive field of the output.

All networks are trained by optimizing the cross-entropy between the pre-
dicted and ground truth label. To compensate for the class skew in the full
images during training we re-weight the classes according to their distribution.
The weight wi of class i is defined as wi =

1
ni

∑
j

1
nj

where ni is the number of

7 The difference comes from the fact that it is easier to define a center-pixel in 63×63
receptive fields
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pixels belonging to class i. Omitting the re-weighting led to far inferior results
classifying everything as background.

The architectures have been trained for 200 epochs using the Adam solver
[12] with mini-batches of 256 patches or 1 full image (1920 · 1440 “samples”).
For training we chose learning rate α = 0.001, moment 1 β1 = 0.9, moment 2
β2 = 0.999, and ε = 10−8. We implemented the networks using Caffe [8], and
the experiments have been carried out using a single Titan X GPU.

The baseline method [4] consists of three major steps: Noise reduction, ob-
ject region detection, and sperm head localization. The method assumes that
all sufficiently large object regions are sperm cells and therefore filters out all
object regions smaller than a chosen threshold. This threshold is crucial for the
performance of the algorithm and needs to be chosen carefully.

On an object level we are interested in finding each sperm cell. For this
purpose we use the two measures precision = TP

TP+FP and recall = TP
TP+FN ,

where TP is the number of true positives, FP is the number of false positives and
FN is the number of false negatives. A predicted sperm cell is categorized as TP
if it covers more than half the area of a ground truth sperm cell. Each predicted
cell can only count as one positive, i.e. a predicted cell covering more than half
the area of two sperm cells counts as one true positive and one false negative. We
evaluate precision and recall for multiple thresholds on the training data to get
a precision-recall (PR) curve for every method. We choose the threshold value
that maximizes the product between precision and recall.

Mean intersection over union (mean IU) mIU is used to quantify the pixel-
wise segmentation performance as described by Long et al. (2015) [9]:

mIU =
1

2

∑
i

(
pii∑

j(pij + pji)− pii

)

Where pij is the number of occurences of class i predicted as class j. We have
chosen this measure since it is invariant to the aforementioned class skew.

Finally, fast computations is one of the requirements for automatic SQA.
We therefore record the execution time of computing a prediction and object
removal on all 765 full images and compute the mean execution time mpred per
image. Our baseline method implementation is not as optimized as our networks
and therefore we omit the results.
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Fig. 4: Precision-recall graphs for (a) train and (b) test for all networks. 2-conv
networks are plotted using fully-drawn lines and 3-conv networks using dashed
lines. Same colours of lines indicate same parameters. The black circles indicate
the point on each graph that corresponds to the threshold t reported in Table
2, while the black crosses indicate the points for t = 150.
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4 Results

Results of the mean IU mIU , thresholds found by maximizing the product be-
tween precision and recall on training data, and mean execution time mpred for
each method are given in Table 2.

Generally when considering mIU , the networks trained on full images with
up-sampling perform better than the networks trained on patches. All networks
perform better than the baseline method. Training on full images without up-
sampling leads to better results for 2-conv-full but worse for 3-conv-full. The
2-conv networks perform better than their 3-conv equivalents. The network 3-
conv-full-up-inc performs best, but it also has a considerably higher execution
time mpred = 0.364 than the other methods spanning the range of 0.116− 0.145
seconds per image.

The results for the object detection are given in Fig. 4. The figure shows the
precision-recall graphs for (a) train and (b) test for all methods. The graphs have
ends due to the smallest and largest thresholds considered (0-1,000). We plot 2-
conv networks using fully-drawn lines and 3-conv networks using dashed lines.
Same colours of lines indicate same parameters. The black circles indicate the
point on each graph that corresponds to the threshold reported in Table 2, while
the black crosses indicate the points for a threshold of 150. The baseline performs
considerably different on the train and test set even though there is no training
involved apart from the choice of threshold. It performs considerably worse than
our networks except 3-conv-full. The best method is 3-conv-full-up-inc having
93.87% precision and 91.89% recall on the test set using threshold 150. While
some overfitting can be seen between training and test, it still outperforms the
other methods.

5 Discussion

Our results show that using neural networks is beneficial compared to the clas-
sical approach. The large difference in baseline performance indicate that there
is a large variation between samples. We believe that we have captured the vari-
ation of a sperm cell in our train and test sets, but we have not captured all
possible combinations of cells in an entire image. Given our limited number of
individual samples, there are some cell concentration differences. The baseline
performance difference is likely caused by these cell concentration differences.
Our networks are not affected by these differences except to the degree expected
from overfitting. All networks except 3-conv-full-up-inc perform almost the same
on train and test data whereas 3-conv-full-up-inc is showing clear signs of over-
fitting. This indicates that our networks are sufficiently complex to cover the
variation of the data and that even larger networks are unlikely to generalize
better. As we have not used the test set for model selection, we can expect the
performance on the test set to be close to the true performance.

Up-sampling has different effects on mean IU and object detection. For mean
IU detecting object boundaries is important. As up-sampling is equivalent to
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blurring it is not beneficial for mean IU when the model is already able to
accurately describe the shape of the objects. This can be seen in the difference
in its effect on networks with two and three max-pooling layers. We hypothesize
that training using up-sampling gives us true predictions with cluster areas closer
to the true size of sperm cells. This makes it easier to distinguish sperm cells
from a specific type of debris (Fig. 1b & i) easily mistaken for the head of a
sperm cell but having a slightly smaller area.

When omitting up-sampling, there is no general tendency when comparing
patch-based and full-image training. For 2-conv networks, full-image training
seems to profit from the increased variation in the data while patch-based train-
ing profits from the weighting of round cells in the background. This can be seen
by the differences in precision and recall for the two methods in Fig. 4.

When we compare the PR-curves, we see that the choice of a fixed threshold
can be misleading. It turns out that the ranking of the networks can change
depending on the choice of it. However, the chosen thresholds on the training set
lead to consistent rankings on the test set in our case. Introducing the threshold
and optimizing it leads to far superior results for all networks compared to
choosing an arbitrary value. The obtained precision and recall seems reasonable
for the purpose of identifying sperm cells in a semen sample, however it needs
clinical testing for verification of its performance in practice.

6 Conclusion

In this paper, we have used deep convolutional neural networks for the task of
sperm cell segmentation and object detection. In this task, we are constrained by
the computation time as well as the accuracy demands, which make it harder to
train networks with many pooling layers. To mitigate both problems we explored
the use of full image training and up-sampling of the network outputs in order
to increase performance. We specifically investigated thresholding on the size of
detected components. Choosing the product of precision and recall leads to a
robust estimate of threshold parameter. For deeper networks, up-sampling ap-
pears necessary to achieve good segmentation and object detection performance.
The same does not necessarily hold for more shallow networks.

Our method outperformed a classical image analysis method which can be
considered state-of-the-art. Overall the system sensitivity and precision are suf-
ficiently high to be valuable for human sperm analysis systems.
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