Skip to main content

Prediction of Protein Oxidation Sites

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10306))

Abstract

Although reactive oxygen species are best known as damaging agents linked to aerobic metabolism, it is now clear that they can also function as messengers in cellular signalling processes. Methionine, one of the two sulphur containing amino acids in proteins, is liable to be oxidized by a well-known reactive oxygen species: hydrogen peroxide. The awareness that methionine oxidation may provide a mechanism to the modulation of a wide range of protein functions and cellular processes has recently encouraged proteomic approaches. However, these experimental studies are considerably time-consuming, labor-intensive and expensive, thus making the development of in silico methods for predicting methionine oxidation sites highly desirable. In the field of protein phosphorylation, computational prediction of phosphorylation sites has emerged as a popular alternative approach. On the other hand, very few in-silico studies for methionine oxidation prediction exist in the literature. In the current study we have addressed this issue by developing predictive models based on machine learning strategies and models—random forests, support vector machines, neural networks and flexible discriminant analysis—, aimed at accurate prediction of methionine oxidation sites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aledo, J.C.: Life-history constraints on the mechanisms that control the rate of ROS production. Curr. Genom. 15, 217–230 (2014)

    Article  Google Scholar 

  2. Collins, Y., Chouchani, E.T., James, A.M., Menger, K.E., Cochemé, H.M., Murphy, M.P.: Mitochondrial redox signalling at a glance. J. Cell Sci. 125, 801–806 (2012)

    Article  Google Scholar 

  3. Veredas, F.J., Cantón, F.R., Aledo, J.C.: Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions. Sci. Rep. 7, 40403 (2017)

    Article  Google Scholar 

  4. Arnér, E.S., Holmgren, A.: Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 267, 6102–6109 (2000)

    Article  Google Scholar 

  5. Kim, H.Y.: The methionine sulfoxide reduction system: selenium utilization and methionine sulfoxide reductase enzymes and their functions. Antioxid. Redox Sig. 19, 958–969 (2013)

    Article  Google Scholar 

  6. Kim, G., Weiss, S.J., Levine, R.L.: Methionine oxidation and reduction in proteins. BBA-Gen. Subj. 1840, 901–905 (2014)

    Article  Google Scholar 

  7. Jacques, S., Ghesquière, B., Breusegem, F., Gevaert, K.: Plant proteins under oxidative attack. Proteomics 13, 932–940 (2013)

    Article  Google Scholar 

  8. Härndahl, U., Kokke, B.P., Gustavsson, N., Linse, S., Berggren, K., Tjerneld, F., Boelens, W.C., Sundby, C.: The chaperone-like activity of a small heat shock protein is lost after sulfoxidation of conserved methionines in a surface-exposed amphipathic alpha-helix. Biochim. Biophys. Acta 1545, 227–237 (2001)

    Article  Google Scholar 

  9. Drazic, A., Miura, H., Peschek, J., Le, Y., Bach, N.C., Kriehuber, T., Winter, J.: Methionine oxidation activates a transcription factor in response to oxidative stress. Proc. Natl. Acad. Sci. USA 110, 9493–9498 (2013)

    Article  Google Scholar 

  10. Rao, R.S.P., Møller, I.M., Thelen, J.J., Miernyk, J.A.: Convergent signaling pathways—interaction between methionine oxidation and serine/threonine/tyrosine O-phosphorylation. Cell Stress Chaperones 20, 15–21 (2014)

    Article  Google Scholar 

  11. Jacques, S., Ghesquière, B., Bock, P.J., Demol, H., Wahni, K., Willemns, P., Messens, J., Breusegem, F., Gevaert, K.: Protein methionine sulfoxide dynamics in arabidopsis thaliana under oxidative stress. Mol. Cell. Proteomics 14, 1217–1229 (2015)

    Google Scholar 

  12. Ghesquière, B., Jonckheere, V., Colaert, N., Van Durme, J., Timmerman, E., Goethals, M., Schymkowitz, J., Rousseau, F., Vandekerckhove, J., Gevaert, K.: Redox proteomics of protein-bound methionine oxidation. Mol. Cell. Proteomics 10, M110.006866 (2011)

    Google Scholar 

  13. Datta, S., Mukhopadhyay, S.: A grammar inference approach for predicting kinase specific phosphorylation sites. PLoS One 10, e0122294 (2015)

    Article  Google Scholar 

  14. Grant, B.J., Rodrigues, A.P.C., ElSawy, K.M., McCammon, J.A., Caves, L.S.D.: Bio3D: an R package for the comparative analysis of protein structures. Bioinformatics 22, 2695–2696 (2006)

    Article  Google Scholar 

  15. Valley, C.C., Cembran, A., Perlmutter, J.D., Lewis, A.K., Labello, N.P., Gao, J., Sachs, J.N.: The methionine-aromatic motif plays a unique role in stabilizing protein structure. J. Biol. Chem. 287, 34979–34991 (2012)

    Article  Google Scholar 

  16. Aledo, J.C., Cantón, F.R., Veredas, F.J.: Sulphur atoms from methionines interacting with aromatic residues are less prone to oxidation. Sci. Rep. 5 (2015)

    Google Scholar 

  17. Cavallo, L.: POPS: a fast algorithm for solvent accessible surface areas at atomic and residue level. Nucleic Acids Res. 31, 3364–3366 (2003)

    Article  Google Scholar 

  18. Kuhn, M., Johnson, K.: Applied Predictive Modeling. Springer, New York (2013)

    Book  MATH  Google Scholar 

  19. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  20. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  21. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  22. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19, 1–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Díaz-Uriarte, R., Alvarez de Andrés, S.: Gene selection and classification of microarray data using random forest. BMC Bioinform. 7, 3 (2006)

    Article  Google Scholar 

  24. Liaw, A., Wiener, M.: Classification and regression by randomForest. R News 2, 18–22 (2002)

    Google Scholar 

  25. Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab - an \(\{\)S4\(\}\) package for kernel methods in \(\{\)R\(\}\). J. Stat. Softw. 11, 1–20 (2004)

    Article  Google Scholar 

  26. Nash, J.C.: Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, 2nd edn. CRC Press, New York (1990)

    MATH  Google Scholar 

  27. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  28. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Universidad de Málaga and project TIN2014-58516-C2-1-R, MICINN, Plan Nacional de I+D+I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Veredas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Veredas, F.J., Cantón, F.R., Aledo, J.C. (2017). Prediction of Protein Oxidation Sites. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics