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Spain. mariaperez@uloyola.es

Abstract. The term ordinal regression refers to classification tasks in
which the categories have a natural ordering. The main premise of this
learning paradigm is that the ordering can be exploited to generate more
accurate predictors. The goal of this work is to design class switching en-
sembles that take into account such ordering so that they are more accu-
rate in ordinal regression problems. In standard (nominal) class switching
ensembles, diversity among the members of the ensemble is induced by
injecting noise in the class labels of the training instances. Assuming that
the classes are interchangeable, the the labels are modified at random.
In ordinal class switching, the ordering between classes is taken into ac-
count by reducing the transition probabilities to classes that are further
apart. In this manner smaller label perturbations in the ordinal scale are
favoured. Two different specifications of these transition probabilities are
considered; namely, an arithmetic and a geometric decrease with the ab-
solute difference of the class ranks. These types of ordinal class switching
ensembles are compared with an ensemble method that does not consider
class-switching, a nominal class-switching ensemble, an ordinal variant
of boosting, and two state-of-the-art ordinal classifiers based on support
vector machines and Gaussian processes, respectively. These methods are
evaluated and compared in a total of 15 datasets, using three different
performance metrics. From the results of this evaluation one concludes
that ordinal class-switching ensembles are more accurate than standard
class-switching ones and than the ordinal ensemble method considered.
Furthermore, their performance is comparable to the state-of-the-art or-
dinal regression methods considered in the analysis. Thus, class switching
ensembles with specifically designed transition probabilities, which take
into account the relationships between classes, are shown to provide very
accurate predictions in ordinal regression problems.
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1 Introduction

Ensemble methods have been successfully employed in numerous machine learn-
ing applications, including standard supervised learning problems [2,7,8], clus-
tering [25] and image segmentation [13], among others. The goal in ensemble
learning is to build a diverse collection of learners whose predictions are com-
plementary. If the errors of the individual predictors are independent, they can
be averaged in a combination step. This results in a global ensemble prediction
that is more accurate than the one of individual classifiers. There are a number
of strategies that can be used to build ensembles of diverse base learners. One
of the most effective approaches to generate variability is to take advantage of
the brittle character of the base learners and apply randomization techniques
either in the dataset used for induction (e.g. training base learners with different
bootstrap samples, as in bagging), or in the learning algorithm itself (e.g. build
building random trees by considering splits only within a random subset of fea-
tures, as in random forest). Another possibility is the injection of noise in the
class labels. This technique was first introduced by Breiman under the name of
Output smearing for regression, or Output flipping for classification problems [3].
In regression problems, the values of the dependent variable are contaminated
with additive Gaussian noise. For classification, class labels are flipped at ran-
dom with the restriction that the proportion of instances of the different classes
is fixed. A direct extension of this technique, in which the class labels are simply
modified at random, without ensuring that the class proportions are maintained,
was analysed and seen to be more effective in ensembles of decision trees [19]
and neural networks [18].

Despite their usefulness and demonstrated competitive performance, there
are some areas of machine learning in which ensembles have been barely used.
An example of this is the problem of ordinal regression, where these learning
techniques have been applied only recently [9,15,16,21], with promising results.
The problem of ordinal regression, also known in the literature as ordinal classi-
fication, is a supervised learning task in which the labels to be predicted are dis-
crete, yet present an intrinsic ordering, which is relevant to the prediction prob-
lem at hand. For example, those surveys where students evaluate their teachers
are usually based on an ordinal scale {poor, average, good, very good, excellent}.
However, misclassifying excellent teachers as poor should be far more penalised
than misclassifying them as very good. While it is possible to simply use stan-
dard classification techniques (which ignore the ordering of the labels) or regres-
sion techniques (which disregard the discrete nature of the labels and assume
a specific distance between them), it is generally advantageous to consider spe-
cific methods that take into account the ordinal nature of the problem [12], not
only for classification, but also in all the stages of the learning process, such as
data preprocessing or performance evaluation. One of the most widely used ap-
proaches to ordinal regression are decomposition methods [12], which decompose
the original ordinal variable into simpler classification problems [21,10], usually
binary tasks, and the predictions of the corresponding classifiers are fused to pro-
duce an unique ordinal output. This approach can be seen as an ensemble where
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the diversity is introduced by the differences found in the classification tasks,
and it is very natural in the case of ordinal regression because the classes can be
joined according to different strategies (e.g. by a cascade binary utility model
[14] or simply mixing neighbouring classes [10]). For example, for a given rank q,
a direct question could be: “Is the label of pattern x greater than q?”. Decom-
position methods are popular within the ordinal classification literature, given
that any binary classifier can be generally used as a base learner, without the
need of reformulating the model to deal with the order of the classes. The main
problem with this type of techniques is that the number of learners is relatively
low (usually the number of classes minus one) and that fusing the different out-
puts is not straightforward [4]. Another differentiated group of ensemble-based
approaches for ordinal regression are based on the concept of boosting. Some of
these strategies rely on the confidence of a binary classifier [15,22,11], which can
be used as an ordering preference, while others extend the well-known AdaBoost
algorithm [16,23]. Finally, there are other strategies that make use of a base or-
dinal learner for the ensemble construction and introduce diversity as a term to
be optimised during classifier construction [9] or that impose a global constraint
to ensure that ordinal requirements are met [24].

In this article, we propose to design class-switching ensembles to address ordi-
nal regression problems. To do so, different techniques are proposed to maintain
and exploit the order information, based on a switching probability function
that decreases with the rank difference. Our experiments compare seven differ-
ent approaches in 15 datasets, showing that the ordinal class-switching approach
outperforms the standard one and it is competitive with the state-of-the-art
methods.

The rest of this paper is structured as follows: Section 2 discusses the design
principles behind standard class-switching ensembles and describes how they
are built. In section 3 the class switching method for ensemble generation is
adapted to address ordinal regression problems. The effectiveness of the ensem-
bles generated with the variants of class switching proposed is evaluated in an
extensive set of experiments on benchmark ordinal regression problems, whose
results are reported and analysed in section 4. Finally, section 5 summarises the
contributions of this work and outlines some concluding remarks.

2 Class switching ensembles

In nominal classification problems, one generally assumes that the classes are
independent of each other and their labels interchangeable. When designing ma-
chine learning algorithms, these properties are incorporated in the prediction
mechanism. For instance, in decision trees the class label assignment is per-
formed at the leaf nodes. Those instances that, as a result of the hierarchy of
Boolean queries at the inner nodes of the decision tree, are assigned to a leaf
node receive the label of the majority class of the training instances assigned to
that node. Similarly, in ensembles, majority voting is used. In the voting process,
each predictor is allowed to vote for a single class. In neural networks, 1-of-K
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encoding is typically used for prediction problems with K classes. In this type
of encoding, the kth class is represented as a vector of K bits, all of which are 0,
except for the kth bit, which is equal to 1. The classes can be thought of as lying
on the vertices of a regular simplex, and are therefore at equal distance from each
other. The noise injection process in nominal class switching also assumes that
classes are interchangeable: to build an individual ensemble classifier, a subset of
training instances are selected at random. Then, the class label of these instances
is modified also in a random fashion, assigning equal probabilities to switching
the label to one of the other K − 1 classes. Finally, a base learner is generated
by applying the same base learning algorithm to the perturbed dataset. Once
the ensemble has been completed, the predictions of the individual classifiers are
combined by majority voting. Since the realizations are independent, the noise
in the class labels is averaged out by the combination process. Furthermore, the
variability induced can have a positive effect in the representation capacity of
the ensemble.

In particular, when unpruned CART decision trees are used as base learners,
class-switching ensembles achieve high prediction accuracy, provided that high
switching rates (modifying the class label of a substantial fraction ≈ 0.6(K −
1)/K of the training instances) and sufficiently large ensembles (of size ≥ 1000)
are used. Similar improvements can be obtained using neural networks [18].
The goal of this work is to adapt this ensemble construction method to ordinal
regression problems, in which class labels are ordered. If this ordering is relevant
for prediction, designing a noise injection scheme that takes into account these
relations among the class labels should lead to further accuracy improvements
for this type of problems.

3 Ordinal class switching ensembles

Consider a labelled dataset D = {(xn, yn)}Nn=1. Assume that the dependent
variable takes values in a finite set, yn ∈ {c1, c2, . . . , cK}, which has an intrinsic
ordering; that is, c1 < c2 < . . . < cK , where < is an order relation provided by
the nature of the classification problem.

To take advantage of the ordering relation among the class labels, we make
the assumption that instances whose class labels are close to each other are
more similar than instances whose class labels are further apart. Therefore,
when selecting the modified class labels, one should assign higher probability
to nearby classes. Specifically, we will choose a set of transition probabilities
{pi→j ; i, j = 1, . . . ,K} with the following properties: If |i−j| < |i−k| ⇒ pi→j <
pi→k,∀i, j, k ∈ {1, . . . ,K}. Hence, the transition probability matrix should be
V-shaped with respect to the class labels ck, in the same way that cost matrices
need to be V-shaped in the context of ordinal regression [17].

In this paper, we consider two different possibilities for constructing a V-
shaped transition matrix:
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– The probability of transition arithmetically decreases when the distance to
the original class increases (arithmetic ordinal class switching, AOCS):

p∗i→j =

p
∗, if i = j,

1− p∗

|i− j|
, if i 6= j,

(1)

where 0 ≤ p∗ ≤ 1 is the parameter that sets the probability of not transi-
tioning to a different class.

– The probability of transition geometrically decreases when the distance to
the original class increases (geometric ordinal class switching, GOCS):

p∗i→j =

p
∗, if i = j.

1− p∗

2|i−j|
, if i 6= j.

(2)

Given that the transition probabilities must add up to one, these matrices need
to be normalised by rows:

pi→j =
p∗i→j∑K
k=1 p

∗
i→k

. (3)

For example, for an ordinal regression problem with K = 5 classes and p∗ = 0.6,
the transition matrices are:

PAOCS =


0.54 0.18 0.12 0.09 0.07
0.16 0.49 0.16 0.11 0.08
0.11 0.16 0.47 0.16 0.11
0.08 0.11 0.16 0.49 0.16
0.07 0.09 0.12 0.18 0.54

 ,PGOCS =


0.62 0.21 0.10 0.05 0.03
0.17 0.52 0.17 0.09 0.04
0.08 0.17 0.50 0.17 0.08
0.04 0.09 0.17 0.52 0.17
0.03 0.05 0.10 0.21 0.62

 ,

Note that, because of the normalization of class probabilities, the probability
that a label remains unchanged (elements in the main diagonal of the matrix)
decreases for central labels in the ordinal scale. This is sensible in ordinal regres-
sion, given that the changes in the extreme labels should be less likely.

4 Experiments

This section describes the experiments used to evaluate the performance of the
ensembles generated with the variants of ordinal class switching proposed and
an analysis of the results of these experiments.

4.1 Methods compared

The experiments are designed to compare the accuracy of ensembles generated
with the two ordinal variants of class switching introduced in this paper (AOCS
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and GOCS, see Section 3 with standard (nominal) class switching (NCS, see Sec-
tion 2) and an ensemble that does not make use of a label perturbation strategy
for the different members of the ensemble (Orig). All the ensembles generated
use classification trees as base learners, as in previous studies on class switching
[19]. We used the implementation included in the Python scikit-learn machine
learning framework [20], in which an optimised version of the CART algorithm
is considered for tree induction. This implementation considers heuristic algo-
rithms, where locally optimal decisions are made at each node. This makes the
induction process non deterministic, therefore different trees can be obtained
depending on the seed used for random number generation. This introduces di-
versity for the Orig algorithm, where no perturbation of the dataset is performed.

Besides evaluating whether ensembles generated with ordinal class switching
methods are more accurate than their nominal counterparts, we compare their
performance also with other state-of-the-art ordinal classifiers analysed in [12];
namely, we consider the reduction from ordinal regression to binary support vec-
tor machine classifiers (REDSVM) [17], the reformulation of Gaussian processes
for ordinal regression (GPOR) [5] including automatic relevance determination,
and an ensemble method, the ORBoost method with all margins [15].

4.2 Measures of performance

Different metrics can be used to evaluate ordinal regression classifiers. The most
common ones are accuracy (Acc) and Mean Absolute Error (MAE). Acc is the
rate of correctly classified patterns:

Acc =
1

N

N∑
i=1

I(y∗i = yi),

where yi is the correct label of the ith instance, y∗i is the predicted one, and
I(·) is a Boolean test. This measure characterises the global performance in the
classification task, without taking into account the ordering of the classes.

The Mean Absolute Error is an average deviation in absolute value of the
predicted rank from the true one [1]:

MAE =
1

N

N∑
i=1

|O(yi)−O(y∗i )|,

where O, O(cj) = j, 1 ≤ j ≤ K. MAE values range from 0 to K − 1 (maxi-
mum deviation in number of ranks between two labels). Given that some of the
datasets considered are imbalanced, we also consider the average of the MAEs
across classes (AMAE) [1]:

AMAE =
1

K

K∑
j=1

MAEj =
1

K

K∑
j=1

1

nj

nj∑
i=1

|O(yi)−O(y∗i )|,

where nj is the number of patterns in class j. The value of AMAE range from
0 to K − 1.
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Table 1: Characteristics of the benchmark datasets used in the experiments.

Dataset #Pat. #Attr. #Classes Class distribution
ERA 1000 4 9 (92, 142, 181, 172,

158, 118, 88, 31, 18)
ESL 488 4 9 (2, 12, 38, 100,

116, 135, 62, 19, 4)
LEV 1000 4 5 (93, 280, 403, 197, 27)
SWD 1000 10 4 (32, 352, 399, 217)

automobile 205 71 6 (3, 22, 67, 54, 32, 27)
balance-scale 625 4 3 (288, 49, 288)

bondrate 57 37 5 (6, 33, 12, 5, 1)
eucalyptus 736 91 5 (180, 107, 130, 214, 105)
newthyroid 215 5 3 (30, 150, 35)
pasture 36 25 3 (12, 12, 12)

squash-stored 52 51 3 (23, 21, 8)
squash-unstored 52 52 3 (24, 24, 4)

tae 151 54 3 (49, 50, 52)
toy 300 2 5 (35, 87, 79, 68, 31)

winequality-red 1599 11 6 (10, 53, 681, 638, 199, 18)

4.3 Datasets and experimental setup

A battery of 15 ordinal regression datasets is used for evaluation. Their char-
acteristics are summarised in Table 1. The selected datasets are very different
in terms of numbers of patterns, attributes, classes and class distribution to en-
sure that the conclusions of the study cover a sufficiently wide rage of ordinal
regression problems. The experimental protocol is similar to the one used in
[12]. The results reported are averages over 30 random partitions into training
(3/4 of the data) and test sets (1/4 of the data), considering the same partitions
than in [12]4. Consequently, the results for GPOR, ORBoost and REDSVM were
directly taken from [12].

In all cases (Orig, NCS, AOCS and GOCS) ensembles of T = 1001 predic-
tors are used. The outputs of the ensemble classifiers are combined using a soft
voting rule: The global ensemble prediction for a given instance, characterised
by the vector of attributes x, is cj = arg maxci

∑T
t=1 pti(x), where pti(x) is the

probability assigned by the tth ensemble classifier to the class label ci. These
probabilities are approximated as the fraction of samples of the corresponding
class in the leaf node to which the instance is assigned. In class switching, after
preliminary experiments, p∗ is set to 0.6.

The hyperparameters for REDSVM are selected by using a nested five fold
cross-validation over the training set. The criterion used to determine the optimal
hyperparameter values is MAE. A Gaussian kernel function is used, and both
the value of the cost parameter C and the width of the kernel are determined
considering the range {10−3, 10−2, . . . , 103}. In GPOR, the hyperparameters are
determined by part of the optimisation process. Following the recommendation
given in [15], the ensemble size in ORBoost is T = 2000. In this method, nor-

4 Available at http://www.uco.es/grupos/ayrna/orreview

http://www.uco.es/grupos/ayrna/orreview
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malised sigmoid functions are used as base learners. The smoothness parameter,
γ is set to 4.

4.4 Results

In Table 2 the values of Acc, MAE and AMAE obtained by the different meth-
ods in the test set are presented. The measures are averages and standard devi-
ations (in a smaller font) over the 30 random training/test partitions.

In Table 3 the average ranks (in terms of the values of Acc, MAE and
AMAE in the test partitions for the 15 datasets) are presented. Specifically,
rank 1 corresponds to the best performance and rank 7 to the worst one. From
the results presented in this table, it is apparent that the Orig ensembles have
poor performance results. This is probably related to the low diversity among the
ensemble classifiers: since the same unperturbed training data are used to build
the individual classifiers, the only source of variability is the intrinsic randomness
of the base learning algorithm. Both ordinal class switching ensembles (AOCS
and GOCS) yield better performance than standard (nominal) class switching
(NCS). The geometric decrease (GOCS) leads to better overall results than the
arithmetic one (AOCS) when the performance is measured in terms of measures
such as Acc and MAE. However AOCS outperforms GOCS when the metric is
class-specific (e.g. using AMAE). In general, the accuracy is competitive with
respect to the state-of-the-art methods considered (GPOR and REDSVM). The
ordinal class-switching ensembles are clearly more accurate than ORBoost en-
sembles. The statistical significance of the differences of performance between
the different methods is determined using the the guidelines given in [6]. Specif-
ically, a non-parametric Friedman’s test (at a significance level of α = 0.10) has
been applied for Acc, MAE and AMAE rankings. The confidence interval is,
in this case, C0 = (0, F(α=0.10) = 1.85). The values of the statistic are FAcc:
2.53 /∈ C0, FMAE : 3.34 /∈ C0 and FAMAE : 2.17 /∈ C0. Consequently, the test re-
jects the null-hypothesis that, as measured by the average rank, the algorithms
have similar performance.

Considering AOCS and GOCS as the control methods, we apply the post-
hoc Holm’s test [6]. The performance of the i-th and j-th algorithms are are
compared using the statistic:

z =
Ri −Rj√
J(J+1)

6N

,

where J is the number of algorithms (J = 7, in our case), N is the number of
datasets (N = 15, in our case) and Ri is the average rank of the i-th method
(see Table 3). Asymptotically, this statistic is normally distributed, which allows
us to quantify the significance of the differences observed at the corresponding
significance level (α). The value of α is adjusted to take into account that multiple
comparisons are made. The adjustment is made by a a sequential procedure: the
ordered p-values are p1, p2, . . . , pJ−1, so that p1 ≤ p2 ≤ . . . ≤ pJ−1, and each pi
is compared with α/(J − i). The results of these tests are presented in Table 4.
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Table 2: Average and standard deviation of Acc, MAE and AMAE values ob-
tained for the different methods compared

Acc
Dataset Orig NCS AOCS GOCS GPOR ORBoost REDSVM
ERA 0.2570.024 0.2550.025 0 .2590.029 0.2580.028 0.2880.027 0.2400.021 0.2490.019
ESL 0.6420.033 0.6510.035 0.6520.035 0.6530.035 0.7130.031 0.6770.022 0 .7130.030

LEV 0.6140.021 0.6130.024 0 .6210.023 0.6210.022 0.6120.030 0.6090.029 0.6270.024

SWD 0.5400.029 0.5510.026 0.5620.025 0.5620.024 0.5780.031 0.5610.032 0 .5710.027

automobile 0.7880.061 0.8200.047 0.8160.049 0 .8170.050 0.6110.073 0.7060.055 0.6830.070
balance-scale 0.7720.019 0.8020.023 0.7750.024 0.7750.024 0.9660.012 0 .9680.016 0.9990.004

bondrate 0.4630.110 0.5240.074 0.5530.070 0.5590.070 0.5780.032 0.5420.091 0 .5640.055

eucalyptus 0.6090.030 0.6740.032 0 .6810.032 0.6790.032 0.6860.034 0.6200.029 0.6380.035
newthyroid 0.9400.038 0.9690.017 0 .9690.018 0 .9690.018 0.9660.024 0.9580.029 0.9680.023
pasture 0 .7620.105 0.7810.147 0.7530.138 0.7530.138 0.5220.178 0.7000.121 0.6740.116

squash-stored 0.6240.119 0 .6990.110 0.7040.101 0.7040.101 0.4510.100 0.6360.124 0.6210.132
squash-unstored 0.7640.112 0 .8350.085 0.8390.085 0.8390.085 0.6440.162 0.7030.098 0.7310.119

tae 0.5820.057 0.5700.071 0.5800.062 0.5800.062 0.3280.041 0 .5970.057 0.6010.068

toy 0.8850.033 0.9360.025 0.9340.026 0.9330.026 0 .9540.022 0.9480.025 0.9770.012

winequality-red 0.6150.020 0.6850.017 0 .6850.016 0.6860.016 0.6060.015 0.6660.021 0.6270.020

MAE
Dataset Orig NCS AOCS GOCS GPOR ORBoost REDSVM
ERA 1.3830.065 1.3720.065 1.3350.060 1.3340.061 1 .2410.051 1.2500.041 1.2190.044

ESL 0.3850.040 0.3700.042 0.3700.040 0.3670.040 0.3010.035 0.3400.025 0 .3060.037

LEV 0.4250.027 0.4290.031 0 .4170.027 0.4170.026 0.4220.031 0.4340.030 0.4100.023

SWD 0.4990.034 0.4840.031 0.4670.028 0.4660.027 0.4400.032 0.4630.036 0 .4450.031

automobile 0.3270.108 0.2630.074 0.2660.074 0 .2650.076 0.5940.131 0.3480.079 0.4030.092
balance-scale 0.2640.028 0.2300.031 0.2500.031 0.2500.031 0.0340.012 0 .0320.017 0.0010.004

bondrate 0.7390.163 0.6300.104 0.5920.105 0 .5870.103 0.6240.062 0.5310.110 0.6130.081
eucalyptus 0.4470.035 0.3500.036 0 .3430.036 0.3440.037 0.3310.038 0.4150.036 0.3950.036
newthyroid 0.0600.038 0.0310.017 0 .0310.018 0 .0310.018 0.0340.024 0.0420.029 0.0290.022

pasture 0 .2380.105 0.2190.147 0.2470.138 0.2470.138 0.4890.190 0.3000.121 0.3300.111
squash-stored 0.4240.156 0 .3350.132 0.3270.122 0.3270.122 0.6260.148 0.3640.124 0.3460.145

squash-unstored 0.2360.112 0 .1680.086 0.1610.085 0.1610.085 0.3560.162 0.3050.106 0.2620.122
tae 0.5210.092 0.5530.104 0.5230.095 0.5230.095 0.8610.155 0 .5040.088 0.4610.060

toy 0.1170.035 0.0640.025 0.0660.026 0.0670.026 0 .0460.022 0.0520.025 0.0240.013

winequality-red 0.4570.026 0.3510.019 0 .3490.019 0.3480.019 0.4250.017 0.3650.021 0.4170.020

AMAE
Dataset Orig NCS AOCS GOCS GPOR ORBoost REDSVM
ERA 1.4280.122 1.4050.114 1.3700.099 1 .3720.102 1.3720.108 1.4270.102 1.4130.086
ESL 0.5860.086 0.5720.081 0.5690.084 0.5690.083 0 .4770.094 0.5540.096 0.4590.116

LEV 0.6030.061 0.6030.054 0.6010.051 0 .6020.051 0.6540.050 0.6150.044 0.6200.046
SWD 0.5790.052 0.5810.054 0 .5790.052 0.5800.051 0.5890.040 0.5760.039 0.6080.034

automobile 0.3160.131 0.3200.127 0 .3140.120 0.3130.120 0.7920.200 0.4000.120 0.4640.135
balance-scale 0.4630.022 0.4400.022 0.4550.023 0.4550.023 0.0510.023 0 .0420.029 0.0010.003

bondrate 1.1670.320 1.2040.182 1.1610.168 1.1610.163 1.3600.122 0.8390.260 1 .1440.275

eucalyptus 0.4700.039 0.3780.040 0 .3700.038 0.3720.039 0.3620.040 0.4340.040 0.4290.039
newthyroid 0.0850.056 0 .0560.035 0.0610.039 0.0610.039 0.0620.049 0.0670.049 0.0480.040

pasture 0 .2380.105 0.2190.147 0.2470.138 0.2470.138 0.4890.190 0.3000.121 0.3300.111
squash-stored 0.4520.224 0.3920.197 0.3920.192 0.3920.192 0.7970.234 0.3680.129 0 .3860.162

squash-unstored 0.2070.135 0.1700.137 0 .1720.143 0 .1720.143 0.4430.226 0.3410.174 0.3830.184
tae 0.5210.092 0.5530.104 0.5220.095 0.5220.095 0.8630.164 0 .5030.087 0.4590.059

toy 0.1180.035 0.0630.023 0.0680.026 0.0710.028 0 .0440.025 0.0540.027 0.0240.016

winequality-red 0.9710.118 0.9580.076 0.9520.076 0 .9560.078 1.0650.065 0.9740.048 1.0800.083

For each dataset the best result is marked in bold face; the second best in italics

The tests conclude that the differences between AOCS and Orig are statistically
significant for Acc and MAE, as well as those between GOCS and Orig for the
same metrics. In terms of AMAE, AOCS is significantly better than GPOR and
Orig, while GOCS is significantly better than GPOR.
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Table 3: Average test rankings over the 15 datasets for Acc, MAE and AMAE.

Method Orig NCS AOCS GOCS GPOR ORBoost REDSVM

Acc 5.40 4.00 3 .13 3.07 4.20 4.67 3.53
MAE 5.80 4.20 3.40 3 .20 4.33 4.07 3.00
AMAE 5.00 3.93 3.00 3 .40 5.13 3.73 3.80

The best result is in bold face and the second one in italics

Table 4: Results of the Holm procedure using AOCS and GOCS as control meth-
ods: corrected α values, compared method and p-values, ordered by significance.

Acc

Control Method
AOCS GOCS

i α/(7 − i) Method p-value Method p-value

1 0.01667 Orig 0.00406+ Orig 0.00310+

2 0.02000 ORBoost 0.05191 ORBoost 0.04252
3 0.02500 GPOR 0.17630 GPOR 0.15079
4 0.03333 NCS 0.27190 NCS 0.23673
5 0.05000 REDSVM 0.61209 REDSVM 0.55412
6 0.10000 GOCS 0.93265 AOCS 0.93265

MAE

Control Method
AOCS GOCS

i α/(7 − i) Method p-value Method p-value

1 0.01667 Orig 0.00235+ Orig 0.00098+

2 0.02000 GPOR 0.23673 GPOR 0.15079
3 0.02500 NCS 0.31049 NCS 0.20489
4 0.03333 ORBoost 0.39802 ORBoost 0.27190
5 0.05000 REDSVM 0.61209 REDSVM 0.79985
6 0.10000 GOCS 0.79985 AOCS 0.79985

AMAE

Control Method
AOCS GOCS

i α/(7 − i) Method p-value Method p-value

1 0.01667 GPOR 0.00684+ GPOR 0.02799+

2 0.02000 Orig 0.01123+ Orig 0.04252
3 0.02500 NCS 0.23673 NCS 0.49896
4 0.03333 REDSVM 0.31049 AOCS 0.61209
5 0.05000 ORBoost 0.35254 REDSVM 0.61209
6 0.10000 GOCS 0.61209 ORBoost 0.67261

+: statistical difference with α = 0.10

5 Conclusions

In this work, we propose to take into account the ordering between classes to
improve the accuracy of class switching ensembles in ordinal regression problems.
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To this end, the class switching protocol is modified so that, in the noise injection
process, a class label that is closer to the original one has a higher probability
of being selected. Two variants of the class switching procedure are considered.
In the first one (AOCS) the probability of changing original label to another
one decreases arithmetically with the distance between the target label and the
original one. In the second one, the decrease with this distance is geometric
(GOCS). For global measures of performance, such as accuracy (Acc) or the
Mean Average Error (MAE), the geometric scheme provides the best results.
However, when measures that incorporate more information on the relationship
among the classes, such as the average of the MAEs across classes (AMAE),
are used, the arithmetic scheme performs better than the geometric scheme.
Both types of ordinal class switching ensembles are more accurate than standard
(nominal) class switching, which assumes that the classes are interchangeable
(i.e., it discards the information on the ordering of the classes). Furthermore,
their generalization capacity is comparable to, and in some cases better, the
state-of-the-art ordinal regression methods.
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