Skip to main content

Application of an Eye Tracker Over Facility Layout Problem to Minimize User Fatigue

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10305))

Abstract

With interactive evolutionary computation it is possible to introduce the subjective preferences of the decision maker within the general algorithm evolution criteria. The problem that generates this is user fatigue, since it has to evaluate a considerable number of plants designs in each generation. To avoid user fatigue it is proposed to substitute the direct evaluation through the mouse by means of a numerical scale by an eye tracking system in which the system “captures” the evaluation that the user assigns to the plants through the gaze behavior. This article presents a first approximation to this solution. The results obtained in the experiments are promising and a clear relationship between the parameters that define the gaze behavior of the user with the score assigned to the designs can be seen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kouvelis, P., Kurawarwala, A.A., Gutiérrez, G.J.: Algorithms for robust single and multiple period layout planning for manufacturing systems. Eur. J. Oper. Res. 63(2), 287–303 (1992). https://doi.org/10.1016/0377-2217(92)90032-5

  2. Tompkins, J.A., White, J.A., Bozer, Y.A., Tanchoco, J.M.A.: Facilities Planning, 4th edn. (2010). http://eu.wiley.com/WileyCDA/WileyTitle/productCd-EHEP000315.html

  3. Drira, A., Pierreval, H., Hajri-Gabouj, S.: Facility layout problems: a survey. Ann. Rev. Control 31(2), 255–267 (2007). https://doi.org/10.1016/j.arcontrol.2007.04.001

  4. Singh, S.P., Sharma, R.R.K.: A review of different approaches to the facility layout problems. Int. J. Adv. Manuf. Technol. 30(5–6), 425–433 (2006). https://doi.org/10.1007/s00170-005-0087-9

  5. Armour, G.C., Buffa, E.S.: A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities, p. 294 (1963). http://pubsonline.informs.org/doi/abs/10.1287/mnsc.9.2.294

  6. Babbar-Sebens, M., Minsker, B.S.: Interactive genetic algorithm with mixed initiative interaction for multi-criteria ground water monitoring design. Appl. Soft Comput. J. 12(1), 182–195 (2012). https://doi.org/10.1016/j.asoc.2011.08.054

  7. Brintrup, A.M., Ramsden, J., Tiwari, A.: An interactive genetic algorithm-based framework for handling qualitative criteria in design optimization. Comput. Ind. 58(3), 279–291 (2007). https://doi.org/10.1016/j.compind.2006.06.004

  8. García-Hernández, L., Pierreval, H., Salas-Morera, L., Arauzo-Azofra, A.: Handling qualitative aspects in unequal area facility layout problem: an interactive genetic algorithm. Appl. Soft Comput. J. 13(4), 1718–1727 (2013). https://doi.org/10.1016/j.asoc.2013.01.003

  9. Ertay, T., Ruan, D., Tuzkaya, U.R.: Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems. Inf. Sci. 176(3), 237–262 (2006). https://doi.org/10.1016/j.ins.2004.12.001

  10. Brintrup, A.M., Takagi, H., Ramsden, J.: Evaluation of sequential, multi-objective, and parallel interactive genetic algorithms for multi-objective floor plan optimisation. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 586–598. Springer, Heidelberg (2006). doi:10.1007/11732242_56

    Chapter  Google Scholar 

  11. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001). https://doi.org/10.1109/5.949485

  12. Quiroz, J.C., Louis, S.J., Shankar, A., Dascalu, S.M.: Interactive genetic algorithms for user interface design. In: 2007 IEEE Congress on Evolutionary Computation, pp. 1366–1373 (2007). https://doi.org/10.1109/CEC.2007.4424630

  13. Avigad, G., Moshaiov, A.: Interactive evolutionary multiobjective search and optimization of set-based concepts. IEEE Trans. Syst. Man Cybern. Part B (Cybern.), 9(4), 1013–1027 (2009). https://doi.org/10.1109/TSMCB.2008.2011565

  14. Jeong, I.J., Kim, K.J.: An interactive desirability function method to multiresponse optimization. Eur. J. Oper. Res. 195(2), 412–426 (2009). https://doi.org/10.1016/j.ejor.2008.02.018

  15. Quiroz, J.C., Banerjee, A., Louis, S.J.: IGAP: interactive genetic algorithm peer to peer, pp. 1719–1720 (2008). https://doi.org/10.1145/1389095.1389426

  16. Luque, M., Miettinen, K., Eskelinen, P., Ruiz, F.: Incorporating preference information in interactive reference point methods for multiobjective optimization. Omega 37(2), 450–462 (2009). https://doi.org/10.1016/j.omega.2007.06.001

  17. Chaudhuri, S., Deb, K.: An interactive evolutionary multi-objective optimization and decision making procedure. Appl. Soft Comput. 10(2), 496–511 (2010). https://doi.org/10.1016/j.asoc.2009.08.019

  18. Sato, T., Hagiwara, M.: IDSET: interactive design system using evolutionary techniques. Comput.-Aided Des. 33, 367–377 (2001). https://doi.org/10.1016/S0010-4485(00)00128-7

  19. García-Hernández, L., Pérez-Ortiz, M., Arauzo-Azofra, A., Salas-Morera, L., Hervás-Martínez, C.: An evolutionary neural system for incorporating expert knowledge into the UA-FLP. Neurocomputing 135, 69–78 (2014). https://doi.org/10.1016/j.neucom.2013.01.068

  20. García-Hernández, L., Palomo-Romero, J.M., Salas-Morera, L., Arauzo-Azofra, A., Pierreval, H.: A novel hybrid evolutionary approach for capturing decision maker knowledge into the unequal area facility layout problem. Expert Syst. Appl. 42(10), 4697–4708 (2015). https://doi.org/10.1016/j.eswa.2015.01.037

  21. Hayashida, N., Takagi, H.: Acceleration of EC convergence with landscape visualization and human intervention. Appl. Soft Comput. 1(4), 245–256 (2002). https://doi.org/10.1016/S1568-4946(01)00023-0

  22. Costelloe, D., Ryan, C.: Genetic programming for subjective fitness function identification. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 259–268. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24650-3_24

    Chapter  Google Scholar 

  23. Llor, X., Sastry, K., Goldberg, D.E.: Combating user fatigue in iGAs : partial ordering, support vector machines, and synthetic fitness. In: Gecco 2005, pp. 1363–1370, February (2005). https://doi.org/10.1145/1068009.1068228

  24. Llorà, X., Sastry, K., Alías, F.: Analyzing active interactive genetic algorithms using visual analytics. In: Proceedings of the Annual Conference on Genetic and Evolutionary Computation (GECCO), vol. 8, no. 217, pp. 1417–1418 (2006). https://doi.org/10.1145/1143997.1144223

  25. Takagi, H., Pallez, D.: Paired comparisons-based interactive differential evolution, pp. 475–480 (2009)

    Google Scholar 

  26. Pallez, D., Collard, P., Baccino, T., Dumercy, L.: Eye-tracking evolutionary algorithm to minimize user fatigue in iec applied to interactive one-max problem. In: Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation, pp. 2883–2886 (2007). https://doi.org/10.1145/1274000.1274098

  27. Cheng, S., Liu, Y.: Eye-tracking based adaptive user interface: implicit human-computer interaction for preference indication. J. Multimodal User Interfaces 5(1–2), 77–84 (2012). https://doi.org/10.1007/s12193-011-0064-6

  28. Gegenfurtner, A., Lehtinen, E., Säljö, R.: Expertise differences in the comprehension of visualizations: a meta-analysis of eye-tracking research in professional domains. Educ. Psychol. Rev. 23(4), 523–552 (2011). https://doi.org/10.1007/s10648-011-9174-7

  29. Blondon, K., Wipfli, R., Lovis, C.: Use of eye-tracking technology in clinical reasoning: a systematic review. Stud. Health Technol. Inf. 210, 90–94 (2015). https://doi.org/10.3233/978-1-61499-512-8-90

  30. Pallez, D., Cremene, M., Baccino, T., Sabou, O.: Analyzing human gaze path during an interactive optimization task. In: Proceedings of the 2010 Workshop on Eye Gaze in Intelligent Human Machine Interaction - EGIHMI 2010, pp. 12–19 (2010). https://doi.org/10.1145/2002333.2002336

  31. Goldberg, J.H., Kotval, X.P.: Computer interface evaluation using eye movements: methods and constructs. Int. J. Ind. Ergon. 24(6), 631–645 (1999). https://doi.org/10.1016/S0169-8141(98)00068-7

  32. Holmes, T., Zanker, J.: Eye on the prize: using overt visual attention to drive fitness for interactive evolutionary computation. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation - GECCO 2008, pp. 1531–1538 (2008). https://doi.org/10.1145/1389095.1389390

  33. Orquin, J.L., Mueller Loose, S.: Attention and choice: a review on eye movements in decision making. Acta Psychol. 144(1), 190–206 (2013). https://doi.org/10.1016/j.actpsy.2013.06.003

  34. Michalski, R., Grobelny, J.: An eye tracking based examination of visual attention during pairwise comparisons of a digital product’s package. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2016. LNCS, vol. 9737, pp. 430–441. Springer, Cham (2016). doi:10.1007/978-3-319-40250-5_41

    Google Scholar 

  35. Michalski, R., Grobelny, J.: The effects of background color, shape and dimensionality on purchase intentions in a digital product presentation. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2016. LNCS, vol. 9739, pp. 468–479. Springer, Cham (2016). doi:10.1007/978-3-319-40238-3_45

    Chapter  Google Scholar 

  36. Gere, A., Danner, L., de Antoni, N., Kovács, S., Dürrschmid, K., Sipos, L.: Visual attention accompanying food decision process: an alternative approach to choose the best models. Food Qual. Prefer. 51, 1–7 (2016). https://doi.org/10.1016/j.foodqual.2016.01.009

  37. Jantathai, S., Danner, L., Joechl, M., Dürrschmid, K.: Gazing behavior, choice and color of food: does gazing behavior predict choice? Food Res. Int. 54(2), 1621–1626 (2013). https://doi.org/10.1016/j.foodres.2013.09.050

  38. Salas-Morera, L., Cubero-Atienza, A., Ayuso-Munoz, R.: Computer-aidedplant layout | Distribucion en planta asistida por ordenador. Inf. Tecnol. 7(4) (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan García-Saravia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

García-Saravia, J., Salas-Morera, L., García-Hernández, L., Antolí Cabrera, A. (2017). Application of an Eye Tracker Over Facility Layout Problem to Minimize User Fatigue. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10305. Springer, Cham. https://doi.org/10.1007/978-3-319-59153-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59153-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59152-0

  • Online ISBN: 978-3-319-59153-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics