Skip to main content

Neuronal Texture Analysis in Murine Model of Down’s Syndrome

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10306))

Included in the following conference series:

  • 2934 Accesses

Abstract

An alteration of neuronal morphology is present in cognitive neurological diseases where learning or memory abilities are affected. The quantification of this alteration and its evolution by the study of microscopic images is essential. However, the use of advanced and automatic image processing techniques is currently very limited, focusing on the analysis of the morphology of isolated neurons. On this article we present a new methodology, based on texture analysis, to characterize the global distribution of different neural patterns in immunofluorescence images of brain tissue sections, where the neurons can be visualized as they are really distributed. We apply the technique to mice brain tissue section dividing them into two classes: Ts1Cje Down’s syndrome model and wild type, free of this neurodegenerative disease. Taking into account CA1 region of the hippocampus, we calculate and compare several state of the art texture descriptors that are subsequently classified using machine learning techniques. Achieving a 95% of accuracy, the assumption that texture characterization is relevant to quantify globally morphological alterations in the neurons, seems to be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sholl, D.A.: Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat. 87(4), 387–406 (1953)

    Google Scholar 

  2. Troca-Marín, J.A., Alves-Sampaio, A., Montesinos, M.L.: An increase in basal BDNF provokes hyperactivation of the Akt-mammalian target of Rapamycin pathway and deregulation of local dendritic translation in a mouse model of Downs syndrome. J. Neurosci. 31, 9445–9455 (2011)

    Article  Google Scholar 

  3. Alves-Sampaio, A., Troca-Marín, J.A., Montesinos, M.L.: NMDA-mediated regulation of DSCAM dendritic local translation is lost in a mouse model of downs syndrome. J. Neurosci. 30, 13537–13548 (2010)

    Article  Google Scholar 

  4. Troca-Marín, J.A., Alves-Sampaio, A., Montesinos, M.L.: Deregulated mTOR-mediated translation in intellectual disability. Prog. Neurobiol. 96, 268–282 (2012)

    Article  Google Scholar 

  5. Montesinos, M.L.: Roles for DSCAM and DSCAML1 in central nervous system development and disease. In: Berezin, V., Walmod, P.S. (eds.) Cell Adhesion Molecules. AN, vol. 8, pp. 249–270. Springer, New York (2014). doi:10.1007/978-1-4614-8090-7_11

    Chapter  Google Scholar 

  6. Troca-Marín, J.A., Casañas, J.J., Benito, I., Montesinos, M.L.: The Akt-mTOR pathway in down’s syndrome: the potential use of rapamycin/rapalogs for treating cognitive deficits. CNS Neurol. Disord. Drug. Targets 13, 34–40 (2014)

    Article  Google Scholar 

  7. González, R., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Nueva Jersey (2008)

    Google Scholar 

  8. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973)

    Article  Google Scholar 

  9. Boland, M.V., Murphy, R.F.: A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of hela cells. Bioinformatics 17(12), 1213–1223 (2001)

    Article  Google Scholar 

  10. Svoboda, D., Kozubek, M., Stejskal, S.: Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry. Cytometry A 75(6), 494–509 (2009)

    Article  Google Scholar 

  11. Al-Kadi, O.S.: Texture measures combination for improved meningioma classification of histopathological images. Pattern Recogn. 43, 2043–2053 (2010)

    Article  Google Scholar 

  12. Xia, H., Tong, L., Zhou, X., Zhang, J., Zhou, Z., Liu, W.: Texture analysis and volumetry of hippocampus and medial temporal lobe in patients with Alzheimers disease. In: Proceedings of 2012 International Conference on Biomedical Engineering and Biotechnology, pp. 905–908 (2012)

    Google Scholar 

  13. Thibault, G., Angulo, J., Meyer, F.: Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans. Biomed. Eng. 61(3), 630–637 (2014)

    Article  Google Scholar 

  14. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  15. Hafiane, A., Seetharaman, G., Zavidovique, B.: Median binary pattern for textures classification. In: Kamel, M., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 387–398. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74260-9_35

    Chapter  Google Scholar 

  16. Ta, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  Google Scholar 

  17. Rakotomamonjy, A., Petitjean, C., Salan, M., Thiberville, L.: Scattering features for lung cancer detection in fibered confocal fluorescence microscopy images. Artif. Intell. Med. 61, 105–118 (2014)

    Article  Google Scholar 

  18. Fogel, I., Sagi, D.: Gabor filters as texture discriminator. Biol. Cybern. 61(2), 103–113 (1989)

    Article  Google Scholar 

  19. Rellier, G., Descombes, X., Falzon, F., Zerubia, J.: Texture feature analysis using a Gauss-Markov model in hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 42(7), 1543–1551 (2004)

    Article  MATH  Google Scholar 

  20. Wu, C., Schulte, J.J., Sepp, K.J., Littleton, J.T., Hong, P.: Automatic robust neurite detection and morphological analysis of neuronal cell cultures in high-content screening. Neuroinformatics 8(3), 83–100 (2010)

    Article  Google Scholar 

  21. Budde, M.D., Frank, J.A.: Examining brain microstructure using structure tensor analysis of histological sections. NeuroImage 63(11), 1–10 (2012)

    Article  Google Scholar 

  22. Bornemann, F., März, T.: Fast Image Inpainting Based on Coherence Transport. Springer Science+Business Media, USA (2007)

    Google Scholar 

  23. Contrast-Limited Adaptive Histogram Equalization (CLAHE): At MathWorks. http://es.mathworks.com/help/images/ref/adapthisteq.html. Accessed 20 Jan 2017

  24. Costa, A.F., Humpire-Mamani, G., Traina, A.J.M.: An efficient algorithm for fractal analysis of textures. In: Proceedings of Graphics, Patterns and Images (SIBGRAPI), Brazil, pp. 1530–1834 (2012)

    Google Scholar 

  25. Sarmiento, A., Fondón, I., Velasco, M.M., Qasair, A., Aguilera, P.: Gaussian mixture model generalized for segmentation of melanomas. In: Annual Congress of the Spanish Society of Biomedical Engineering (CASEIB) (2014)

    Google Scholar 

  26. Scharfenberger, C.: Statistical textural distinctiveness for salient region detection in natural images. IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR) 24(1), 457–470 (2013)

    MathSciNet  Google Scholar 

  27. Local Binary Pattern. http://www.scholarpedia.org/article/Local_Binary_Patterns. Accessed 20 Jan 2017

  28. Cortes, C., Vapnik, V.: Support-Vector Networks. AT & T Bell Labs, USA (1995)

    MATH  Google Scholar 

  29. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  30. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  31. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Auxiliadora Sarmiento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sarmiento, A., Fernández-Granero, M.Á., Galán, B., Montesinos, M.L., Fondón, I. (2017). Neuronal Texture Analysis in Murine Model of Down’s Syndrome. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics