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Min-Max Theorems for Packing and Covering Odd (u, v)-trails∗

Sharat Ibrahimpur† Chaitanya Swamy†

Abstract

We investigate the problem of packing and covering odd (u, v)-trails in a graph. A (u, v)-trail is

a (u, v)-walk that is allowed to have repeated vertices but no repeated edges. We call a trail odd if

the number of edges in the trail is odd. Let ν(u, v) denote the maximum number of edge-disjoint odd

(u, v)-trails, and τ(u, v) denote the minimum size of an edge-set that intersects every odd (u, v)-trail.

We prove that τ(u, v) ≤ 2ν(u, v)+1. Our result is tight—there are examples showing that τ(u, v) =
2ν(u, v) + 1—and substantially improves upon the bound of 8 obtained in [4] for τ(u, v)/ν(u, v). Our

proof also yields a polynomial-time algorithm for finding a cover and a collection of trails satisfying the

above bounds.

Our proof is simple and has two main ingredients. We show that (loosely speaking) the problem can

be reduced to the problem of packing and covering odd ({u, v}, {u, v})-trails losing a factor of 2 (either

in the number of trails found, or the size of the cover). Complementing this, we show that the odd-

({u, v}, {u, v})-trail packing and covering problems can be tackled by exploiting a powerful min-max

result of [2] for packing vertex-disjoint nonzero A-paths in group-labeled graphs.

1 Introduction

Min-max theorems are a classical and central theme in combinatorics and combinatorial optimization, with

many such results arising from the study of packing and covering problems. For instance, Menger’s the-

orem [10] gives a tight min-max relationship for packing and covering edge-disjoint (or internally vertex-

disjoint) (u, v)-paths: the maximum number of edge-disjoint (or internally vertex-disjoint) (u, v)-paths (i.e.,

packing number) is equal to the minimum number of edges (or vertices) needed to cover all u-v paths

(i.e., covering number); the celebrated max-flow min-cut theorem generalizes this result to arbitrary edge-

capacitated graphs. Another well-known example is the Lucchesi-Younger theorem [8], which shows that

the maximum number of edge-disjoint directed cuts equals the minimum-size of an arc-set that intersects

every directed cut.

Motivated by Menger’s theorem, it is natural to ask whether similar (tight or approximate) min-max

theorems hold for other variants of path-packing and path-covering problems. Questions of this flavor have

attracted a great deal of attention. Perhaps the most prominent results known of this type are Mader’s min-

max theorems for packing vertex-disjoint S-paths [9, 14], which generalize both the Tutte-Berge formula and

Menger’s theorem, and further far-reaching generalizations of this due to Chudnovsky et al. [2] and Pap [11]

regarding packing vertex-disjoint non-zero paths and non-returning A-paths in group-labeled graphs and

permutation-labeled graphs respectively.

We consider a different variant of the (u, v)-path packing and covering problems, wherein we impose

parity constraints on the paths. Such constraints naturally arise in the study of multicommodity-flow prob-

lem, which can be phrased in terms of packing odd circuits in a signed graph, and consequently, such

∗A preliminary version [7] appeared in the Proceedings of the Internaitonal Conference on Integer Programming and Combina-

torial Optimization (IPCO), 2017.
†{sharat.ibrahimpur, cswamy}@uwaterloo.ca. Dept. of Combinatorics and Optimization, Univ. Waterloo, Wa-

terloo, ON N2L 3G1. Supported in part by NSERC grant 327620-09 and an NSERC Discovery Accelerator Supplement award.
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odd-circuit packing and covering problems have been widely investigated (see, e.g., [15], Chapter 75). Fo-

cusing on (u, v)-paths, a natural variant that arises involves packing and covering odd (u, v)-paths, where a

(u, v)-path is odd if it contains an odd number of edges. However, there are simple examples [4] showing

an unbounded gap between the packing and covering numbers in this setting.

In light of this, following [4], we investigate the min-max relationship for packing and covering odd

(u, v)-trails. An odd (u, v)-trail is a (u, v)-walk with no repeated edges and an odd number of edges.

Churchley et al. [4] seem to have been the first to consider this problem. They showed that the (worst-case)

ratio between the covering and packing numbers for odd (u, v)-trails is at most 8—which is in stark contrast

with the setting of odd (u, v) paths, where the ratio is unbounded—and at least 2, so there is no tight min-

max theorem like Menger’s theorem. They motivate the study of odd (u, v)-trails from the perspective of

studying totally-odd immersions. In particular, determining if a graph G has k edge-disjoint odd (u, v)-trails

is equivalent to deciding if the 2-vertex graph with k parallel edges has a totally-odd immersion into G.

Our results. We prove a tight bound on the ratio of the covering and packing numbers for odd (u, v)-
trails, which also substantially improves the bound of 8 shown in [4] for this covering-vs-packing ratio.1 Let

ν(u, v) and τ(u, v) denote respectively the packing and covering numbers for odd (u, v)-trails. Our main

result (Theorem 3.1) establishes that τ(u, v) ≤ 2ν(u, v) + 1. Furthermore, we obtain in polynomial time a

certificate establishing that τ(u, v) ≤ 2ν(u, v) + 1. This is because we show that, for any integer k ≥ 0,

we can compute in polynomial time, a collection of k edge-disjoint odd (u, v)-trails, or an odd-(u, v)-trail

cover of size at most 2k− 1. As mentioned earlier, there are examples showing τ(u, v) = 2ν(u, v) + 1 (see

Fig. 1), so our result settles the question of obtaining worst-case bounds for the τ(u, v)/ν(u, v) ratio.

Notably, our proof is also simple, and noticeably simpler than (and different from) the one in [4]. We

remark that the proof in [4] constructs covers of a certain form; in Appendix C, we prove a lower bound

showing that such covers cannot yield a bound better than 3 on the covering-vs-packing ratio.

Our techniques. We focus on showing that for any k, we can obtain either k edge-disjoint odd (u, v)-trails

or a cover of size at most 2k − 1. This follows from two other auxiliary results which are potentially of

independent interest.

Our key insight is that one can decouple the requirements of parity and u-v connectivity when con-

structing odd (u, v)-trails. More precisely, we show that if we have a collection of k edge-disjoint odd

({u, v}, {u, v})-trails, that is, odd trails that start and end at a vertex of {u, v}, and the u-v edge connectiv-

ity, denoted λ(u, v), is at least 2k, then we can obtain k edge-disjoint odd (u, v)-trails (Theorem 3.3). Notice

that if λ(u, v) < 2k, then a min u-v cut yields a cover of the desired size. So the upshot of Theorem 3.3

is that it reduces our task to the relaxed problem of finding k edge-disjoint odd ({u, v}, {u, v})-trails. The

proof of Theorem 3.3 relies on elementary arguments (see Section 4). We show that given a fixed collection

of 2k edge-disjoint (u, v)-paths, we can always modify our collection of edge-disjoint trails so as to make

progress by decreasing the number of contacts that the paths make with the trails and/or by increasing the

number of odd (u, v) trails in the collection. Repeating this process a small number of times thus yields the

k edge-disjoint odd (u, v)-trails.

Complementing Theorem 3.3 we prove that we can either obtain k edge-disjoint ({u, v}, {u, v})-trails,

or find an odd-({u, v}, {u, v})-trail cover (which is also an odd-(u, v)-trail cover) of size at most 2k − 2
(Theorem 3.2). This proof relies on a powerful result of [2] about packing and covering nonzero A-paths in

group-labeled graphs (see Section 5, which defines these concepts precisely). The idea here is that [2] show

that one can obtain either k vertex-disjoint nonzero A-paths or a set of at most 2k − 2 vertices intersecting

all nonzero A-paths, and this can be done in polytime [1, 5] (see also [12]). This is the same type of result

that we seek, except that we care about edge-disjoint trails, as opposed to vertex-disjoint paths. However,

by moving to a suitable gadget graph (essentially the line graph) where we replace each vertex by a clique,

1This bound was later improved to 5 [3, 6]. We build upon some of the ideas in [6].
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we can encode trails as paths, and edge-disjointness is captured by vertex-disjointness. Applying the result

in [2] then yields Theorem 3.2.

Related work. Churchley et al. [4] initiated the study of min-max theorems for packing and covering odd

(u, v)-trails. They cite the question of totally-odd immersions as motivation for their work. We say that a

graph H has an immersion [13] into another graph G, if one can map VH bijectively to some U ⊆ V (G),
and EH to edge-disjoint trails connecting the corresponding vertices in U . (As noted by [4], trails are more

natural objects than paths in the context of reversing an edge-splitting-off operation, as this, in general,

creates trails.) An immersion is called totally odd if all trails are of odd length. As noted earlier, the

question of deciding if a graph G has k edge-disjoint odd (u, v)-trails can be restated as determining if the

2-vertex graph with k parallel edges has a totally-odd immersion into G.

In an interesting contrast to the unbounded gap between the covering and packing numbers for odd

(u, v)-paths, [16] showed that the covering number is at most twice the fractional packing number (which

is the optimal value of the natural odd-(u, v)-path-packing LP).

The notions of odd paths and trails can be generalized and abstracted in two ways. The first involves

signed graphs [17], and there are various results on packing odd circuits in signed graphs, which are closely

related to multicommodity flows (see [15], Chapter 75). The second involves group-labeled graphs, for

which [2, 1] present strong min-max theorems and algorithms for packing and covering vertex-disjoint

nonzero A-paths. Pap further generalized the latter results to the setting of packing vertex-disjoint non-

returning A-paths in permutation-labeled graphs. He obtained both a min-max theorem for the packing

problem [11] (which is analogous to the min-max theorem in [2]), and devised an algorithm for computing

a maximum-cardinality packing [12].

2 Preliminaries and notation

Let G = (V,E) be an undirected graph. For X ⊆ V , we use E(X) to denote the set of edges having both

endpoints in X and δ(X) to denote set of edges with exactly one endpoint in X. For disjoint X,Y ⊆ V , we

use E(X,Y ) to denote the set of edges with one end in X and one end in Y .

A (p, q)-walk is a sequence (x0, e1, x1, e2, x2, . . . , er, xr), where x0, . . . , xr ∈ V with x0 = p, xr = q,

and ei is an edge with ends xi−1, xi for all i = 1, . . . , r. The vertices x1, . . . , xr−1 are called the internal

vertices of this walk. We say that such a (p, q)-walk is a:

• (p, q)-path, if either r > 0 and all the xis are distinct (so p 6= q), or r = 0, which we call a trivial

path;

• (p, q)-trail if all the eis are distinct (we could have p = q).

Thus, a (p, q)-trail is a (p, q)-walk that is allowed to have repeated vertices but no repeated edges. Given

vertex-sets A,B ⊆ V , we say that a trail is an (A,B)-trail to denote that it is a (p, q)-trail for some

p ∈ A, q ∈ B. A (p, q)-trail is called odd (respectively, even) if it has an odd (respectively, even) number of

edges.

Definition 2.1. Let G = (V,E) be a graph, and u, v ∈ V (we could have u = v).

(a) The packing number for odd (u, v)-trails, denoted ν(u, v;G), is the maximum number of edge-

disjoint odd (u, v)-trails in G.

(b) We call a subset of edges C an odd (u, v)-trail cover of G if it intersects every odd (u, v)-trail in

G. The covering number for odd (u, v)-trails, denoted τ(u, v;G), is the minimum size of an odd

(u, v)-trail cover of G.

We drop the argument G when it is clear from the context.

For any two distinct vertices x, y of G, we denote the size of a minimum (x, y)-cut in G by λ(x, y;G),
and drop G when it is clear from the context. By the max-flow min-cut (or Menger’s) theorem, λ(x, y;G)

3



is also the maximum number of edge-disjoint (x, y)-paths in G.

3 Main results and proof overview

Our main result is the following tight approximate min-max theorem relating the packing and covering

numbers for odd (u, v) trails.

Theorem 3.1. Let G = (V,E) be an undirected graph, and u, v ∈ V . For any nonnegative integer k, we

can obtain in polynomial time, either:

1. k edge-disjoint odd (u, v)-trails in G, or

2. an odd (u, v)-trail cover of G of size at most 2k − 1.

Hence, we have τ(u, v;G) ≤ 2 · ν(u, v;G) + 1.

Theorem 3.1 is tight, as can be seen from Fig. 1; we show in Appendix A that ν(u, v;G) = k and

τ(u, v;G) = 2k + 1 for this instance. (The fact that Theorem 3.1 is tight was communicated to us by [3],

who provided a different tight example.)

u v

w

a1

b1

c1

d1

e1

f1

g1

h1

ak

bk

ck

dk

ek

fk

gk

hk

...

Figure 1: Graph with ν(u, v) = k, τ(u, v) = 2k + 1.

Theorem 3.2. Let G = (V,E) be an undirected graph and s ∈ V . For any nonnegative integer k, we can

obtain in polynomial time:

1. k edge-disjoint odd (s, s)-trails in G, or

2. an odd (s, s)-trail cover of G of size at most 2k − 2.

Theorem 3.1 follows readily from the following two results.

Theorem 3.3. Let G = (V,E) be an undirected graph, and u, v ∈ V with u 6= v. Let T̂ be a collection

of edge-disjoint odd ({u, v}, {u, v})-trails in G. If λ(u, v) ≥ 2 · |T̂ |, then we can obtain in polytime |T̂ |
edge-disjoint odd (u, v)-trails in G.

Proof of Theorem 3.1. If u = v, then Theorem 3.2 yields the desired statement. So suppose u 6= v. We

may assume that λ(u, v) ≥ 2k, since otherwise a minimum (u, v)-cut in G is an odd (u, v)-trail cover of
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the required size. Let Euv be the uv edge(s) in G (which could be ∅). Let Ĝ be obtained from G − Euv

by identifying u and v into a new vertex s. (Note that Ĝ has no loops.) Any odd (u, v)-trail in G − Euv

maps to an odd (s, s)-trail in Ĝ. We apply Theorem 3.2 to Ĝ, s, k′ = k − |Euv|. If this returns an odd-

(s, s)-trail cover C of size at most 2k′ − 2, then C ∪ Euv is an odd-(u, v)-trail cover for G of size at most

2k−2. If we obtain a collection of k′ edge-disjoint odd (s, s)-trails in Ĝ, then these together with Euv yield

k edge-disjoint odd ({u, v}, {u, v})-trails in G. Theorem 3.3 then yields the required k edge-disjoint odd

(u, v)-trails. Polytime computability follows from the polytime computability in Theorems 3.2 and 3.3.

Theorem 3.3 is our chief technical insight, which facilitates the decoupling of the parity and u-v con-

nectivity requirements of odd (u, v)-trails, thereby driving the entire proof. (It can be seen as a refinement

of Theorem 5.1 in [6].) While Theorem 3.2 returns ({u, v}, {u, v})-trails with the right parity, Theorem 3.3

supplies the missing ingredient needed to convert these into (u, v)-trails (of the same parity). We give an

overview of the proofs of Theorems 3.2 and 3.3 below before delving into the details in the subsequent

sections. We remark that both Theorem 3.2 and Theorem 3.3 are tight as well, as we show in Appendices D

and B respectively.

The proof of Theorem 3.3 relies on elementary arguments and proceeds as follows (see Section 4). Let

P be a collection of 2 · |T̂ | edge-disjoint (u, v)-paths. We provide a simple, efficient procedure to iteratively

modify T̂ (whilst maintaining |T̂ | edge-disjoint odd ({u, v}, {u, v})-trails) and eventually obtain |T̂ | odd

(u, v)-trails. Let P0 ⊆ P be the collection of paths of P that are edge-disjoint from trails in T̂ . First, we

identify the trivial case where |P0| is sufficiently large. If so, these paths and T̂ directly yield odd (u, v)-
trails as follows: odd-length paths in P0 are already odd (u, v)-trails, and even-length paths in P0 can be

combined with odd (u, u)- and odd (v, v)- trails to obtain odd (u, v)-trails.

The paths in P \ P0, all share at least one edge with some trail in T̂ . Each path is a sequence of edges

from u to v. If the first edge that a path P ∈ P shares with a trail in T̂ lies on a (v, v)-trail T , then it is

easy to use parts of P and T to obtain an odd (u, v)-trail that is edge-disjoint from all other trails in T̂ , and

thereby make progress by increasing the number of odd (u, v)-trails in the collection. A similar conclusion

holds if the last edge that a path shares with a trail in T̂ lies on a (u, u)-trail. If neither of the above cases

apply, then the paths in P \ P0 are in a sense highly tangled (which we formalize later) with trails in T̂ . We

then infer that P \ P0 and T̂ must satisfy some simple structural properties, and leverage this to carefully

modify the collection T̂ (while preserving edge-disjointness) so that the new set of trails are “less tangled”

with P than T̂ , and thereby make progress. Continuing this procedure a polynomial number of times yields

the desired collection of |T̂ | edge-disjoint odd (u, v)-trails.

The proof of Theorem 3.2 relies on the key observation that we can cast our problem as the problem of

packing and covering nonzero A-paths in a group-labeled graph (H,Γ) [2] for a suitable choice of A,H ,

and Γ (see Section 5). In the latter problem, (1) H denotes an oriented graph whose arcs are labeled with

elements of a group Γ; (2) an A-path is a path in the undirected version of H whose ends lie in A; and (3)

the (Γ-) length of an A-path P is the sum of ±γes (suitably defined) for arcs in P , and a nonzero A path

is one whose length is not zero (where zero is the identity element of Γ). Chudnovsky et al. [2] show that

either there are k vertex-disjoint non-zero A-paths, or there is a vertex-set of size at most 2k−2 intersecting

every non-zero A-path (Theorem 1.1 in [2]). We show that applying their result to a suitable “gadget graph”

H (essentially the line graph of G), yields Theorem 3.2 (see Section 5). Polytime computability follows

because a subsequent paper [1] gave a polytime algorithm for finding a maximum-size collection of vertex-

disjoint non-zero A-paths, and it is implicit in their proof that this also yields a suitable vertex-covering of

non-zero A-paths [5].

We remark that while the use of the packing-covering result in [2] yields quite a compact proof of

Theorem 3.2, it also makes the resulting proof somewhat opaque since we apply the result in [2] to the

gadget graph. However, it is possible to translate the min-max theorem for packing vertex-disjoint nonzero
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A-paths proved in [2] to our setting and obtain the following more-accessible min-max theorem for packing

edge-disjoint odd (s, s)-trails (stated in terms of G and not the gadget graph). In Section 6, we prove that

ν(s, s;G) = min

(
|E(S)− F |+

∑

C∈comp(G−S)

⌊
|E(S,C)|

2

⌋)
(1)

where the minimum is taken over all bipartite subgraphs (S,F ) of G such that s ∈ S.

Notice that Theorem 3.2 follows easily from this min-max formula: if (S∗, F ∗) is a bipartite sub-

graph of G with s ∈ S∗ that attains the minimum above, then the edges in E(S∗) − F combined with

max{0, |E(S∗, C)| − 1} edges from E(S∗, C) for every component C of G − S∗ yields a cover of size at

most twice the RHS of (1).

4 Proof of Theorem 3.3: converting edge-disjoint odd ({u, v}, {u, v})-trails

to edge-disjoint odd (u, v)-trails

Recall that T̂ is a collection of edge-disjoint odd ({u, v}, {u, v})-trails in G. We denote the subset of odd

(u, u)-trails, odd (v, v)-trails, and odd (u, v)-trails in T̂ by T̂uu, T̂vv , and T̂uv, respectively. Let kuu(T̂ ) =
|T̂uu|, kvv(T̂ ) = |T̂vv |, and kuv(T̂ ) = |T̂uv|. To keep notation simple, we will drop the argument T̂ when its

clear from the context. Since we are given that λ(u, v) ≥ 2· |T̂ |, we can obtain a collection P of 2· |T̂ | edge-

disjoint (u, v)-paths in G. In the sequel, while we will modify our collection of odd ({u, v}, {u, v})-trails,

P stays fixed.

We now introduce the key notion of a contact between a trail T and a (u, v)-path P . Suppose that

P = (x0, e1, x1, . . . , er, xr) for some r ≥ 1.

Definition 4.1. A contact between P and T is a maximal subpath S of P containing at least one edge such

that S is also a subtrail of T i.e., for 0 ≤ i < j ≤ r, we say that (xi, ei+1, xi+1, . . . , ej , xj) is a contact

between P and T if (xi, ei+1, xi+1, . . . , ej , xj) is a subtrail of T , but neither (xi−1, ei, xi, . . . ej , xj) (if

i > 0) nor (xi, ei+1, xi+1, . . . , xj , ej+1, xj+1) (if j < r) is a subtrail of T .

Define C(P, T ) =
∣∣∣
{
(i, j) : 0 ≤ i < j ≤ r, (xi, ei+1, xi+1, . . . , ej , xj)is a contact between P and T

}∣∣∣

By definition, contacts between P and T are edge disjoint. For an edge-disjoint collection T of trails,

we use C(P,T ) to denote
∑

T∈T C(P, T ). So if C(P,T ) = 0, then P is edge-disjoint from every trail in

T . Otherwise, we use the term first contact of P to refer to the contact arising from the first edge that P
shares with some trail in T (note that P is a (u, v)-walk so is a sequence from u to v). Similarly, the last

contact of P is the contact arising from the last edge that P shares with some trail in T . If C(P,T ) = 1,

then the first and last contacts of P are the same. We further overload notation and use C(P,T ) to denote∑
P∈P C(P,T ) =

∑
P∈P,T∈T C(P, T ). We use C(P,T ) as a measure of how “tangled” T is with P. The

following lemma classifies five different cases that arise for any pair of edge-disjoint collections of odd

({u, v}, {u, v})-trails and (u, v)-paths.

Lemma 4.2. Let T be a collection of edge-disjoint odd ({u, v}, {u, v})-trails in G. If |P| ≥ 2 · |T |, then

one of the following conditions holds.

(a) There are at least kuu(T ) + kvv(T ) paths in P that make no contact with any trail in T .

(b) There exists a path P ∈ P that makes its first contact with a trail T ∈ Tvv.

(c) There exists a path P ∈ P that makes its last contact with a trail T ∈ Tuu.

(d) There exist three distinct paths P1, P2, P3 ∈ P that make their first contact with a trail T ∈ Tuu∪Tuv.
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(e) There exist three distinct paths P1, P2, P3 ∈ P that make their last contact with a trail T ∈ Tuv ∪Tvv.

Proof. To keep notation simple, we drop the argument T in the proof. Suppose that conclusion (a) does not

hold. Then there are at at least 2 · |T | − (kuu + kvv − 1) = 2kuv + kuu + kvv + 1 paths in P that make at

least one contact with some trail in T . Let P ′ ⊆ P be this collection of paths. If either conclusions (b) or

(c) hold (for some P ∈ P ′), then we are done, so assume that this is not the case. Then, every path P ∈ P ′

makes its first contact with a trail in Tuu ∪ Tuv and its last contact with a trail in Tuv ∪ Tvv. Note that the

number of first and last contacts are both at least 2kuv + kuu + kvv + 1 > 2 · min(kuv + kuu, kuv + kvv).
So if kuu ≤ kvv , then by the Pigeonhole principle, there are at least 3 paths that make their first contact with

some T ∈ Tuu ∪ Tuv, i.e., conclusion (d) holds. Similarly, if kvv ≤ kuu, then conclusion (e) holds.

We now leverage the above classification and show that in each of the above five cases, we can make

progress by “untangling” the trails (i.e., decreasing C(P,T )) and/or increasing the number of odd (u, v)-
trails in our collection.

Lemma 4.3. Let T be a collection of edge-disjoint odd ({u, v}, {u, v})-trails. If |P| ≥ 2·|T |, we can obtain

another collection T ′ of edge-disjoint odd ({u, v}, {u, v})-trails such that at least one of the following holds.

(i) kuv(T
′) = |T |.

(ii) C(P,T ′) ≤ C(P,T ) and kuv(T
′) = kuv(T ) + 1.

(iii) C(P,T ′) ≤ C(P,T )− 1 and kuv(T
′) ≥ kuv(T )− 1.

Proof. If kuv(T ) = |T |, then (i) holds trivially by taking T ′ = T . So we may assume that T contains some

odd (u, u)- or odd (v, v)-trail. Observe that T and P satisfy the conditions of Lemma 4.2, so at least one of

the five conclusions of Lemma 4.2 applies. We handle each case separately.

(a) At least kuu(T ) + kvv(T ) paths in P have zero contacts with T . Let P0 = {P ∈ P : C(P,T ) = 0}.

Consider some P ∈ P0. If P is odd, we can replace an odd (u, u)- or odd (v, v)- trail in T with P . If

P is even, then P can be combined with an odd (u, u)- or odd (v, v)- trail to obtain an odd (u, v)-trail.

Since |P0| ≥ kuu(T ) + kvv(T ), we create kuu(T ) + kuv(T ) odd (u, v)-trails this way, and this new

collection T ′ satisfies (i).

(b) Some P ∈ P makes its first contact with an odd (v, v)-trail T ∈ T . Let the first vertex in the first

contact between P and T be x. Observe that x partitions the trail T into two subtrails S1 and S2.

Since T is an odd trail, exactly one of S1 and S2 is odd. We can now obtain an odd (u, v)-trail T ′

by traversing P from u to x, and then traversing S1 or S2, whichever yields odd parity (see Fig. 2).

Since P already made a contact with T , we have C(P, T ′) ≤ C(P, T ), and C(Q,T ′) ≤ C(Q,T ) for

any other path Q ∈ P . Thus, taking T ′ = (T ∪ {T ′}) \ {T}, we have C(P,T ′) ≤ C(P,T ), and (ii)

holds.

u
v

x T1 = u −→
P

x −→
S1

v

T2 = u −→
P

x −→
S2

vS1

S2

P

Figure 2: Path P makes its first contact with an odd (v, v)-trail.
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(c) Some P ∈ P makes its last contact with an odd (u, u)-trail T ∈ T . This is completely symmetric to

(b), so a similar strategy works and we satisfy (ii).

(d) Paths P1, P2, P3 ∈ P that make their first contact with an odd (u, {u, v})-trail T ∈ T . Note that all

contacts between paths in P and trails in T are edge disjoint, since the paths in P are edge disjoint and

the trails in T are edge disjoint. For i = 1, 2, 3, let the first vertex in the first contact of Pi (with T )

be xi. Let Qi denote the subpath of Pi between u and xi. Note that T is a sequence of edges from u
to some vertex in {u, v}. Without loss of generality, assume that in T , the first contact of P1 appears

before the first contact of P2, which appears before the first contact of P3. The vertices x1, x2, x3
partition the trail T into four subtrails S0, S1, S2, S3 (see Fig. 3). For a trail X, we denote the reverse

sequence of X by X . Now consider the following trails (where + denotes concatenation):

T1 = S0 +Q1, T2 = Q1 + S1 +Q2, T3 = Q2 + S2 +Q3, T4 = Q3 + S3.

Observe that the disjoint union of edges in T1, T2, T3, and T4 has the same parity as that of T , and

hence at least one of the Tis is an odd trail; call this trail T ′. Let T ′ = T ∪{T ′}\{T}. By construction,

every Ti avoids at least one of the (first) contacts made by P1, P2, or P3 (with T ). Also, for any other

path Q ∈ P \ {P1, P2, P3}, we have C(Q,T ′) ≤ C(Q,T ). Therefore, C(P,T ′) ≤ C(P,T ) − 1. It

could be that T was an odd (u, v)-trail, which is now replaced by an odd (u, u)-trail, so kuv(T
′) ≥

kuv(T )− 1. So we satisfy (iii).

u v

x1

x2

x3
P1

P2

P3

S0

S1

S2

S3

T1 = u −→
S0

x1 −−→
P 1

u

T2 = u −→
P1

x1 −→
S1

x2 −−→
P 2

u

T3 = u −→
P2

x2 −→
S2

x3 −−→
P 3

u

T4 = u −→
P3

x3 −→
S3

v

Figure 3: Paths P1, P2, P3 make their first contact with an odd (u, v)-trail.

(e) Paths P1, P2, P3 ∈ P make their last contact with an odd ({u, v}, v)-trail in T . This is completely

symmetric to (d) and the same approach works, so we again satisfy (iii).

Theorem 3.3 now follows by simply applying Lemma 4.3 starting with the initial collection T 0 := T̂
until conclusion (i) of Lemma 4.3 applies. The T ′ returned by this final application of Lemma 4.3 then

satisfies the theorem statement.

We now argue that this process terminates in at most 2·|E(G)|+|T̂ | steps, which will conclude the proof.

Let k = |T̂ |. Consider the following potential function defined on a collection T of k edge-disjoint odd

({u, v}, {u, v})-trails: φ(T ) := 2 · C(P,T )− kuv(T ). Consider any iteration where we invoke Lemma 4.3

and move from a collection T to another collection T ′ with kuv(T
′) < k. Then, either conclusion (ii) or (iii)

of Lemma 4.3 applies, and it is easy to see that Φ(T ′) ≤ φ(T )−1. Finally, we have −k ≤ Φ(T ) ≤ 2·|E(G)|
for all T since 0 ≤ C(P,T ) ≤ |E(G)| as the contacts between paths in P and trails in T are edge-disjoint,

so the process terminates in at most 2|E(G)| + k steps.
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5 Proof of Theorem 3.2

Our proof relies on two reductions both involving non-zero A-paths in a group-labeled graph, which we

now formally define. A group-labeled graph is a pair (H,Γ), where Γ is a group, and H = (N,E′) is an

oriented graph (i.e., for any u, v ∈ N , if (u, v) ∈ E′ then (v, u) /∈ E′) whose arcs are labeled with elements

of Γ. All addition (and subtraction) operations below are always with respect to the group Γ. A path P in H
is a sequence (x0, e1, x1, . . . , er, xr), where the xis are distinct, and each ei has ends xi, xi+1 but could be

oriented either way (i.e., as (xi, xi+1) or (xi+1, xi)). (So upon removing arc directions, P yields a path in

the undirected version of H .) We say that P traverses ei in the direction (xi, xi+1). The Γ-length (or simply

length) of P , denoted γ(P ), is the sum of ±γes for arcs in P , where we count +γe for e if P ’s traversal of

e matches e’s orientation and −γe otherwise. Given A ⊆ N , an A-path is a path (x0, e1, . . . , er, xr) where

r ≥ 1, and x0, xr ∈ A; finally, call an A-path P a nonzero A-path if γ(P ) 6= 0 (where 0 denotes the identity

element for Γ).

Chudnovsky et al. [2] proved the following theorem as a consequence of a min-max formula they ob-

tain for the maximum number of vertex-disjoint nonzero A-paths. Subsequently, [1] devised a polytime

algorithm to compute the maximum number of vertex-disjoint non-zero A-paths. Their algorithm also im-

plicitly computes the quantities needed in (the minimization portion of) their min-max formula to show the

optimality of the collection of A-paths they return [5]; this in turn easily yields the vertex-set mentioned in

Theorem 5.1.

Theorem 5.1 ([2, 1]). Let
(
H = (N,E′),Γ

)
be a group-labeled graph, and A ⊆ V . Then, for any integer

k, one can obtain in polynomial time, either:

1. k vertex-disjoint nonzero A-paths, or

2. a set of at most 2k − 2 vertices that intersects every nonzero A-path.

Recall that G is the undirected graph in the theorem statement, and s ∈ V . For a suitable choice of a

group-labeled graph (H,Γ), and a vertex-set A, we show that: (a) vertex-disjoint nonzero A-paths in (H,Γ)
yield edge-disjoint odd (s, s)-trails; and (b) a vertex-set covering all nonzero A-paths in (H,Γ) yields an

odd (s, s)-trail cover of G. Combining this with Theorem 5.1 finishes the proof.

Since we are dealing with parity, it is natural to choose Γ = Z2 (so the orientation of edges in H will

not matter). To translate vertex-disjointness (and vertex-cover) to edge-disjointness (and edge-cover), we

essentially work with the line graph of G, but slightly modify it to incorporate edge labels. We replace each

vertex x ∈ V with a clique of size degG(x), with each clique-node corresponding to a distinct edge of G
incident to x; we use [x] to denote this clique, both its set of nodes and edges; the meaning will be clear from

the context. (Note that if degG(x) = 0, then there are no nodes and edges corresponding to x in H; this is

fine since isolated nodes in G can be deleted without affecting anything.) For every edge e = xy ∈ E, we

create an edge between the clique nodes of [x] and [y] corresponding to e. We arbitrarily orient the edges

to obtain H . We give each clique edge a label of 0, and give every other edge a label of 1. Finally, we let

A = [s].

Lemma 5.2. The following properties hold.

(a) Every A-path P in H maps to an (s, s)-trail T = π(P ) in G such that γ(P ) = 1 iff T is an odd trail.

(b) If two A-paths P,Q are vertex disjoint then the (s, s)-trails π(P ) and π(Q) are edge disjoint.

(c) Every (s, s)-trail T in G with at least one edge maps to an A-path P = σ(T ) in G such that: T is an

odd trail iff γ(P ) = 1, and P contains a vertex x iff T contains the corresponding edge of G.

Proof. The proof is straightforward. By definition, the 1-labeled edges of H are in bijective correspondence

with the edges of G.
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For part (a), let P = (x0, e1, . . . , er, xr) be an A-path in H . Let P ′ = (ei1 , . . . , eiq ) be the subsequence

of P consisting of the 1-labeled edges of P . If P ′ = (), then define π(P ) to be the trivial (s, s)-trail

(s), which satisfies the required property. Let fj be the edge of G corresponding to eij . Then, for j =
2, . . . , q − 1, we have fj = uj−1uj , where uj−1 is such that [uj−1] contains one end of both eij and eij−1

,

and uj is such that [uj ] contains one end of both eij and eij+1
. The end of ei1 not in [u1] must lie in [s] (as

all edges of P occurring before ei1 have label 0, and so must be edges of [s]). Similarly, the end of eiq that

does not lie in [uq−1] must lie in [s] (as all edges of P occurring after eiq must be edges of [s]). Therefore,

the sequence f1, . . . , fq yields an (s, s)-trail π(P ) in G, and we have |π(P )| = |P ′| = γ(P ). Observe that

an edge f of G lies in π(P ) iff the corresponding 1-labeled edge of H lies in P .

For part (b), let T = π(P ), T ′ = π(Q) be the corresponding (s, s)-trails. We may assume that T and T ′

contain at least one edge, otherwise the statement is vacuously true. Since P and Q are vertex disjoint, their

subsequences of 1-labeled edges, which map to the edges of T and T ′, do not contain any common edges,

so T and T ′ are edge disjoint.

For part (c), consider an (s, s)-trail (u0 = s, f1, . . . , fr, ur = s), where r ≥ 1. Each fi maps to a

distinct 1-labeled edge ei of H . The edges ei and ei+1 both have one end incident to a distinct node in [ui],
and there is a clique edge joining these ends. Since the fis are all distinct and no two 1-labeled edges of H
share an endpoint, the ends of all the eis are distinct. Let x0 be the end of e1 in [u0] = [s], and xr be the

end of er in [ur] = [s]. Note that x0 6= xr since e1 6= er. So the edges ei interspersed with the clique edges

from [ui] yield an (x0, xr)-path σ(T ) in H , which is therefore an A-path. Also, γ(P ) = r mod 2, so P is

a nonzero A-path iff T is an odd trail. This proves part (ii). By construction, we ensure that a node x lies in

P iff the corresponding edge f of G lies in T .

To complete the proof of Theorem 3.2, we apply Theorem 5.1 to the nonzero A-path instance (H, [s], γ,Z2)
constructed above. If we obtain k vertex-disjoint nonzero A-paths in H , then parts (a) and (b) of Lemma 5.2

imply that we can map these to k edge-disjoint odd (s, s)-trails. Alternatively, if we obtain a set C of at most

2k − 2 vertices of H that intersect every nonzero A-path, then we obtain a cover F for odd (s, s)-trails in

G by taking the set of edges in G corresponding to the vertices in C . To see why F is a cover, suppose that

the graph G − F has an odd (s, s)-trail. This then maps to a nonzero A-path P in H such that P ∩ C = ∅
by part (c) of Lemma 5.2, which yields a contradiction.

6 Min-max theorem for packing odd edge-disjoint (s, s)-trails

Let G be an undirected graph. For a node s ∈ V (G), recall that ν(s, s;G) denotes the maximum number of

edge-disjoint odd (s, s)-trails in G. Let comp(G) denote the set of components of G. Given disjoint vertex

sets S, T , we use EG(S, T ) to denote the set of edges in G with one end in S and one end in T . Let EG(S)
be the set of edges with both ends in S. We drop the subscript G above when it is clear from the context.

We prove the following min-max theorem.

Theorem 6.1. Let G be an undirected graph, and s be a node in V (G). Then,

ν(s, s;G) = min

{
|E(S)−F |+

∑

C∈comp(G−S)

⌊
|E(S,C)|

2

⌋
: s ∈ S, (S,F ) is a bipartite subgraph of G

}
.

(2)

In the sequel, we fix G and s to be the graph and the node mentioned in the statement of Theorem 6.1.

It is easy to see that for any bipartite subgraph (S,F ) with s ∈ S, the expression in the RHS of (2) gives an

upper bound on ν(s, s;G): an odd (s, s)-trail either lies completely within S and must therefore use some

edge of E(S) \ F , or must include a vertex of some component K ∈ comp(G − S); there are at most
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E(S) \ F edge-disjoint trails of the first type, and at most
⌊
|E(S,K)|

2

⌋
edge-disjoint trails that may use a

vertex of a component K . Our goal is to show that for some choice of (S,F ), the expression in the RHS of

(2) equals ν(s, s;G).
Let (H, [s], γ : E(H) 7→ {0, 1},Z2) be the nonzero A-path packing instance obtained from (G, s) as

described in Section 5. Let ν(H, [s], γ) denote the maximum number of vertex-disjoint non-zero [s]-paths in

H under the labeling γ, so ν(s, s;G) = ν(H, [s], γ). As mentioned earlier, we obtain our min-max theorem

by applying the min-max formula of Chudnovsky et al. [2] for packing vertex-disjoint nonzero A-paths in

group-labeled graphs to (H, [s],Z2), and simplifying the resluting expression by leveraging the structure

underlying the gadget graph H . Our starting point therefore is the following result obtained by specializing

Theorem 1.2 in [2] to the A-path instance (H, [s], γ,Z2). We need the following notation from [2]. Given

y ∈ V (H), switching the labeling γ at y means that we flip the labels of the edges incident to y; that is, we

obtain a new labeling γ′ where γ′e = 1− γe if e is incident to y and γ′e = γe otherwise. Note that if y /∈ [s],
then ν(H, [s], γ) = ν(H, [s], γ′). For A′ ⊆ V (H) and a labeling γ′, let E(A′, γ′) denote the set of all edges

e ∈ E(H) with both ends in A′ and having γ′e = 0.

Theorem 6.2 (Corollary of Theorem 1.2 in [2]). There exists a labeling γ′ : E(H) 7→ {0, 1} obtained

by switching γ at some (suitably chosen) vertices in V (H) − [s], and vertex-sets X,A′ ⊆ V (H) with

[s]−X ⊆ A′ ⊆ V (H)−X such that

ν(H, [s], γ) = |X|+
∑

K∈comp(H−X−E(A′,γ′))

⌊
|A′ ∩ V (K)|

2

⌋
. (3)

We may assume that the labeling γ′ given above is obtained by switching γ at some subset of A′ − [s],
since we can always switch γ′ at vertices not in A′ without affecting the RHS of (3). It will be convenient

to restate Theorem 6.2 by explicitly referring to the subset of A′ at which γ was switched, as follows. Let

Y,B0, B1 ⊆ V (H) be disjoint sets such that [s]− Y ⊆ B0 and B0 ∪B1 ⊆ V (H)− Y ; we call (Y,B0, B1)
a valid triple. Let γ(B1) denote the labeling obtained from γ by switching at every vertex in B1. Let

H(Y,B0, B1) := H − Y − E(B0 ∪B1, γ(B1)). Define

p(Y,B0, B1) := |Y |+
∑

K∈comp(H(Y,B0,B1))

⌊
|(B0 ∪B1) ∩ V (K)|

2

⌋
.

As noted in [2], it is not hard to see that ν(H, [s], γ) ≤ p(Y,B0, B1) for any valid triple (Y,B0, B1). We

call a valid triple (Y,B0, B1) tight if ν(H, [s], γ) = p(Y,B0, B1). Let the labeling γ′ given by Theorem 6.2

be obtained by switching γ at A′
1 ⊆ A′. Let A′

0 := A′ − A′
1. Theorem 6.2 then tells us that (X,A′

0, A
′
1)

is a tight triple. Exploiting the structure of H , we show that there exists a tight triple of a convenient form,

which will then lead to our min-max formula.

Lemma 6.3. There exists a tight triple (∅, B0, B1) such that, for every x ∈ V (G), we have

[x] ⊆ B0 or [x] ⊆ B1 or [x] ∩ (B0 ∪B1) = ∅. (4)

Before proving Lemma 6.3, we show how this yields Theorem 6.1.

Proof of Theorem 6.1. Let (∅, B0, B1) be the tight triple given by Lemma 6.3. Let γ̃ = γ(B1). Take

S = S0 ∪ S1, where S0 := {x ∈ V (G) : [x] ⊆ B0} and S1 := {x ∈ V (G) : [x] ⊆ B1}. Note that

s ∈ S0. Let F := EG(S0, S1). Let C1, . . . , Cℓ be the components of G− S. We show that p(∅, B0, B1) =

|E(S)−F |+
∑ℓ

i=1

⌊
|E(S,Ci)|

2

⌋
, which together with the fact that (∅, B0, B1) is a tight triple, completes the

proof.
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Observe that for every vertex x ∈ S, all the clique edges of H in [x] have γ̃-label 0 (since γ is switched

at either both endpoints or no endpoint) and thus belong to E(B0 ∪ B1, γ(B1)). Therefore such edges do

not appear in H̃ := H(∅, B0, B1). Also, for every edge e = xy ∈ F , there is a corresponding edge e
in H between some vertex w in B0 and some vertex z in B1, and γ̃e = 0; so e /∈ E

H̃
. Next, for every

e = xy ∈ E(S) − F = E(S0) ∪ E(S1), there is a corresponding edge in H̃ between some vertex w ∈ [x]
and some vertex z ∈ [y], and this edge has γ̃-label 1. Thus, {w, z} is a connected component of H̃ of size

2, and contributes 1 to p(∅, B0, B1).
We now argue that components {Ci}

ℓ
i=1 are in bijection with the remaining components of H̃ , and

if Ci corresponds to component Ki of H̃ , then Ki contributes
⌊
|E(S,Ci)|

2

⌋
to p(∅, B0, B1). Consider any

component Ci. Let E(S,Ci) = {x1y1, . . . , xryr}, where xj ∈ S and yj ∈ Ci for all j = 1, . . . , r.

For j = 1, . . . , r, let wj ∈ [xj ] be the end in B0 ∪ B1 of the unique edge in H̃ corresponding to edge

xjyj . For every yj , all vertices of H in [yj] belong to the same component of H̃ . So since y1, . . . , yr are

connected in G − S, all vertices in
⋃r

j=1[yj] belong to the same component of H̃ , say Ki. It follows that

Ki ⊇ {w1, . . . , wr} ∪
(⋃r

j=1[yj ]
)
. Thus we have,

⌊
|E(S,Ci)|

2

⌋
=

⌊r
2

⌋
=

⌊
|V (Ki) ∩ (B0 ∪B1)|

2

⌋
.

Moreover, since G − S =
⋃ℓ

i=1 Ci, it follows that H̃ has no components other than K1, . . . ,Kℓ. So to

summarize, we have shown that p(∅, B0, B1) = |E(S)− F |+
∑ℓ

i=1

⌊
|E(S,Ci)|

2

⌋
, completing the proof.

We now prove Lemma 6.3. We will need the following claim.

Claim 6.4. For any integer q ≥ 2 and nonnegative integers r1, . . . , rq we have

q∑

i=1

⌊ri
2

⌋
≥

⌊∑q
i=1 ri − (q − 1)

2

⌋
. (5)

Proof. For any integer x, we have
⌊
x
2

⌋
≥ x−1

2 , and equal to x
2 if x is even. So if any of the ri’s are even,

the statement follows. Otherwise,
∑q

i=1 ri − q is even, and both the LHS and RHS of (5) are equal to∑q
i=1

ri−q

2 .

Proof of Lemma 6.3. Let (X,A′
0, A

′
1) be the tight triple given by Theorem 6.2. First, we show how to

modify (X,A′
0, A

′
1) to obtain a tight triple (X, Ã0, Ã1) that satisfies

([y]−X) ⊆ Ã0 or ([y]−X) ⊆ Ã1 or ([y]−X) ⊆ V (H(X, Ã0, Ã1))− (Ã0 ∪ Ã1) (6)

for every y ∈ V (G). Then, we show how vertices in X can be appropriately moved out of X to obtain the

required tight triple (∅, B0, B1).

Step 1: satisfying (6). Let A′
∗ denote V (H(X,A′

0, A
′
1))−A′

0 −A′
1 = V (H)−X −A′

0 −A′
1. Suppose

there is a vertex y ∈ V (G) that violates (6), so ([y] − X) 6⊆ T for T ∈ {A′
0, A

′
1, A

′
∗}. Note that y 6= s

since [s] ⊆ A′
0 (as (X,A′

0, A
′
1) is a valid triple). Define D0 := A′

0 − [y], D1 := A′
1 − [y] and D∗ :=

V (H)−X−D0−D1. Clearly, (X,D0,D1) is a valid triple, and [y]−X ⊆ D∗. We show that (X,D0,D1)
is a tight triple; so by repeatedly applying the above modification for every vertex that violates (6), we obtain

a tight triple (X, Ã0, Ã1) satisfying (6).
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Let H1 := H(X,A′
0, A

′
1), and H2 := H(X,D0,D1). Let γ1 = γ(A′

1), and γ2 = γ(D1). To show that

(X,D0,D1) is tight, it suffices to show that p(X,D0,D1) ≤ p(X,A′
0, A

′
1). This boils down to showing

that ∑

K∈comp(H2)

⌊
|V (K) ∩ (D0 ∪D1)|

2

⌋
≤

∑

K∈comp(H1)

⌊
|V (K) ∩ (A′

0 ∪A′
1)|

2

⌋
. (7)

Observe that H1 and H2 have the same vertex-set V (H)−X, and H1 is a subgraph of H2. Every component

of H2 is either also a component of H1, or is obtained by merging some components of H1. Moreover, there

is at most one component of H2 that corresponds to the latter case; call this component K2, and let K be the

components of H1 that are merged to form K2. Clearly, every component of H2 that is also a component of

H1 contributes the same to both the LHS and RHS of (7). So we focus on component K2 and show that the

contribution of K2 to the LHS of (7) is at most the total contribution of components in K to the RHS of (7).

Note that all vertices in [y] − X belong to the same component of H1: since y violates (6), it is not

hard to see that there is a spanning subgraph of [y] − X that is not contained in E(A′
0 ∪ A′

1, γ1). Every

edge e = (w, z) ∈ E(H2) that merges two components in K is therefore such that {w, z} 6⊆ [y], and lies

in E(A′
0 ∪ A′

1, γ1) − E(D0 ∪ D1, γ2). So we have γ1,e = 0, w, z ∈ A′
0 ∪ A′

1, and {w, z} 6⊆ D0 ∪ D1.

It follows that e has exactly one end in ([y] − X) ∩ (A′
0 ∪ A′

1), and the other end not in [y]. Therefore,

|K| ≤ 1 +
∣∣([y]−X) ∩ (A′

0 ∪A′
1)
∣∣. It follows that

|V (K2) ∩ (D0 ∪D1)| =
∑

K∈K

∣∣V (K) ∩ (A′
0 ∪A′

1)
∣∣−

∣∣([y]−X) ∩ (A′
0 ∪A′

1)
∣∣

≤
∑

K∈K

∣∣V (K) ∩ (A′
0 ∪A′

1)
∣∣− (|K| − 1).

Combining with Claim 6.4, we obtain that

∑

K∈K

⌊
|V (K) ∩ (A′

0 ∪A′
1)|

2

⌋
≥

⌊∑
k∈K |V (K) ∩ (A′

0 ∩A′
1)− (|K| − 1)

2

⌋
≥

⌊
|V (K2) ∩ (D0 ∪D1)|

2

⌋
.

This completes the proof that (X,D0,D1) is a tight triple.

Step 2: removing vertices in X . Recall that Step 1 yields a tight triple (X, Ã0, Ã1) satisfying (6) for

every vertex y ∈ V (G). We now show how to convert (X, Ã0, Ã1) to a tight triple (∅, B0, B1) satisfying

(4) for every x ∈ V (G). Let Ã∗ denote V (H(X, Ã0, Ã1)) − Ã0 − Ã1 = V (H) − X − Ã0 − Ã1. Let

y ∈ V (G) be such that [y] ∩X 6= ∅. Choose some vertex z ∈ [y] ∩X. We know that (6) holds for y. Let

Y := X − {z}. If Ã0 ∩ [y] 6= ∅, set J0 = Ã0 ∪ {z}, else set J0 = Ã0. If Ã1 ∩ [y] 6= ∅, set J1 = Ã1 ∪ {z},

else set J1 = Ã1. Notice that for every vertex x ∈ V (G), all vertices in [x]− Y are either in J0, or in J1, or

in J∗ := V (H) − Y − J0 − J1. We show that (Y, J0, J1) is a tight triple; so by repeating this process, we

will eventually obtain a tight triple (∅, B0, B1) satisfying (4).

Let H1 := H(X, Ã0, Ã1) and H2 := H(Y, J0, J1), so H1 is a subgraph of H2, and V (H2) = V (H1) ∪
{z}. Again, it suffices to show that p(Y, J0, J1) ≤ p(X, Ã0, Ã1). This amounts to showing that

∑

K∈comp(H2)

⌊
|V (K) ∩ (J0 ∪ J1)|

2

⌋
≤ 1 +

∑

K∈comp(H1)

⌊
|V (K) ∩ (Ã0 ∪ Ã1)|

2

⌋
. (8)

Let γ2 := γ(J1). Let w be the other end of the non-clique edge of H incident to z. Let K1 be the component

of H1 containing w. Let K2 be the component of H2 containing z. Observe that since (X, Ã0, Ã1) is a tight

triple, the inequality in (8) cannot be strict (otherwise, we would have ν(H, [s], γ) > p(Y, J0, J1)). This

implies that z cannot be an isolated vertex of H2.
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If z ∈ J0 ∪ J1, then all edges of H2 belonging to the clique [y] lie in E(J0 ∪ J1, γ2). So we must

have that V (K2) ⊇ {w, z} (as z cannot be an isolated vertex), and V (K2) = V (K1) ∪ {z}. Clearly,

comp(H2)−{K2} = comp(H1)−{K1}, and all components in this set contribute equally to the LHS and

RHS of (8), so (8) follows in this case by noting that |V (K2) ∩ (J0 ∪ J1)| = 1 + |V (K1) ∩ (Ã0 ∪ Ã1)|.
If z ∈ J∗, then w ∈ V (K2), so V (K1) ⊆ V (K2). All vertices of [y] − X belong to the same

component of H1; call this component K ′
1. (One can argue that K1 6= K ′

1, but we do not need this below.)

Clearly, V (K ′
1) ⊆ V (K2), so we have V (K2) = V (K1) ∪ V (K ′

1) ∪ {z}. We have comp(H2) − {K2} =
comp(H1)− {K1,K

′
1}, and all these components contribute equally to the LHS and RHS of (8). Finally,

⌊
|V (K2) ∩ (J0 ∪ J1)|

2

⌋
=

⌊
|V (K1) ∩ (Ã0 ∪ Ã1)|

2
+

|V (K ′
1) ∩ (Ã0 ∪ Ã1)|

2

⌋

≤ 1 +

⌊
|V (K1) ∩ (Ã0 ∪ Ã1)|

2

⌋
+

⌊
|V (K ′

1) ∩ (Ã0 ∪ Ã1)|

2

⌋

where the inequality above follows from Claim 6.4. Thus, (8) holds in this case as well.

7 Extensions

Odd trails in signed graphs. A signed graph is a tuple
(
G = (V,E),Σ

)
, where G is undirected and

Σ ⊆ E. A set F of edges is now called odd if |F ∩Σ| is odd. Our results extend to the more-general setting

of packing and covering odd (u, v)-trails in a signed graph. In particular, Theorems 3.1, 3.2 and 3.3 hold

without any changes. Theorem 3.2 follows simply because it utilizes Theorem 5.1, which applies to the even

more-general setting of group-labeled graphs. Theorem 3.3 holds because it uses basic parity arguments: if

we simply replace parity with parity with respect to Σ (i.e., instead of parity of F , we now consider parity

of |F ∩ Σ|), then everything goes through. Finally, as before, combining the above two results yields (the

extension of) Theorem 3.1.

Odd (C,D)-trails. This is the generalization of the odd (u, v)-trails setting, where we have disjoint sets

C,D ⊆ V . Our results yield a factor-2 gap between the the minimum number of edges needed to cover all

odd (C,D)-trails and the maximum number of edge-disjoint odd (C,D)-trails.

We achieve this as follows. First, we prove a generalization of Theorem 3.2 showing that for any integer

k ≥ 0, we can either obtain k edge-disjoint odd (C∪D,C∪D)-trails, or an odd-(C ∪D,C∪D)-trail cover

of size at most 2k − 2. This follows by again utilizing Theorem 5.1: we use the same gadget graph H and

group Γ = Z2 as in Section 5, but now take A to be all the clique nodes corresponding to the nodes of C
and D. It is not hard to see that the same translation from the group-labeled setting applies here, and yields

the above generalization of Theorem 3.2. Next, we observe that Theorem 3.3 can still be applied in this

more-general setting to show that if we have a collection T̂ of k edge-disjoint odd (C ∪D,C ∪D)-trails,

and (at least) 2k edge-disjoint (C,D)-paths, then we can obtain k edge-disjoint odd (C,D)-trails. A simple

way of seeing this is that we may simply contract C and D to form supernodes u and v, and then utilize

the earlier proof; the resulting graph may have loops, but this can be avoided by reworking the proof of

Theorem 3.3 to work directly with T̂ .
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A Tight example for Theorem 3.1

We prove that for the graph G = (V,E) shown in Fig. 1, we have ν(u, v) = k, and τ(u, v) = 2k + 1. For

any i = 1, . . . , k, let Bi denote the subgraph of G induced by the vertices {u, ai, bi, . . . , gi, hi, v}.

The size of a minimum (u, v)-cut in Gk is 2k+1, so τ(u, v) ≤ 2k+1. It is easy to see by inspection that

any cover Z of G must contain at least 2 edges from each Bi, as otherwise Bi − Z will have an odd (u, v)-
path. Suppose, for a contradiction, that |Z| ≤ 2k. Then G − Z contains a (u, v)-path P , and Z contains

exactly 2 edges from each Bi. We argue that G−Z contains an odd (u, v)-trail, yielding a contradiction and

thereby showing that τ(u, v) = 2k+1. Z must contain exactly one edge from each of the two edge-disjoint

triangles {u, a1, b1} and {v, g1, h1} in B1 containing u and v respectively, as otherwise, one can combine
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P and such a triangle to obtain an odd (u, v)-trail in G−Z . But then B1 −Z is connected, and contains all

edges incident to the nodes c1, d1, e1, f1, which implies that B1 − Z contains an odd (u, v)-path.

We now argue that ν(u, v) = k. We have ν(u, v) ≥ k, as each Bi contains an odd (u, v)-path. Among

all collections of ν(u, v) edge-disjoint odd (u, v)-trails, let T be one with the fewest number of edges. Let

P1, . . . , Pr be the odd (u, v)-paths in T , and T1, . . . , Tℓ be the odd (u, v)-trails in T that are not (u, v)-paths.

Observe that each (u, v)-path P ∈ {P1, . . . , Pr} must be contained in some subgraph Bi, and Bi − P is

disconnected. Next, observe that every odd (u, v)-trail T ∈ {T1, . . . , Tℓ} consists of an even (u, v)-path

concatenated with an odd (u, u)-trail or an odd (v, v)-trail, say Z . Moreover, Z must in fact be a triangle

containing u or v due to the minimality of T . (Suppose Z is an odd (u, u)-trail. Then Z must contain an

odd cycle contained in some subgraph Bi and the edges in Bi incident to u; replacing Z in the trail T with

the triangle in Bi incident to u yields an odd (u, v)-trail T ′ with |E(T ′)| < |E(T )| that is edge-disjoint

from T − {T}, contradicting the minimality of T . The case where Z is an odd (v, v)-trail is completely

analogous.) Thus, every trail in {T1, . . . , Tℓ} consists of an even (u, v)-path and a triangle incident to u or

v. Without loss of generality, let
⌈
ℓ
2

⌉
of these trails contain triangles incident to u. Let Zu be the collection

of triangles contained in the trails {T1, . . . , Tℓ} that are incident to u, so |Zu| ≥
⌈
ℓ
2

⌉
.

Consider the graph G′ = G −
⋃r

i=1 Pi −
⋃

Z∈Zu
Z . The (u, v) connectivity in G′ is at most 2k +

1 − 2r − 2|Zu|: deleting each Pi leaves some Bi′ disconnected, and so deleting either a Pi or a triangle

in Zu decreases the (u, v)-connectivity by 2. Also, G′ contains ℓ (even) (u, v)-paths. So we have ℓ ≤
2k + 1− 2r − 2

⌈
ℓ
2

⌉
, which implies that ℓ+ r ≤ 2k+1

2 , and hence that ℓ+ r ≤ k. Thus, ν(u, v) = k.

B Tight example for Theorem 3.3

We now provide an example showing that Theorem 3.3 is tight; in particular, the requirement that λ(u, v) ≥
2|T̂ | cannot be weakened. Consider the graph G shown in Figure 4. T = {uxiyiv}

k−1
i=1 ∪ {uz1z2u} ∪

{vz5z6v} is a collection of k + 1 edge-disjoint odd ({u, v}, {u, v})-trails in G. Observe that λ(u, v) =
2k + 1 = 2|T | − 1. But G contains only k edge-disjoint odd (u, v)-trails: the subgraph induced by {u, v},

the zis and w contains only one odd (u, v)-trail.

u v

x1

y1

xk−1

yk−1

z1

z2

z3

z4

z5

z6

w

...

Figure 4: Example showing that Theorem 3.3 is tight.
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C Lower bound for covers constructed in [4]

Churchley et al. [4] construct odd-(u, v)-trail covers of the form δ(X), where X is a u-v cut, or of the form

δ(X)∪(E(X)\F ), where {u, v} ⊆ X, and (X,E(X)∩F ) is bipartite with u and v on the same side of the

bipartition. The following is a family {Hk}k≥1 of graphs where, for Hk we have ν(u, v) = k, τ(u, v) = 2k,

but any cover of the above form has size at least 3k. This shows that covers of the above form cannot yield

a bound better than 3 on the covering-vs-packing ratio for odd (u, v) trails. (The graph Hk has parallel

edges; if desired, the parallel edges can be eliminated by replacing each parallel edge with a length-3 path

(to preserve trail parities).)

u v

x1 y1 z1

a1 b1 c1 d1 e1 f1...
...

...

xk yk zk

ak bk ck dk ek fk

w1

w100k

...

Figure 5: Graph Hk with ν(u, v) = k, τ(u, v) = 2k. We have |δ(X)| ∪ |E(X) \ F | ≥ 3k for any X,F
such that {u, v} ⊆ X and (X,E(X) ∩ F ) is bipartite with u, v on the same side.

Let Ci denote the vertex-set {u, v, xi, yi, zi, ai, bi, ci, di, ei, fi}. Observe that every odd trail T in G
uses an edge from at least one of the odd cycles in {xiaibixi}

k
i=1 ∪ {yicidiyi}

k
i=1 ∪ {zieifizi}

k
i=1. For each

1 ≤ i ≤ k, removing the two parallel edges between u and xi along with the edge vzi separates Ci \ {u, v}
from {u, v}, so at most one trail can use the nodes of Ci \ {u, v}. It follows that the packing number is at

most k. It is trivial to find k edge-disjoint odd (u, v)-trails in G and hence ν(u, v) = k. Next, the covering

number is at most 2k since the edge-set consisting of all the edges (including parallel copies) between u and

xi for all 1 ≤ i ≤ k is an odd (u, v)-trail cover. Deleting at most one edge from the induced subgraph G[Ci]
does not destroy all the odd (u, v)-trails using at least one odd cycle from G[Ci] hence we need at least 2k
edges in any cover. Thus, τ(u, v) = 2k.

Since λ(u, v) ≥ 100k, every u-v cut X has |δ(X)| ≥ 100k. Finally, we verify that |δ(X)| ∪ |E(X) \
F | ≥ 3k for any X ,F such that {u, v} ⊆ X and (X,E(X) ∩ F ) is bipartite with u, v on the same side.

For this it is convenient to consider the graph shown in Fig. 6, which is the graph in Fig. 5, with u and v
identified to form s.

Let C ′
i = {s, xi, yi, zi, ai, bi, ci, di, ei, fi}. For any node-set X with s ∈ X, we have |δ(X)| ≥∑k

i=1 |E(C ′
i ∩ X,C ′

i \ X)|. For F such that (X,E(X) ∩ F ) is bipartite, we lower bound |E(X) \ F |
by counting the number of triangles (i.e., {xi, ai, bi}, {yi, ci, di}, or {zi, ei, fi} for some i) in E(X).
This contribution is decoupled across the C ′

is, so overall each C ′
i contributes |E(C ′

i ∩ X,C ′
i \ X)| +

(number of triangles in C ′
i ∩X). We argue that this contribution is at least 3 for each C ′

i. Each C ′
i is 2-

edge-connected, and the cuts of size 2 in C ′
i are those that contain two edges of one of the C ′

i-triangles. So
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s

x1
y1

z1

a1 b1
c1

d1

e1

f1
...

xk

yk

zk
ak

bk

ck
dk

ek

fk

w1

w100k

...

Figure 6: Graph from Figure 5 with vertices u and v identified to form s.

if |E(C ′
i ∩X,C ′

i \X)| ≤ 2, then C ′
i ∩X contains at least one triangle, and the contribution is at least 3.

D Tight example for Theorem 3.2

The example is the same as the graph G in Fig. 6, which, recall is obtained from the graph G′ in Fig. 5

by identifying u and v. Since τ(u, v;G′) = 2k, we have τ(s, s;G) ≥ 2k. We argue that ν(s, s,G) ≤ k,

showing that the two conclusions of the theorem are tight as seen by the inputs k and k + 1.

The upper bound on ν(s, s,G) follows from the same reasoning as before. Recall that we have C ′
i =

{s, xi, yi, zi, ai, bi, ci, di, ei, fi}. Every odd trail T in G must use an edge in at least one of the triangles. For

each 1 ≤ i ≤ k, the two parallel edges between s and xi and szi separate the triangle vertices of C ′
i from s,

so each C ′
i contributes at most 1 to ν(s, s,G). Therefore, ν(s, s,G) ≤ k.
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