Skip to main content

Towards Distributed Cognitive Expert Systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10243))

Abstract

The process of Datafication gives rise to ubiquitousness of data. Data-driven approaches may create meaningful insights from the vast volumes of data available to businesses. However, coping with the great volume and variety of data requires improved data analysis methods. Many such methods are dependent on a user’s subjective domain knowledge. This dependency leads to a barrier for the use of sophisticated statistical methods, because a user would have to invest a significant amount of labor into the customization of such methods in order to incorporate domain knowledge into them. We argue that machines may efficiently support researchers and analysts even with non-quantitative data once they are equipped with the ability to develop their own subjective domain knowledge in a way that the amount of manual customization is reduced. Our contribution is a design theory – called the Division-of-Labor Framework – for generating and using Experts that can develop domain knowledge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Not to be confused with our Division-of-Labor Framework.

References

  1. Abbasi, A., Sarker, S., Chiang, R.H.: Big data research in information systems: toward an inclusive research agenda. J. Assoc. Inf. Syst. 17(2), 1–32 (2016)

    Google Scholar 

  2. Agarwal, R., Dhar, V.: Editorialbig data, data science, and analytics: the opportunity and challenge for is research. Inf. Syst. Res. 25(3), 443–448 (2014)

    Article  Google Scholar 

  3. Alippi, C., Roveri, M.: Just-in-time adaptive classifiers in non-stationary conditions. In: 2007 International Joint Conference on Neural Networks, pp. 1014–1019. IEEE (2007)

    Google Scholar 

  4. Baesens, B., Bapna, R., Marsden, J.R., Vanthienen, J., Zhao, J.L.: Transformational issues of big data and analytics in networked business. MIS Q. 40(4), 807–818 (2016)

    Google Scholar 

  5. Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  7. Bengio, Y., Lecun, Y.: Scaling Learning Algorithms Towards AI. MIT Press, Cambridge (2007)

    Google Scholar 

  8. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: SDM, vol. 7, pp. 443–448. SIAM (2007)

    Google Scholar 

  9. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  10. Bruzzone, L., Prieto, D.F.: An incremental-learning neural network for the classification of remote-sensing images. Pattern Recogn. Lett. 20(11), 1241–1248 (1999)

    Article  Google Scholar 

  11. Deng, L., Yu, D.: Deep learning: methods and applications. Technical report (2014)

    Google Scholar 

  12. Goes, P.B.: Editor’s comments: big data and is research. MIS Q. 38(3), iii–viii (2014)

    Google Scholar 

  13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  14. Gregor, S., Jones, D.: The anatomy of a design theory. J. Assoc. Inf. Syst. 8(5), 312–335 (2007)

    Google Scholar 

  15. Grolinger, K., Hayes, M., Higashino, W. A., L’Heureux, A., Allison, D. S., Capretz, M.A.: Challenges for MapReduce in big data. In: 2014 IEEE World Congress on Services (SERVICES), pp. 182–189. IEEE (2014)

    Google Scholar 

  16. Harnad, S.: The symbol grounding problem. Physica D: Nonlinear Phenom. 42(1–3), 335–346 (1990)

    Article  Google Scholar 

  17. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, G.-B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybernet. 2(2), 107–122 (2011)

    Article  Google Scholar 

  19. Huiwen, W., Yuan, W., Lele, H.: Incremental algorithm of multiple linear regression model. J. Beijing Univ. Aeronaut. Astronaut. 11, 1487–1491 (2014)

    Google Scholar 

  20. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10 (1995)

    Google Scholar 

  21. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR, abs/1301.3781 (2013)

    Google Scholar 

  22. Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way We Think: A New View of Intelligence. The MIT Press, Cambridge (2006)

    Google Scholar 

  23. Pratt, L.Y., Hanson, S., Giles, C., Cowan, J.: Discriminability-based transfer between neural networks. In: Advances in Neural Information Processing Systems, p. 204 (1993)

    Google Scholar 

  24. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. The MIT Press, Cambridge (2009)

    Google Scholar 

  25. Russel, S., Norvig, P.: Artificial Intelligence - A Modern Approach, 3rd edn. Pearson Education Inc., Upper Saddle River (2010)

    Google Scholar 

  26. Salakhutdinov, R., Hinton, G.E.: Deep Boltzmann machines. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, vol. 12, pp. 448–455 (2009)

    Google Scholar 

  27. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)

    Google Scholar 

  28. Smith, A., Krueger, A.B.: The Wealth of Nations. Bantam Classics, New York City (2003)

    Google Scholar 

  29. Tan, A.-H., Lai, F.-L.: Text categorization, supervised learning, and domain knowledge integration. In: Proceedings, KDD-2000 International Workshop on Text Mining, Boston, vol. 20 (2000, to appear)

    Google Scholar 

  30. Vaughan, A., Bohac, S.V.: Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series. Neural Netw. 70, 18–26 (2015)

    Article  Google Scholar 

  31. Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms. CRC Press, Boca Raton (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schahin Tofangchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tofangchi, S., Hanelt, A., Kolbe, L.M. (2017). Towards Distributed Cognitive Expert Systems. In: Maedche, A., vom Brocke, J., Hevner, A. (eds) Designing the Digital Transformation. DESRIST 2017. Lecture Notes in Computer Science(), vol 10243. Springer, Cham. https://doi.org/10.1007/978-3-319-59144-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59144-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59143-8

  • Online ISBN: 978-3-319-59144-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics