Skip to main content

Machine Learning Improves Human-Robot Interaction in Productive Environments: A Review

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10306))

Included in the following conference series:

Abstract

In the new generation of industries, including all the advances introduced by Industry 4.0, human robot interaction (HRI), by means of automatic learning and computer vision, become an important element to accomplish. HRI allows to create collaborative environments between people and robots, avoiding the latter generating a risk of occupational safety. In addition to the automatic systems, the interaction by mean of automated learning processes provides necessary information to increase productivity and minimize delivery response times by helping to optimize complex production planning processes. In this paper, it is presented a review of the technologies necessary to be considered as basic elements in all processes of industry 4.0 as a crucial linking element between humans, robots, intelligent and traditional machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kang, H.S., Lee, J.Y., Choi, S., Kim, H., Park, J.H., Son, J.Y., Kim, B.H., Noh, S.D.: Smart manufacturing: Past research, present findings, and future directions. Int. J. Precis. Eng. Manuf. - Green Technol. 3(1), 111–128 (2016)

    Article  Google Scholar 

  2. Drath, R., Horch, A.: Industrie 4.0: hit or hype? [Industry Forum]. IEEE Ind. Electron. Mag. 8(2), 56–58 (2014)

    Article  Google Scholar 

  3. Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios. In: Proceedings of the Annual Hawaii International Conference on System Sciences, pp. 3928–3937, March 2016

    Google Scholar 

  4. Lee, J., Bagheri, B., Kao, H.A.: Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics. In: International Conference on Industrial Informatics (INDIN) 2014, November 2015 (2014)

    Google Scholar 

  5. Hedelind, M., Jackson, M.: How to improve the use of industrial robots in lean manufacturing systems. J. Manuf. Technol. Manag. 22(7), 891–905 (2011)

    Article  Google Scholar 

  6. Siddique, N.H., Mitchell, R., O’Grady, M., Jahankhani, H.: Cybernetic approaches to robotics. Paladyn 2(3), 109–110 (2011)

    Google Scholar 

  7. Meisner, E., Isler, V., Trinkle, J.: Controller design for human-robot interaction. Auton. Rob. 24(2), 123–134 (2008)

    Article  Google Scholar 

  8. Goodrich, M.A., Schultz, A.C.: Human-robot interaction: a survey. Found. Trends® Hum. Comput. Interact. 1(3), 203–275 (2007)

    Article  MATH  Google Scholar 

  9. Santoro, M., Marino, D., Tamburrini, G.: Learning robots interacting with humans: from epistemic risk to responsibility. AI Soc. 22(3), 301–314 (2008)

    Article  Google Scholar 

  10. Ferreiro, S., Sierra, B.: Comparison of machine learning algorithms for optimization and improvement of process quality in conventional metallic materials. Int. J. Adv. Manuf. Technol. 60(1–4), 237–249 (2012)

    Article  Google Scholar 

  11. Fast-Berglund, Å., Fässberg, T., Hellman, F., Davidsson, A., Stahre, J.: Relations between complexity, quality and cognitive automation in mixed-model assembly. J. Manuf. Syst. 32(3), 449–455 (2013)

    Article  Google Scholar 

  12. Lee, J., Bagheri, B., Jin, C.: Introduction to cyber manufacturing. Manuf. Lett. 8, 11–15 (2016)

    Article  Google Scholar 

  13. Wang, L., Schmidt, B., Nee, A.Y.C.: Vision-guided active collision avoidance for human-robot collaborations. Manuf. Lett. 1(1), 5–8 (2013)

    Article  Google Scholar 

  14. Hornung, A., Bennewitz, M., Strasdat, H.: Efficient vision-based navigation. Auton. Rob. 29(2), 137–149 (2010)

    Article  Google Scholar 

  15. Makris, S., Karagiannis, P., Koukas, S., Matthaiakis, A.S.: Augmented reality system for operator support in human–robot collaborative assembly. CIRP Ann. Manuf. Technol. 65(1), 61–64 (2016)

    Article  Google Scholar 

  16. Ericson, G., Franks, L., Rohrer, B.: How to choose algorithms for Microsoft Azure Machine Learning (2016)

    Google Scholar 

  17. Xiao, S., Wang, Z., Folkesson, J.: Unsupervised robot learning to predict person motion. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 691–696 (2015)

    Google Scholar 

  18. Erdin, M.E., Atmaca, A.: Implementation of an overall design of a flexible manufacturing system. Procedia Technol. 19, 185–192 (2015)

    Article  Google Scholar 

  19. Puik, E., Telgen, D., Moergestel, L., Ceglarek, D.: Assessment of reconfiguration schemes for Reconfigurable Manufacturing Systems based on resources and lead time. Robot. Comput.-Integr. Manuf. 43, 30–38 (2017)

    Article  Google Scholar 

  20. Monostori, L.: AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. IFAC Proc. Volumes (IFAC-Papers Online) 15(1), 119–130 (2002)

    Google Scholar 

  21. Leng, J., Jiang, P.: A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm. Knowl.-Based Syst. 100, 188–199 (2015)

    Article  Google Scholar 

  22. Cheng, Y., Tao, F., Zhao, D., Zhang, L.: Modeling of manufacturing service supply-demand matching hypernetwork in service-oriented manufacturing systems. Robot. Comput.-Integr. Manuf. 45, 59–72 (2015)

    Article  Google Scholar 

  23. Priore, P., Fuente, D., Puente, J., Parreño, J.: A comparison of machine-learning algorithms for dynamic scheduling of flexible manufacturing systems. Eng. Appl. Artif. Intell. 19(3), 247–255 (2006)

    Article  Google Scholar 

  24. Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C.B., Wang, C.C., Shin, Y.C., Zhang, S., Zavattieri, P.D.: The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Des. 69, 65–89 (2015)

    Article  Google Scholar 

  25. Tsai, T.I., Li, D.C.: Utilize bootstrap in small data set learning for pilot run modeling of manufacturing systems. Expert Syst. Appl. 35(3), 1293–1300 (2008)

    Article  Google Scholar 

  26. Penas, O., Plateaux, R., Patalano, S., Hammadi, M.: Multi-scale approach from mechatronic to Cyber-Physical Systems for the design of manufacturing systems. Comput. Ind. (2016)

    Google Scholar 

  27. Tatic, D., Tesic, B.: The application of augmented reality technologies for the improvement of occupational safety in an industrial environment. Comput. Ind. 85, 1–10 (2017)

    Article  Google Scholar 

  28. Leo, M., Medioni, G., Trivedi, M., Kanade, T., Farinella, G.M.: Computer vision for assistive technologies. Comput. Vis. Image Underst. 154, 1–15 (2015)

    Article  Google Scholar 

  29. Mehlmann, G., Häring, M., Janowski, K., Baur, T., Gebhard, P., André, E.: Exploring a model of gaze for grounding in multimodal HRI. In: Proceedings of the 16th International Conference on Multimodal Interaction - ICMI 2014, pp. 247–254 (2014)

    Google Scholar 

  30. Rani, P., Liu, C., Sarkar, N., Vanman, E.: An empirical study of machine learning techniques for affect recognition in human-robot interaction. Pattern Anal. Appl. 9(1), 58–69 (2006)

    Article  Google Scholar 

  31. Panait, L., Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton. Agents Multi-Agent Syst. 3(11), 387–434 (2005)

    Article  Google Scholar 

  32. Mohammad, Y., Nishida, T.: Toward combining autonomy and interactivity for social robots. AI Soc. 24(1), 35–49 (2009)

    Article  Google Scholar 

  33. Ramík, D.M., Madani, K., Sabourin, C.: A Soft-Computing basis for robots’ cognitive autonomous learning. Soft Comput. 19(9), 2407–2421 (2014)

    Article  Google Scholar 

  34. Vlassis, N., Toussaint, M., Kontes, G., Piperidis, S.: Learning model-free robot control by a Monte Carlo em algorithm. Auton. Rob. 27(2), 123–130 (2009)

    Article  Google Scholar 

  35. Guo, L., Hao, J.H., Liu, M.: An incremental extreme learning machine for online sequential learning problems. Neurocomputing 128, 50–58 (2014)

    Article  Google Scholar 

  36. Li, D.C., Yeh, C.W.: A non-parametric learning algorithm for small manufacturing data sets. Expert Syst. Appl. 34(1), 391–398 (2008)

    Article  Google Scholar 

  37. Lee, J.H., Ha, S.H.: Recognizing yield patterns through hybrid applications of machine learning techniques. Inf. Sci. 179(6), 844–850 (2009)

    Article  Google Scholar 

  38. Sudha, L., Dillibabu, R., Srivatsa Srinivas, S., Annamalai, A.: Optimization of process parameters in feed manufacturing using artificial neural network. Comput. Electr. Agric. 120, 1–6 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Spanish Government TIN2016-76515-R grant for the COMBAHO project, supported with Feder funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Garcia-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zamora, M., Caldwell, E., Garcia-Rodriguez, J., Azorin-Lopez, J., Cazorla, M. (2017). Machine Learning Improves Human-Robot Interaction in Productive Environments: A Review. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics