Skip to main content

Towards Deterministic and Stochastic Computations with the Izhikevich Spiking-Neuron Model

  • Conference paper
  • First Online:
  • 3027 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10306))

Abstract

In this paper we analyze simple computations with spiking neural networks (SNN), laying the foundation for more sophisticated calculations. We consider both a deterministic and a stochastic computation framework with SNNs, by utilizing the Izhikevich neuron model in various simulated experiments. Within the deterministic-computation framework, we design and implement fundamental mathematical operators such as addition, subtraction, multiplexing and multiplication. We show that cross-inhibition of groups of neurons in a winner-takes-all (WTA) network-configuration produces considerable computation power and results in the generation of selective behavior that can be exploited in various robotic control tasks. In the stochastic-computation framework, we discuss an alternative computation paradigm to the classic von Neumann architecture, which supports information storage and decision making. This paradigm uses the experimentally-verified property of networks of randomly connected spiking neurons, of storing information as a stationary probability distribution in each of the sub-network of the SNNs. We reproduce this property by simulating the behavior of a toy-network of randomly-connected stochastic Izhikevich neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Herz, A.V.M., Gollisch, T., Machens, C.K., Jaeger, D.: Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314(5796), 80–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbott, L.F., Kepler, T.B.: Model neurons: from Hodgkin-huxley to hopfield. In: Garrido, L. (ed.) Statistical Mechanics of Neural Networks. LNP, vol. 368, pp. 5–18. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  3. Izhikevich, E.M.: Which model to use for cortical spiking neurons. IEEE Trans. Neural Netw. 15, 1063–1070 (2004)

    Article  Google Scholar 

  4. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)

    Article  Google Scholar 

  5. Koch, C., Segev, I.: Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge (1998)

    Google Scholar 

  6. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)

    Article  Google Scholar 

  7. Schutter, E.D.: Computational Modeling Methods for Neuroscientists. The MIT Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  8. Pfeil, T., Grubl, A., Jeltsch, S., Muller, E., Muller, P., Petrovici, M.A., Schmuker, M., Bruderle, D., Schemmel, J., Meier, K.: Six networks on a universal neuromorphic computing substrate. arXiv preprint arXiv:1210.7083 (2012)

  9. McDonnell, M.D., Boahen, K., Ijspeert, A., Sejnowski, T.J.: Engineering intelligent electronic systems based on computational neuroscience [scanning the issue]. Proc. IEEE 102(5), 646–651 (2014)

    Article  Google Scholar 

  10. Benjamin, B.V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A.R., Bussat, J.-M., Alvarez-Icaza, R., Arthur, J.V., Merolla, P.A., Boahen, K.: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102(5), 699–716 (2014)

    Article  Google Scholar 

  11. Maass, W.: Noise as a resource for computation and learning in networks of spiking neurons. Proc. IEEE 102(5), 860–880 (2014)

    Article  Google Scholar 

  12. Hasani, R.M.: Design of CMOS silicon neurons for noise assisted computations in spiking neural networks. Politesi Digital Library of PhD and Post Graduate Theses, Politecnico di Milano (2015)

    Google Scholar 

  13. Hasani, R.M., Ferrari, G., Yamamoto, H., Kono, S., Ishihara, K., Fujimori, S., Tanii, T., Prati, E.: Control of the correlation of spontaneous neuron activity in biological and noise-activated CMOS artificial neural icrocircuits. arXiv preprint arXiv:1702.07426 (2017)

  14. Magee, J.C.: Dendritic ih normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2(6), 508–514 (1999)

    Article  Google Scholar 

  15. Maass, W.: On the computational power of winner-take-all. Neural Comput. 12(11), 2519–2535 (2000)

    Article  Google Scholar 

  16. Habenschuss, S., Jonke, Z., Maass, W.: Stochastic computations in cortical microcircuit models. PLoS Comput. Biol. 9(11), e1003311 (2013)

    Article  Google Scholar 

  17. Jones, P.W., Gabbiani, F.: Logarithmic compression of sensory signals within the dendritic tree of a collision-sensitive neuron. J. Neurosci. 32(14), 4923–4934 (2012)

    Article  Google Scholar 

  18. Vul, E., Pashler, H.: Measuring the crowd within probabilistic representations within individuals. Psychol. Sci. 19(7), 645–647 (2008)

    Article  Google Scholar 

  19. Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind: statistics, structure, and abstraction. Science 331(6022), 1279–1285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jonke, Z., Habenschuss, S., Maass, W.: Solving constraint satisfaction problems with networks of spiking neurons. Front. Neurosci. 10, 118 (2016)

    Article  Google Scholar 

  21. Binas, J., Indiveri, G., Pfeiffer, M.: Spiking analog VLSI neuron assemblies as constraint satisfaction problem solvers. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2094–2097. IEEE (2016)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NSF-Frontiers CyberCardia Award, FWF-NFN RiSE Award, FWF-DC LMCS Award, FFG Harmonia Award, FFG Em2Apps Award, and the TUW CPPS-DK Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin M. Hasani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hasani, R.M., Wang, G., Grosu, R. (2017). Towards Deterministic and Stochastic Computations with the Izhikevich Spiking-Neuron Model. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics