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Abstract

We construct an improved integrality gap instance for the Călinescu-Karloff-Rabani LP relaxation of
the Multiway Cut problem. In particular, for k > 3 terminals, our instance has an integrality ratio of
6/(5+ 1

k−1
)−ε, for every constant ε > 0. For every k > 4, our result improves upon a long-standing lower

bound of 8/(7 + 1

k−1
) by Freund and Karloff [FK00]. Due to Manokaran et al.’s result [MNRS08], our

integrality gap also implies Unique Games hardness of approximating Multiway Cut of the same ratio.

1 Introduction

In the Multiway Cut problem, we are given a weighted undirected graph and a set of k terminal vertices, and
we are asked to find a set of edges with minimum total weight whose removal disconnects all the terminals.
Equivalently, the objective can also be stated as partitioning the graph into k clusters, each containing
exactly one terminal, such that the total weight of edges across clusters is minimized. Such a partition is
sometimes called a k-way cut and the total weight of edges across clusters is called the cost of the cut.

Since its introduction in the early 1980s by Dahlhaus, Johnson, Papadimitriou, Seymour, and Yan-
nakakis [DJP+83], the problem has been extensively studied in the approximation algorithms commu-
nity [Cun89, CR91, DJP+94, BTV99, CT99, CKR00, FK00, KKS+04, BNS13, SV14] and has, by now,
become one of the classic graph partitioning problems taught in many graduate approximation algorithms
courses. Despite this, the approximability of the problem when k > 4 still remains open.

When k = 2, Multiway Cut is simply Minimum s-t Cut, which is solvable in polynomial time. For k > 3,
Dahlhaus et al. [DJP+94] showed that the problem becomes APX-hard and gave the first approximation al-
gorithm for the problem, which achieves an approximation ratio of (2−2/k). Due to the combinatorial nature
of the algorithm, many linear programs were proposed following their work (see e.g. [Cun89, CR91, BTV99]).
However, it was not until Călinescu, Karloff and Rabani’s work [CKR00] that a significant improvement in
the approximation ratio was made. Their linear programming relaxation, commonly referred to as the CKR
relaxation, on a graph G = (V, E, w) and terminals {t1, . . . , tk} ⊆ V , can be formulated as

minimize
∑

e=(u,v)∈E

w(e) · 1

2
‖xu − xv‖1

subject to ∀u ∈ V, xu ∈ ∆k,

∀i ∈ [k], xti = ei,
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where [k] = {1, . . . , k}, ∆k = {(x1, . . . , xk) ∈ [0, 1]k | x1 + · · · + xk = 1} denotes the k-simplex and ei is the
i-th vertex of the simplex, i.e. ei

i = 1. Călinescu, Karloff and Rabani gave a rounding scheme for this LP that
yields a (3/2 − 1/k)-approximation algorithm for Multiway Cut [CKR00]. Exploiting the geometric nature
of the relaxation even further, Karger, Klein, Stein, Thorup and Young [KKS+04] gave improved rounding
schemes for the relaxation; for general k, they gave a 1.3438-approximation algorithm for the problem. They
also conducted computational experiments that led to improvements over small k’s. For k = 3, in particular,
they gave a 12/11-approximation algorithm and proved that this is tight by constructing an integrality
gap example of ratio 12/11 − ε, for every ε > 0. The same result was also independently discovered by
Cunningham and Tang [CT99]. More recently, Buchbinder, Naor and Schwartz [BNS13] gave a neat 4/3-
approximation algorithm to the problem for general k and additionally showed how to push the ratio down
to 1.3239. Their algorithm was later improved by Sharma and Vondrák [SV14] to get an approximation
ratio of 1.2965. This remains the state-of-the-art approximation for sufficiently large k. We remark that the
Sharma-Vondrák algorithm is quite complicated and requires a computer-assisted proof. To circumvent this,
Buchbinder, Schwartz and Weizman [BSW17] recently came up with a simplified algorithm and analytically
showed that it yielded roughly the same approximation ratio as Sharma and Vondrák’s.

The CKR relaxation not only leads to improved algorithms for Multiway Cut but also has a remarkable
consequence on the approximability of the problem. In a work by Manokaran, Naor, Raghavendra and
Schwartz [MNRS08], it was shown, assuming the Unique Games Conjecture (UGC), that, if there exists an
instance of Multiway Cut with integrality gap τ for the CKR relaxation, then it is NP-hard to approximate
Multiway Cut to within a factor of τ − ε of the optimum, for every constant ε > 0. Note here that the
integrality gap of an instance of Multiway Cut is the ratio between the integral optimum and the value of
the CKR relaxation of the instance.

Roughly speaking, Manokaran et al.’s result means that, if one believes in the UGC, the CKR relaxation
achieves essentially the best approximation ratio one can hope to get in polynomial time for Multiway
Cut. Despite this strong connection, few lower bounds for the CKR relaxation are known. Apart from
the aforementioned 12/11 − ε integrality gap for k = 3 by Karger et al. [KKS+04] and Cunningham and
Tang [CT99], the only other known lower bound is an 8/(7 + 1

k−1 )-integrality gap which was constructed by
Freund and Karloff [FK00] not long after the introduction of the CKR relaxation. Hence, it is a natural and
intriguing task to construct improved integrality gap examples for the relaxation in an attempt to bridge
the gap between approximation algorithms and hardness of approximation for the Multiway Cut.

1.1 Our Contributions

In this paper, we provide a new construction of integrality gap instances for Multiway Cut. Our construction
achieves an integrality gap of 6/(5+ 1

k−1 )−ε, for every k > 3, as stated formally below. For every k > 4, our

integrality gap improves on the integrality gap of 8/(7 + 1
k−1 ) of Freund and Karloff [FK00]. When k = 3,

our gap matches the known results of Karger et al. [KKS+04] and Cunningham and Tang [CT99].

Theorem 1 For every k > 3 and every ε > 0, there exists an instance Ik,ε of Multiway Cut with k terminals
such that the integrality gap of the CKR relaxation for Ik,ε is at least 6/(5 + 1

k−1 ) − ε.

As mentioned earlier, Manokaran et al. showed that integrality gaps for the CKR relaxation can be translated
directly to a Unique Games hardness of approximation [MNRS08]. Hence, the following corollary holds as
an immediate consequence of our integrality gap.

Corollary 2 Assuming the Unique Games Conjecture, for every k > 3 and every ε > 0, it is NP-hard to
approximate Multiway Cut with k terminals to within a factor of 6/(5 + 1

k−1 ) − ε of the optimum.

1.1.1 Techniques

To see the motivation behind our construction, it is best to first gain additional intuition for the geometry
of the CKR relaxation. For brevity, we will not be thoroughly formal in this section.
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Geometric Interpretation of the CKR Relaxation. A solution of the CKR relaxation embeds the
graph into a simplex; each vertex u becomes a point xu ∈ ∆k, while each edge (u, v) becomes a segment
(xu, xv). As a result, to construct a randomized rounding scheme for the relaxation, it is sufficient to define
a randomized k-partitioning scheme of the simplex. More specifically, this is a distribution P on k-way cuts
of ∆k (i.e. ∀P ∈ P , P : ∆k → [k] such that P (ei) = i for every i ∈ [k]) and its performance is measured by
its maximum density, which is defined as

τk(P) := sup
x 6=y∈∆k

PrP ∼P [P (x) 6= P (y)]
1
2 ‖x − y‖1

.

In words, for any two different points x, y ∈ ∆k, a random k-way cut P sampled from P assigns the two
points to different clusters with probability at most τk(P) · 1

2 ‖x − y‖1. This immediately yields the following
randomized rounding scheme for the CKR relaxation: pick a random P ∼ P and place each u ∈ V in cluster
P (xu). From the definition of maximum density, the expected contribution of each edge e = (u, v) in the
rounded solution is at most τk(P) · w(e) · 1

2 ‖xu − xv‖1, meaning that this rounding algorithm indeed gives a
τk(P)-approximation for Multiway Cut with k terminals.

The above observation was implicit in [CKR00] and was first made explicit by Karger et al. [KKS+04], who
also proved the opposite side of the inequality: for every ε > 0, there is an instance I of Multiway Cut with
k terminals whose integrality gap is at least τ∗

k − ε, where τ∗
k is the minimum1 of τk(P) among all P ’s. In

other words, constructing an integrality gap for Multiway Cut is equivalent to proving a lower bound for
τ∗

k .

Non-Opposite Cuts. Let us now consider a special class of partitions of the simplex, which we call non-
opposite cuts. A non-opposite cut of ∆k is a function P : ∆k → [k + 1] such that P (ei) = i for every i ∈ [k]
and, for every x ∈ ∆k, P (x) ∈ supp(x)∪{k +1}, where supp(x) := {i ∈ [k] | xi 6= 0} is the set of all non-zero
coordinates of x. Note here that P now partitions ∆k into k + 1 parts and the additional condition requires
that a point that lies on any face of the simplex is either assigned to the (k + 1)-th cluster or to a cluster
corresponding to a vertex of the simplex that belongs to this face. The representative case to keep in mind
is when k = 3; in this case, a non-opposite cut partitions the triangle ∆3 into four parts and any point on
the border of ∆3 is not assigned to the cluster corresponding to the opposite vertex of the triangle. Figure 1
demonstrates the difference between non-opposite cuts and normal 3-way cuts of ∆3.

e1

e2 e3

2 3

1

(a)

e1

e2 e3

1

2 3

(b)

e1

e2 e3

1

2 3

4

(c)

Figure 1: Illustrations of cuts of ∆3. The 3-way cut in Figure 1a is not non-opposite since some
points on the line between e2 and e3 belong to the cluster corresponding to e1. On the other
hand, the 3-way cut in Figure 1b is non-opposite. Finally, Figure 1c demonstrates an example of
a non-opposite cut that is not a 3-way cut because the fourth cluster is not empty.

We again define the maximum density τk for a distribution on non-opposite cuts similarly. Additionally, let
τ̃∗

k be the infimum of τk(P) among all distributions P on non-opposite cuts of ∆k. Observe first that τ∗
k 6 τ̃∗

k

1In [KKS+04], τ
∗
k

is defined as the infimum of τk(P) among all P’s but it was proved in the same work that there exists P

that achieves the infimum.
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because each non-opposite cut P of ∆k can be turned into a k-way cut without separating additional pairs
of points by merging the (k + 1)-th cluster into the first cluster. This means that it will be easier for us to
show a lower bound for τ̃∗

k . Unfortunately, it is so far unclear whether such lower bound implies any lower
bound for τ∗

k . However, we will see in a moment that we can define an approximate version of τ̃∗
k that will

give us a lower bound of τ∗
K for all K > k as well.

The approximation of τ̃∗
k we use is the one obtained by the discretization of the problem in which we restrict

ourselves to the triangular grid ∆k,n := {x ∈ ∆k | ∀i ∈ [k], xi is a multiple of 1/n} instead of ∆k. For
every distribution P on non-opposite cuts of ∆k, we can similarly define τk,n(P ) as

τk,n(P) := max
x 6=y∈∆k,n

PrP ∼P [P (x) 6= P (y)]
1
2 ‖x − y‖1

and τ̃∗
k,n as the minimum2 of τk,n(P) among all such distributions P ’s on non-opposite cuts. The simple

observation that allows us to construct our integrality gap is the following relation between τ∗
K and τ̃∗

k,n: for
every K > k, τ̃∗

k,n − O(kn/(K − k)) 6 τ∗
K . In fact, we only use this inequality when k = 3 to construct our

gap and, hence, we only sketch the proof of this case here. For completeness, we prove the general case of
the inequality in Appendix B.

Before we sketch the proof of this inequality, let us note that Freund and Karloff’s result [FK00] can be seen
as a proof of τ̃∗

3,2 > 8/7; please refer to Appendix A for a more detailed explanation. Note that τ̃∗
3,2 > 8/7,

together with the above fact, immediately implies a lower bound of τ∗
K > 8/7 − O(1/K). Barring the

dependency on K, this is exactly the gap proven in [FK00]. With this interpretation in mind, the rest of our
work can be mostly seen as proving that τ̃∗

3,n > 6/5 − O(1/n). By selecting n = Θ(
√

K), this implies a lower

bound of 6/5 − O(1/
√

K) for τ∗
K ; more care can then be taken to get the right dependency on K.

We now sketch the proof of τ̃∗
3,n −O(n/K) 6 τ∗

K . Suppose that P is the distribution on K-way cuts such that

τK(P) = τ∗
K . We sample a non-opposite cut P̃ of ∆3,n as follows. First, sample P ∼ P . Then, randomly

select three different indices i1, i2, i3 from [K]. Let P{i1,i2,i3} : ∆3 → [4] be the cut induced by P on the face
induced by the vertices i1, i2, i3. Specifically, let f(ij) = j for every j ∈ [3]. We define P{i1,i2,i3} by

P{i1,i2,i3}(x) =

{

f(P (x1ei1 + x2ei2 + x3ei3 )) if P (x1ei1 + x2ei2 + x3ei3) ∈ {i1, i2, i3},

4 otherwise.

If P{i1,i2,i3} is a non-opposite cut, then let P̃ = P{i1,i2,i3}. Otherwise, let P̃ (x) = P{i1,i2,i3}(x) for every x

such that P{i1,i2,i3}(x) ∈ supp(x) ∪ {4}. For the other x’s, we simply set P̃ (x) = 4; we will call these x’s

“bad”. It is obvious that P̃ is a non-opposite cut. Moreover, if any two points x, y ∈ ∆3,n are separated in P̃ ,
then either P{i1,i2,i3}(x) 6= P{i1,i2,i3}(y) or exactly one of x, y is bad. From the definition of P{i1,i2,i3}, the
former implies P (x1ei1 + x2ei2 + x3ei3) 6= P (y1ei1 + y2ei2 + y3ei3 ), which happens with probability at most
τ∗

K · 1
2 ‖x − y‖1. Hence, we are left to show that the probability that any point x ∈ ∆3,n is bad is at most

O(1/K); this immediately yields the intended bound since ‖x − y‖1 > 2/n for every x 6= y ∈ ∆3,n.

Recall that a point x is bad iff P{i1,i2,i3}(x) ∈ [3] \ supp(x), which can only happen when | supp(x)| = 2.
Assume without loss of generality that supp(x) = {1, 2}, i.e. x3 = 0. We want to bound the probability that
P{i1,i2,i3}(x) = 3. Fix the cut P and the choice of i1, i2. Since x3 = 0, this already determines P (x1ei1 +
x2ei2 + x3ei3). From the definition of P{i1,i2,i3}, P{i1,i2,i3}(x) = 3 if and only if i3 = P (x1ei1 + x2ei2 + x3ei3 ).
Since i3 is a random element of [K] \ {i1, i2}, this happens with probability at most 1/(K − 2) and we have
completed our proof sketch.

Lower Bound for τ̃∗
3,n. The final component in our construction is a lower bound for τ̃∗

3,n. To lower bound
τ̃∗

3,n, it is enough to construct a weighted undirected graph with vertices ∆3,n such that the CKR relaxation
value (with respect to the solution in which each vertex is assigned the vector representation of itself) is

2The minimum exists since there are only finite number of cuts when restricted to the discretization ∆k,n of the simplex.
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small and every non-opposite cut has large cost. In other words, we need to construct an integrality gap for
Multiway Cut with 3 terminals but only against non-opposite cuts, instead of against all 3-way cuts.

We will set the edge set E3,n to be all two consecutive points on grid lines, i.e., E3,n = {(x, y) | x, y ∈
∆3,n, ‖x − y‖1 = 2/n}. Fortunately for us, Karger et al. [KKS+04] gave an elegant characterization of 3-way
cuts of the graph (∆3,n, E3,n), which ultimately led to their 12/11 − ε ratio integrality gap for Multiway Cut
with 3 terminals. By extending this, we arrive at a similar characterization for all non-opposite cuts of the
graph, which also eventually enables us to construct the integrality gap against such cuts.

1.2 Organization of the paper

The rest of the paper is organized as follows. We start by formally defining our notation in Section 2. In
Section 3, we prove the lower bound of 6/5 − O(1/n) on τ̃3,n. In Section 4, we use this to construct an

integrality gap of ratio 6/5 − O(1/
√

k), which essentially contains all of our main ideas. Then, in Section 5,
we show how to nail down the dependency on k and achieve the integrality ratio of 6/(5+ 1

k−1 )−ε, completing
the proof of our main result. Finally, we provide some discussion regarding our result and open questions in
Section 6.

2 Preliminaries and Notation

From now on, our graphs will have vertex sets being ∆k,n ⊆ ∆k for some k, n, and the edge sets being
Ek,n := {(x, y) | x, y ∈ ∆k,n, ‖x − y‖1 = 2/n}. The terminals are naturally associated with the k vertices of
the simplex. To avoid confusion, we reserve the word vertices for the simplex vertices and we instead refer
to the vertices of such graphs as points.

We refer to the LP solution in which each point is assigned to itself as the canonical LP solution and we use
L(w) to denote its value with respect to a weight function w : Ek,n → R≥0, i.e.,

L(w) =
∑

(x,y)∈Ek,n

w(x, y) · 1

2
‖x − y‖1 =

1

n

∑

(x,y)∈Ek,n

w(x, y),

where the latter equality comes from the fact that ‖x − y‖1 = 2/n for all (x, y) ∈ Ek,n. Moreover, for every
k-way cut P , we denote its cost with respect to w by C(P, w); in other words,

C(P, w) =
∑

(x,y)∈Ek,n

w(x, y) · 1[P (x) 6= P (y)],

where 1[P (x) 6= P (y)] is the indicator variable of the event P (x) 6= P (y).

3 A Lower Bound on τ̃ ∗
3,n

In this section, we will construct an integrality gap on the graph (∆3,n, E3,n) such that its CKR LP value is
small but every non-opposite cut has large cost. As our graph is already defined, we only need to define the
weights of the edges. The main result of this section can be stated as follows.

Lemma 3 For every n divisible by 3, there exists w : E3,n → R≥0 such that

• The value of the canonical LP solution of (∆3,n, E3,n, w) is at most 5/6 + O(1/n).

• The cost of every non-opposite cut of (∆3,n, E3,n, w) is at least one.

To prove Lemma 3, we will first characterize candidate optimal non-opposite cuts.
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3.1 A Characterization of Non-Opposite Cuts of ∆3,n

To characterize the 3-way cuts, Karger et al. [KKS+04] consider the augmented version of (∆3,n, E3,n), in
which each vertex of the simplex has an edge heading out infinitely. They then look at the dual graph
of this graph. The augmentation creates three outer faces; the vertices in the dual graph corresponding
to these faces are named O1, O2 and O3 where O1, O2 and O3 are opposite to e1, e2 and e3 respectively.
For convenience, we disregard the edges among O1, O2, O3 in the dual. Figure 2 contains illustrations of the
augmented graph and its planar dual. The figure is a recreation of Figure 1 and Figure 2 in [KKS+04].

e1

e2

e3

t

(a)

e1

e2

e3

O1

O2O3

(b)

Figure 2: The augmented (∆3,6, E3,6) and its dual.

A cut in the original graph can now be viewed as a collection of edges in the dual graph; an edge in the dual
graph between two faces corresponding to the shared edge of the faces being cut. With this interpretation,
Karger et al.give the following characterization for candidate optimal cuts of any weight function.

Observation 4 ([KKS+04]) For any w : E3,n → R≥0, there exists a least-cost3 3-way cut P that is of one
of the following forms:

• P contains three non-intersecting paths from a triangle to O1, O2 and O3. Such P is called a ball cut.

• P contains two non-intersecting paths among O1, O2 and O3. Such P is called a 2-corner cut.

Examples of a ball cut and a 2-corner cut can be found in Figure 3a and Figure 3b respectively. These
figures are reproduced from Figure 3 and Figure 4 of [KKS+04] respectively.

The observation implies that, if one wants to prove that every cut incurs large cost with respect to w, then
it is enough to show that all ball cuts and 2-corner cuts have large cost according to w. This is much more
convenient to work with and it turns out that finding such w can be formulated as a linear program of size
polynomial in n. Once this observation was made, Karger et al.then solved the LP for large n and used the
solution as an inspiration to come up with the 12/11 − ε gap for Multiway Cut with three terminals.

We make the following analogous observation for non-opposite cuts. This observation allows us to mod-
ify Karger et al.’s LP to express the problem of finding an integrality gap against non-opposite cuts on
(∆3,n, E3,n). We then solve the LP and use it as an inspiration for our explicit gap construction. Since the
LP will not appear in our proof, we refer interested readers to Section 3.1 of [KKS+04] for more details on
the LP.

3Note that it is possible that there are cuts not of these forms that also achieve the same (optimal) cost.
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O1

O2O3

(a) A ball cut

O1

O2O3

(b) A 2-corner cut

O1

O2O3

(c) A 3-corner cut

Figure 3: Examples of a ball cut, a 2-corner cut and a 3-corner cut of (∆3,6, E3,6).

Observation 5 For any w : E3,n → R≥0, there exists a least-cost non-opposite cut P that is of one of the
following forms:

• P is a ball cut.

• P contains three non-intersecting paths among O1, O2 and O3. Such P is called a 3-corner cut.

An example of a 3-corner cut can be found in Figure 3c. For brevity, we will sometimes abbreviate 3-corner
cuts as simply corner cuts. Note that we reserve this abbreviation only for 3-corner cuts and we will never
shorten 2-corner cuts. The proof of our observation is quite simple and is given below.

Proof of Observation 5. Let P be any non-opposite cut of (∆3,n, E3,n) (not necessary a ball cut or a corner
cut). To prove Observation 5, we will provide a sequence of transformations of P such that all uncut edges
in P remain uncut and that, at the end of the transformation, P becomes either a ball cut or a corner cut.

For convenience, let GP be the graph (∆3,n, E3,n) after all the edges cut by P are removed. Observe that
every point in a connected component of GP is assigned by P to the same cluster. The transformations can
be described as follows:

• For each connected component C of GP that is assigned to 4, if C intersects with all the three sides of
the triangle, then do nothing. Otherwise, reassign the whole component to either 1, 2 or 3, whichever
one still maintains the non-oppositeness of P ; note that since C does not intersect with all three sides
of the triangle, this is always possible.

• As long as there exists a component C of GP that is assigned to i ∈ [3] but does not contain ei, reassign
C to the same cluster as one of its neighbors. Moreover, it is again easy to check that we can always
pick the neighboring cluster such that P remains non-opposite.

Clearly, any edge that was initially uncut remains uncut in the final P . Moreover, since the second transfor-
mation reduces the number of connected components of GP by at least one, the sequence of transformations
always halts. Finally, note that, in the resulting P , all points assigned to any i ∈ [4] form a connected
component. Moreover, if any point is assigned to 4, then the corresponding connected component must
contain at least one point from each of the three sides. It is now easy to see that, if no point is assigned to
4, then the final cut is a ball cut. On the other hand, if at least one point is assigned to 4, the final cut is a
corner cut. �
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3.2 The Integrality Gap

With the characterization of non-opposite cuts in place, we are now ready to describe our integrality gap
and prove Lemma 3. We remark here that, although we have so far focused only on Karger et al.’s result,
our construction will be more similar to that of Cunningham and Tang [CT99], in that we will partition the
simplex into “corner triangles” and “middle hexagon”. We would like to stress however that, even with these
similarities, these two gaps are significantly different and nothing carries over from there as a blackbox.

Proof of Lemma 3. The gap can be described as follows. First, we divide the vertex set into corner triangles
T1, T2, T3 and a middle hexagon H as follows. The middle hexagon contains all points x ∈ ∆3,n such that
all the coordinates of x do not exceed 2/3, whereas the corner triangle Ti contains all the points x’s such
that xi > 2/3. Note that this is not a partition since the middle hexagon H and each corner triangle Ti still
share the line xi = 2/3, but this notation will be more convenient for us.

Every edge in the middle hexagon including its border is assigned weight ρ := 1/(2n). Moreover, for each i,
every non-border edge in Ti that is not parallel to the opposite side of ei is also assigned weight ρ, whereas
the non-border edges parallel to the opposite side of ei are assigned weight zero. Finally, for each of the two
borders of Ti containing ei, we define its weight as follows. The edge closest to ei is assigned weight (n/3)ρ,
the second closest is assigned (n/3 − 1)ρ, and so on. An illustration of the construction is shown in Figure 4.

e1

e2 e3
3ρ

3ρ

2ρρρρρρ2ρ3ρ

3ρ

2ρ2ρ

ρρ

ρρ

ρρ

ρρ

ρρ

2ρ2ρ

3ρ3ρ

Figure 4: The constructed integrality gap when n = 9. The middle hexagon H is the shaded area.
The weights of the edges on the borders of the triangle are shown. For the non-border edges, the
dashed edges have weight zero whereas the rest of the edges all have weight ρ.

Let us now compute the value of the canonical LP solution with respect to w. Recall that the value L(w) is
simply 1

n

∑

(x,y)∈E3,n
w(x, y). Note that due to symmetry the sum of all the weights is three times the sum

of the weights of all (x, y) ∈ E3,n that are parallel to (e1, e2). The total weight on the line (e1, e2) is

((n/3)ρ + (n/3 − 1)ρ + · · · + ρ) + (ρ + · · · + ρ) + (ρ + · · · + (n/3)ρ) = (n2/9 + 2n/3)ρ
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and the total weight on the non-border edges parallel to (e1, e2) is simply

(n − 1)ρ + · · · + (n/3)ρ = (4n2/9 − n/3)ρ.

Hence, the total weight of all edges parallel to (e1, e2) is (5n2/9 + n/3)ρ. As a result, we have

L(w) =
1

n
· 3 ·

(

5n2

9
+

n

3

)

· 1

2n
=

5

6
+ O(1/n),

as desired.

We will next prove that, for any non-opposite cut P , C(P, w) > 1. From Observation 5, we can assume that
P is either a ball cut or a corner cut. We will prove that C(P, w) > 1 by a potential function argument.
Recall that each node in the dual graph is either O1, O2, O3 or a triangle. We represent each triangle by its
middle point (median). For each i, we define the potential function Φi on Oi and all the triangles as follows.

Φi(F ) =































0 if F = Oi,

(4n/3)ρ if x ∈ Ti,

(n/3 + n(xi − xw))ρ if x ∈ Tj ,

(n/3 + n(xi − xj))ρ if x ∈ Tw,

⌈2nxi⌉ρ if x ∈ H,

where {i, j, w} = {1, 2, 3} and x = (x1, x2, x3) is the middle point of F . An example illustrating the potential
function can be found in Figure 5.
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e33ρ2ρ
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4ρ

3ρ
4ρ

3ρ
4ρ
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9ρ9ρ
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9ρ
10ρ
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11ρ
12ρ

11ρ
12ρ

12ρ12ρ
12ρ

12ρ
12ρ

12ρ12ρ
12ρ

12ρ

0

Figure 5: The potential function Φ1 when n = 9.

It is easy to check that, for any two triangles F1, F2 that share an edge, the difference |Φi(F1) − Φi(F2)| is
no more than the weight of the shared edge. The same remains true even when one of F1, F2 is Oi. This
implies that, in the dual graph, the shortest path from Oi to any triangle F is at least Φi(F ). With these
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observations in mind, we are ready to show that C(P, w) > 1. Let us consider the two cases based on whether
P is a corner cut or a ball cut.

Case 1. Suppose that P is a corner cut. Observe that, for any j ∈ [3] \ {i} and for any triangle F sharing
an edge with the outer face Oj , we always have Φi(F ) plus the weight of the shared edge being at least
(2n/3)ρ = 1/3. Hence, the shortest path from Oi to Oj in the dual graph has weight at least 1/3. Since P
contains three paths among O1, O2, O3, the cost of P is at least 1.

Case 2. Suppose that P is a ball cut. Let F be the triangle which the three paths to O1, O2, O3 in P originate
from. To show that P has cost at least one, it is enough to show that the total length of the shortest paths
from F to O1, O2 and O3 is at least one. Since these shortest paths are lower bounded by the potential
functions, we only need to prove that Φ1(F ) + Φ2(F ) + Φ3(F ) > 1.

Let x be the middle point of F . If x ∈ H , then

Φ1(F ) + Φ2(F ) + Φ3(F ) = ⌈2nx1⌉ρ + ⌈2nx2⌉ρ + ⌈2nx3⌉ρ > (2nx1)ρ + (2nx2)ρ + (2nx3)ρ = 1.

On the other hand, if x /∈ H , assume without loss of generality that x ∈ T1. We have

Φ1(F ) + Φ2(F ) + Φ3(F ) = (4n/3)ρ + (n/3 + n(x2 − x3)) ρ + (n/3 + n(x3 − x2)) ρ = (2n)ρ = 1.

In all cases, we have C(P, w) > 1, thus completing the proof of Lemma 3. �

4 An Integrality Gap of 6/5 − O(1/
√

k)

We will now use the integrality gap from Lemma 3 to construct an integrality gap for Multiway Cut with k
terminals, for k > 3. The vertex set and the edge set of the graph will be ∆k,n ⊆ ∆k and Ek,n = {(x, y) ∈
∆k,n × ∆k,n | ‖x − y‖1 = 2/n} respectively. The goal of this section is to prove the following lemma.

Lemma 6 For every n divisible by 3 and every k > 3, there exists w : Ek,n → R≥0 such that

• The value of the canonical LP solution of (∆k,n, Ek,n, w) is at most 5/6 + O(1/n).

• The cost of every k-way cut of the graph is at least 1 − O(n/k).

By setting n =
√

k, we have an integrality gap of 6/5 − O(1/
√

k). While the dependency on k here is still
worse than that in Theorem 1, the construction and proof encapsulate the main ideas of this paper. The
gap from this section will finally be slightly tweaked in the next section to yield the right dependency on
k.

The core of the proof of Lemma 6 is the following proposition, which is essentially equivalent to τ̃∗
3,n −

O(n/k) 6 τ∗
k , albeit stated in more convenient integrality gap terminologies.

Proposition 7 Let P be any k-way cut of ∆k,n for any k > 3. For any {i1, i2, i3} ⊆ [k], let P{i1,i2,i3} be as
defined in the introduction. If i1, i2, i3 are 3 randomly selected distinct elements of [k], then

Pr
i1,i2,i3

[P{i1,i2,i3} is non-opposite] > 1 − O(n/k).

Before we prove the proposition, let us first use it to prove Lemma 6.

Proof of Lemma 6. Our gap is simply created by embedding the gap from Section 3 to every triangular face
of ∆k,n. More specifically, for each {i1, i2, i3} ∈

(

[k]
3

)

, the weights w{i1,i2,i3} : Ek,n → R≥0 of the triangular
integrality gap embedded to the face induced by ei1 , ei2 , ei3 can be defined as

w{i1,i2,i3}(x, y) =

{

w((xi1 , xi2 , xi3 ), (yi1 , yi2 , yi3)) if supp(x), supp(y) ⊆ {i1, i2, i3},

0 otherwise,
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where w is the weight function from Lemma 3. Finally, the overall weighting scheme is just the average over
all w{i1,i2,i3}’s, i.e.,

w = E

{i1,i2,i3}∈([k]
3 )

[

w{i1,i2,i3}

]

.

Let us now compute the value of the canonical LP solution of (∆k,n, Ek,n, w). From the definition of w, L(w)

is simply the average of L(w{i1,i2,i3}) over all {i1, i2, i3} ∈
(

[k]
3

)

. Since L(w{i1,i2,i3}) = L(w) = 5/6 + O(1/n),
we can conclude that L(w) = 5/6 + O(1/n) as desired.

Next, we will argue that the cost of every k-way cut of the graph is at least 1 − O(n/k). Consider any k-way
cut P . Before we formally prove that C(P, w) > 1 − O(n/k), let us give a short intuition behind the proof.

First, by Proposition 7, for at least 1 − O(n/k) fraction of {i1, i2, i3} ∈
(

[k]
3

)

, P{i1,i2,i3} is non-opposite. From
the second condition of Lemma 3, this means that the cost of P with respect to w{i1,i2,i3} is at least one.
This implies that the total cost of P with respect to w is at least 1 − O(n/k).

More formally, the cost of P can be written as

C(P, w) = E

{i1,i2,i3}∈([k]
3 )

[C(P, w{i1,i2,i3})]

(from definitions of w{i1,i2,i3}, P{i1,i2,i3}) > E

{i1,i2,i3}∈([k]
3 )

[C(P{i1,i2,i3}, w)].

Let E{i1,i2,i3} be the event that P{i1,i2,i3} is non-opposite. We can then lower bound the last expression by

E

{i1,i2,i3}∈([k]
3 )

[C(P{i1,i2,i3}, w)] > Pr[E{i1,i2,i3}] · E

{i1,i2,i3}∈([k]
3 )

[C(P{i1,i2,i3}, w) | E{i1,i2,i3}]

(from Proposition 7) > (1 − O(n/k)) · E

{i1,i2,i3}∈([k]
3 )

[C(P{i1,i2,i3}, w) | E{i1,i2,i3}]

> 1 − O(n/k),

where the last inequality comes from the second property of w in Lemma 3. �

We will next prove Proposition 7; the proof is essentially the same as the proof of τ̃∗
3,n −O(n/k) 6 τ∗

k sketched
earlier in the introduction.

Proof of Proposition 7. By definition of non-opposite cuts of ∆3,n, if P{i1,i2,i3} is not non-opposite, then
there exists a point x on one of the sides of ∆3,n (i.e. | supp(x)| = 2) such that P{i1,i2,i3}(x) /∈ supp(x) ∪ {4}.
Hence, by union bound, we have

Pr
i1,i2,i3

[P{i1,i2,i3} is not non-opposite] 6
∑

x∈∆3,n:

| supp(x)|=2

Pr
i1,i2,i3

[P{i1,i2,i3}(x) /∈ supp(x) ∪ {4}].

Consider an x ∈ ∆3,n with | supp(x)| = 2. Assume without loss of generality that supp(x) = {1, 2}. If
P{i1,i2,i3}(x) /∈ supp(x)∪{4}, then P{i1,i2,i3}(x) = 3. The latter occurs if and only if P (x1ei1 +x2ei2 +x3ei3 ) =
i3. Fix i1, i2; this already determines P (x1ei1 + x2ei2 + x3ei3). Since i3 is now a random element from
[k] \ {i1, i2}, the probability that P (x1ei1 + x2ei2 + x3ei3 ) = i3 is at most 1/(k − 2). Hence, we have

Pr
i1,i2,i3

[P{i1,i2,i3} is not non-opposite] 6
∑

x∈∆3,n:

| supp(x)|=2

1

k − 2
=

3(n − 1)

k − 2
= O(n/k),

completing the proof of the proposition. �
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5 Getting the Right Dependency on k

We will modify our gap from the previous section to arrive at the following quantitatively better bound.

Theorem 8 For every n divisible by 3 and every k > 3, there exists w̃ : Ek,n → R≥0 such that

• The value of the canonical LP solution of (∆k,n, Ek,n, w̃) is at most (5 + 1
k−1 )/6 + O(1/n).

• The cost of every k-way cut of the graph is at least one.

Clearly, by taking n sufficiently large (i.e. n = Ω(1/ε)), Theorem 8 implies Theorem 1 since the value of the
canonical LP solution is no more than the value of the optimal LP solution.

The rest of the section is arranged as follows. First, in the first subsection, we refine our analysis from
Section 4 to get improved bounds for the costs of k-way cuts against the weight function. Unfortunately,
this will not be enough to prove Theorem 8 and we will have to provide another simple gap to complement
worst cases for the gap from Section 4; this is done in Subsection 5.2. Finally, we take an appropriate linear
combination of the two gaps and prove Theorem 8 in the last subsection.

5.1 Refined Analysis for the Gap from Section 4

There are two main points of the analysis from the previous section that need to be tightened in order to
get the bound in Theorem 8. First, notice that the bound in Proposition 7 can be improved if, for each
two vertices ei, ej of the simplex, the points on the line between ei and ej are assigned to few clusters. For
instance, in the extreme case where every point on the line from ei to ej is assigned to either cluster i or
cluster j, P{i1,i2,i3} is always non-opposite for every i1, i2, i3. The following proposition gives a more refined
bound on the probability that P{i1,i2,i3} is non-opposite based on the number of clusters that the points on
the line from ei to ej are assigned to for every i, j ∈ [k].

Proposition 9 Let P be any k-way cut of ∆k,n for any k > 3. For each {i, j} ⊆ [k], let us define Di,j(P )
to be the set of all clusters that the points on the line between ei and ej (inclusive) are assigned to, i.e.,

Di,j(P ) = {P (x) | x ∈ ∆k,n, supp(x) ⊆ {i, j}}.

Finally, let D(P ) be the average of the size of Di,j(P ) among all {i, j} ⊆ [k], i.e., D(P ) = E{i,j}⊆[k][|Di,j(P )|].
If i1, i2, i3 are three randomly selected distinct elements of [k], then

Pr
i1,i2,i3

[P{i1,i2,i3} is non-opposite] > 1 − 3(D(P ) − 2)/(k − 2).

Proof. We want to bound the probability that P{i1,i2,i3} is not non-opposite. Again, this happens only when
there exists x such that supp(x) ⊆ {i1, i2, i3} and P (x) ∈ {i1, i2, i3} \ supp(x). Note that such x can only
have | supp(x)| = 2. Thus, by union bound, we have

Pr
i1,i2,i3

[P{i1,i2,i3} is not non-opposite]

6
∑

{j1,j2}⊆{i1,i2,i3}

Pr
i1,i2,i3

[∃x, supp(x) = {j1, j2} and P (x) ∈ {i1, i2, i3} \ {j1, j2}]

= 3 Pr
i1,i2,i3

[∃x, supp(x) = {i1, i2} and P (x) = i3],

where the last equality comes from symmetry. Now, let us fix i1, i2. There is an x with supp(x) = {i1, i2}
such that P (x) = i3 if and only if i3 ∈ Di1,i2 (P ). Observe that i1, i2 ∈ Di1,i2 (P ). Hence, the probability
that i3, a uniformly random element from [k] \ {i1, i2}, lies in Di1,i2(P ) is exactly (|Di1,i2 (P )| − 2)/(k − 2).
Thus,

Pr
i1,i2,i3

[∃x, supp(x) = {i1, i2} and P (x) = i3] = E
i1,i2

[Pr
i3

[∃x, supp(x) = {i1, i2} and P (x) = i3]]
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= E
i1,i2

[(|Di1,i2 (P )| − 2)/(k − 2)]

= (D(P ) − 2)/(k − 2).

Hence, Pri1,i2,i3 [P{i1,i2,i3} is non-opposite] > 1 − 3(D(P ) − 2)/(k − 2) as desired. �

Another point in our analysis that was not tight was that, in the proof of Lemma 6, we only used the fact
that C(P, w{i1,i2,i3}) is at least one when P{i1,i2,i3} is non-opposite. However, even when P{i1,i2,i3} is not
non-opposite, C(P, w{i1,i2,i3}) is non-zero and we should include this in our argument, too. To do so, we
need the following observation.

Observation 10 Let w be as defined in Lemma 3. The cost of any 3-way cut of (∆3,n, E3,n) with respect
to w is at least 2/3.

To see that the observation is true, recall Observation 4; to prove that any 3-way cut of (∆3,n, E3,n) has cost
at least 2/3, we only need to consider ball cuts and 2-corner cuts. However, we have shown in Subsection 3.2
that the cost of any ball cut and 3-corner cut with respect to w is at least one. This immediately implies
that the cost of any 2-corner cut is at least 2/3, meaning that Observation 10 is indeed true.

With the above proposition and the observation, we can now prove a refined version of Lemma 6, as stated
formally below. The proof is very similar to that of the original lemma.

Lemma 11 For w as defined in Lemma 6 and for any k-way cut P , we have C(P, w) > 1−(D(P )−2)/(k−2).

Proof. Recall that we have

C(P, w) > E
{i1,i2,i3}⊆[k]

[C(P{i1,i2,i3}, w)].

Again, let E{i1,i2,i3} be the event that P{i1,i2,i3} is non-opposite. We can then lower bound C(P, w) as follows.

E
{i1,i2,i3}⊆[k]

[C(P{i1,i2,i3}, w)] = Pr[E{i1,i2,i3}] · E
{i1,i2,i3}⊆[k]

[C(P{i1,i2,i3}, w) | E{i1,i2,i3}]+

Pr[¬E{i1,i2,i3}] · E
{i1,i2,i3}⊆[k]

[C(P{i1,i2,i3}, w) | ¬E{i1,i2,i3}]

(from Lemma 3 and Observation 10) >Pr[E{i1,i2,i3}] +
2

3
· Pr[¬E{i1,i2,i3}]

=1 − 1

3
· Pr[¬E{i1,i2,i3}]

(from Proposition 9) >1 − D(P ) − 2

k − 2
.

�

5.2 An Integrality Gap Against Large D(P )

As seen in the previous subsection, the weight w works well against cuts P with small D(P ) but it does not
work well against P with large D(P ). As a result, we need to construct a different integrality gap instance
that deals with this case. Formally, the new gap will have the following properties.

Lemma 12 For every n > 2 and every k > 2, there exists w′ : Ek,n → R≥0 such that

• The value of the canonical LP solution of (∆k,n, Ek,n, w′) is exactly one.

• The cost of every k-way cut P of the graph is at least D(P ) − 1.
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Proof. The gap construction is intuitive; since D(P ) being large means that many edges on the lines between
two vertices of the simplex are cut, we simply define the gap so that we place all the weights equally on such
edges. Specifically, define w′(x, y) for all (x, y) ∈ Ek,n as follows.

w′(x, y) =

{

1

(k

2)
if | supp(x) ∪ supp(y)| = 2,

0 otherwise.

Clearly, L(w′) = 1 since each line from ei to ej contributes 1/
(

k
2

)

to the value of the solution.

Now, consider any k-way cut P . The cost of the cut can be written as

C(P, w′) =
∑

(x,y)∈Ek,n

w′(x, y) · 1[P (x) 6= P (y)]

=
∑

(x,y)∈Ek,n :

| supp(x)∪supp(y)|=2

1
(

k
2

) · 1[P (x) 6= P (y)]

=
1

(

k

2

)

∑

{i,j}⊆[k]

∑

(x,y)∈Ek,n :

supp(x)∪supp(y)={i,j}

1[P (x) 6= P (y)]

= E
{i,j}⊆[k]









∑

(x,y)∈Ek,n :

supp(x)∪supp(y)={i,j}

1[P (x) 6= P (y)]









.

The term in the expectation is simply the number of edges on the line between ei and ej cut by P . Since we
know that the points on this line are assigned to |Di,j(P )| different clusters, we can lower bound the number
of edges cut by |Di,j(P )| − 1, which gives

C(P, w′) > E
{i,j}⊆[k]

[|Di,j(P )| − 1] = D(P ) − 1.

This completes the proof of Lemma 12. �

5.3 Putting Things Together

It is now easy to prove our main theorem by simply picking the weight w̃ to be an appropriate linear
combination of w and w′.

Proof of Theorem 8. Let w and w′ be as defined in Lemma 6 and Lemma 12 respectively. We define w̃ to be

w̃ =

(

k − 2

k − 1

)

w +

(

1

k − 1

)

w′.

The value of the canonical LP solution of (∆k,n, Ek,n, w̃) is simply

L(w̃) =

(

k − 2

k − 1

)

L(w) +

(

1

k − 1

)

L(w′)

=

(

k − 2

k − 1

)

(5/6 + O(1/n)) +

(

1

k − 1

)

=

(

5 +
1

k − 1

)

/6 + O(1/n).
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Moreover, for any k-way cut P , we have

C(P, w̃) =

(

k − 2

k − 1

)

C(P, w) +

(

1

k − 1

)

C(P, w′)

(from Lemma 11 and Lemma 12) >

(

k − 2

k − 1

) (

1 − D(P ) − 2

k − 2

)

+

(

1

k − 1

)

(D(P ) − 1)

= 1.

Hence, w satisfies the two properties in Theorem 8. �

6 Conclusion and Discussions

In this paper, we construct integrality gap instances of ratio 6/(5+ 1
k−1 )−ε for every ε > 0 for the Călinescu-

Karloff-Rabani linear program relaxation of Multiway Cut with k > 3 terminals. Combined with the result
of Manokaran et al. [MNRS08], our result implies that it is UG-hard to approximate Multiway Cut with k
terminals to within 6/(5 + 1

k−1 ) − ε ratio of the optimum. Our gap construction is based on the observation
that τ̃∗

3,n − O(n/K) lower bounds τ∗
K ; with this observation, we extend Karger et al.’s characterization of 3-

way cuts [KKS+04] to non-opposite cuts, which ultimately leads to a lower bound of 6/5−O(1/n) for τ̃∗
3,n. We

also observe that Freund and Karloff’s integrality gap instance [FK00] is subsumed by our approach.

Even with our result, the approximability of Multiway Cut is far from resolved as the best known approxi-
mation algorithm by Sharma and Vondrák [SV14] only achieves approximation ratio of 1.2965 as k goes to
infinity whereas our gap is only 1.2. It may be tempting to try to prove a stronger lower bound for τ̃∗

3,n in
order to construct improved integrality gaps. Unfortunately, this is impossible since a slight modification
of Karger et al.’s algorithm for Multiway Cut with 3 terminals shows that τ̃∗

3 6 1.2. For completeness,
we include the modified algorithm in Appendix C. With this in mind, it is likely that, to construct better
integrality gaps, we need to exploit geometric properties of higher-dimensional simplexes. This seems much
harder to do as all the known gaps, including ours, only deal with the two-dimensional simplex ∆3, whose
nice properties allow the cuts to be characterized in a convenient manner.

Finally, we would like to note that the proof in Section 5 can easily be converted to a proof of τ̃∗
3 −O(1/K) 6

τ∗
K . Notice that τ̃∗

3 appears in the inequality as opposed to its discretized approximation τ̃∗
3,n as sketched

in the introduction. Unfortunately, we do not know of any way of extending this proof to show a direct
relation between τ̃∗

k and τ∗
K for k > 3. Such relation may be crucial if one wants to construct an integrality

gap instance by proving a lower bound for τ̃∗
k .
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A The Freund-Karloff Gap, Revisited

In this section, we will rephrase the Freund-Karloff integrality gap [FK00] in terms of a lower bound for
τ̃∗

3,2. In ∆3,2, there are only six vertices: the three vertices of the simplex and the three middle points. The
Freund-Karloff gap sets the weight of the edges between a simplex vertex and a middle point to be 1/6 and
sets the weight of the edges among the middle points to be 1/4.
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Figure 6: The Freund-Karloff Integrality Gap and Candidate Optimal Non-Opposite Cuts. Fig-
ure 6a demonstrates the Freund-Karloff integrality gap whereas Figure 6b shows the only three
possible ball and corner cuts (up to rotations and reflections).
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The illustrations of the gap can be found in Figure 6a. Clearly, the canonical LP solution has value 7/8.
Moreover, discounting symmetry, there are only three ball and corner cuts, as shown in Figure 6b. Obviously,
every cut has value at least one. Hence, this is an 8/7 lower bound on τ̃∗

3,2 as intended.

Finally, we note that, by using the technique from Section 5, one can arrive at 8/(7 + 1
k−1 ) integrality gap

for Multiway Cut with k terminals, which is exactly the result of Freund and Karloff.

B An Inequality Between τ̃ ∗
k,n and τ ∗

K

In this section, we prove a relation between τ̃∗
k,n and τ∗

K for K > k. This generalizes the inequality between
τ̃∗

3,n and τ∗
K , whose proof sketch was presented in the introduction.

Lemma 13 For every K > k, τ̃∗
k,n − O(kn/(K − k)) 6 τ∗

K .

Proof. Suppose that P is the distribution on K-way cuts such that τK(P) = τ∗
K . We define a distribution

P̃ on non-opposite cuts of ∆k by a sampling process for P̃ ∼ P̃ as follows. First, sample P ∼ P . Then,
randomly select an injection f : [k] → [K]. In short, we will set P̃ to be the restriction of P on the face
induced by ef(1), . . . , ef(k) and “fix” P̃ so that it is non-opposite.

For convenience, let x ◦ f denote
∑

i∈[k] xie
f(i) ∈ ∆K for every x ∈ ∆k. P̃ can then be defined as follows.

P̃ (x) =

{

f−1(P (x ◦ f)) if P (x ◦ f) ∈ supp(x ◦ f),

k + 1 otherwise.

Since supp(x ◦ f) = f(supp(x)), it is clear from the definition above that P̃ is indeed a non-opposite cut of
∆k. We are left to only argue that τk,n(P̃) 6 τK(P)+O(k/K). Consider any two different points x, y ∈ ∆k,n.
Observe that, if P̃ (x) 6= P̃ (y), then either P (x◦f) 6= P (y◦f) or P (x◦f) = P (y◦f) ∈ supp(x◦f)⊕supp(y◦f)
where ⊕ denotes the symmetric difference between the two sets. The latter also implies that either P (x◦f) ∈
f([k] \ supp(x)) or P (y ◦ f) ∈ f([k] \ supp(y)). By union bound, we have

Pr
P̃ ∼P̃

[P̃ (x) 6= P̃ (y)] 6 Pr
P ∼P,f

[P (x ◦ f) 6= P (y ◦ f)] + Pr
P ∼P,f

[P (x ◦ f) = P (y ◦ f) ∈ supp(x ◦ f) ⊕ supp(y ◦ f)]

6 τ∗
K · 1

2
‖x − y‖1 + Pr

P ∼P,f
[P (x ◦ f) ∈ f([k] \ supp(x))] + Pr

P ∼P,f
[P (y ◦ f) ∈ f([k] \ supp(y))].

Let us now bound PrP ∼P,f [P (x ◦ f) ∈ f([k] \ supp(x))]. Fix P and fix g = f |supp(x). Note that fixing
g already determines x ◦ f and hence P (x ◦ f). If P (x ◦ f) is in g(supp(x)) = f(supp(x)), then clearly
P (x ◦ f) /∈ f([k] \ supp(x)). On the other hand, if P (x ◦ f) /∈ f(supp(x)), then P (x ◦ f) ∈ f([k] \ supp(x)) if
and only if P (x◦f) = f(i) for some i ∈ [k]\supp(x). For a fixed i, the probability that P (x◦f) = f(i) is only
1/(K − supp(x)) 6 1/(K − k). Hence, by union bound, PrP ∼P,f [P (x ◦ f) ∈ f([k] \ supp(x))] 6 k/(K − k).

A similar bound can be derived for PrP ∼P,f [P (y ◦ f) ∈ f([k] \ supp(y))], which implies that

Pr
P̃ ∼P̃

[P̃ (x) 6= P̃ (y)] 6 τ∗
K · 1

2
‖x − y‖1 + 2k/(K − k).

Finally, note that, for all x 6= y ∈ ∆k,n, the distance ‖x − y‖1 is at least 2/n. Hence, we have PrP̃ ∼P̃ [P̃ (x) 6=
P̃ (y)] 6 (τ∗

K + O(kn/(K − k))) · 1
2 ‖x − y‖1 , meaning that τ̃∗

k − O(kn/(K − k)) 6 τ∗
K as desired. �

C A Rounding Scheme for Non-Opposite Cuts of ∆3

In this section, we provide a probability distribution P on non-opposite cuts of ∆3 such that τ(P) 6 6/5,
thereby proving that τ̃∗

3 6 6/5. The probability distribution is a slight modification of the algorithm for
Multiway Cut with 3 terminals by Karger et al. [KKS+04].
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A cut P ∼ P is drawn as follows:

• With probability 1/5, we select r ∈ [2/3, 1) uniformly at random. Let P be the 3-corner cut in which
each x ∈ ∆3 is assigned to i if and only if xi > r and is assigned to 4 if none of its coordinates exceeds
r.

• With probability 4/5, we pick P to be a ball cut by the following process. With probability 1/2, let
r be a random point on the line between (2/3, 1/3, 0) and (0, 2/3, 1/3). Otherwise, let r be a random
point on the line between (2/3, 0, 1/3) and (0, 1/3, 2/3). Consider segments starting from r which are
parallel to the sides of ∆3. There are six such segments with two of them ending on each side of the
triangle. For each side, randomly pick one of the two segments. Finally, let P be the cut induced by
the three segments picked.

We note that the distribution is the same as that in Theorem 4.3 of [KKS+04] except that here the corner
cut is chosen with probability 1/5 instead of 3/11 as in [KKS+04]; for illustrations of the cuts, please refer
to Figure 5 in [KKS+04]. Since the proof remains essentially the same as that in the mentioned theorem, we
do not provide it here.
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