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Abstract

The infinite models in integer programming can be described as the convex hull of
some points or as the intersection of halfspaces derived from valid functions. In this paper
we study the relationships between these two descriptions. Our results have implications
for corner polyhedra. One consequence is that nonnegative, continuous valid functions
suffice to describe corner polyhedra (with or without rational data).

1 Introduction

Let b ∈ Rn \ Zn. The mixed-integer infinite group relaxation Mb is the set of all pairs
of functions (s, y) with s : Rn → R+ and y : Rn → Z+ having finite support (that is,
{r : s(r) > 0} and {p : y(p) > 0} are finite sets) satisfying

∑

r∈Rn

rs(r) +
∑

p∈Rn

py(p) ∈ b+ Zn.

Mb is a subset of the infinite-dimensional vector space R(Rn)×R(Rn), where R(Rn) denotes

the set of functions with finite support from Rn to R. Similarly, R
(Rn)
+ will denote the set

of functions with finite support from Rn to R that are nonnegative. We will work with this
vector space throughout the paper.

A tuple (ψ, π, α), where ψ, π : Rn → R and α ∈ R, is a valid tuple for Mb if

∑

r∈Rn

ψ(r)s(r) +
∑

p∈Rn

π(p)y(p) ≥ α for every (s, y) ∈Mb. (1.1)

A valid tuple (ψ, π, α) for Mb is minimal if there does not exist a pair of functions (ψ′, π′)
different from (ψ, π), with (ψ′, π′) ≤ (ψ, π), such that (ψ′, π′, α) is a valid tuple for Mb. Since
for λ > 0 the inequalities (1.1) associated with (ψ, π, α) and (λψ, λπ, λα) are equivalent, from
now on we assume α ∈ {−1, 0, 1}.
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joseph.paat@ifor.math.ethz.ch

1

http://arxiv.org/abs/1612.06288v4


The set of functions y : Rn → Z+ such that (0, y) ∈ Mb will be called the pure integer
infinite group relaxation Ib. In other words, Ib = {y ∈ R(Rn) : (0, y) ∈Mb}. When convenient
we will see Ib as a subset of Mb. A tuple (π, α), where π : Rn → R and α ∈ R, is called a
valid tuple for Ib if

∑

p∈Rn

π(p)y(p) ≥ α for every y ∈ Ib. (1.2)

Again, we will assume α ∈ {−1, 0, 1}. We say that a valid tuple (π, α) for Ib is minimal if
there does not exist a function π′ different from π, with π′ ≤ π, such that (π′, α) is a valid
tuple for Ib.

Models Mb and Ib were defined by Gomory and Johnson in a series of papers [15–17, 20]
as a template to generate valid inequalities for integer programs. They have been the focus
of extensive research, as summarized, e.g., in [3, 5, 6], [9, Chapter 6]. The main idea is
the following. Given a mixed-integer program in the form Cz = d, z ≥ 0 with integrality
constraints on a subset of the z variables, one can obtain the following relaxation from an
optimal simplex tableau:

x+ b =
∑

r∈R

rs(r) +
∑

p∈P

py(p),

where x is a subset of n integer constrained basic variables, R,P ⊆ Rn are the sets of
nonbasic columns corresponding to the continuous and integer constrained nonbasic variables
s(r) and y(p) respectively, and (x, s, y) = (−b, 0, 0) is the current linear-programming (LP)
solution. If one relaxes the nonnegativity constraint on x, the relaxation can be seen as a
finite dimensional face of conv(Mb) (the convex hull of Mb), obtained by setting s(r) and
y(p) to 0 for r 6∈ R and p 6∈ P . Similarly, for a pure integer program, one obtains a finite
dimensional face of conv(Ib). The main point is that any valid tuple (for Mb or Ib), when
restricted to the appropriate finite dimensional space, gives a valid inequality which can be
used as a cutting plane for the initial LP relaxation.

In the pure integer case, when all the data in the problem is rational, i.e., P ∪ {b} ⊆ Qn,
Gomory termed such finite dimensional faces of conv(Ib) as corner polyhedra. One of our
insights in this paper is that even for non-rational data, the finite dimensional faces of conv(Ib)
are rational polyhedra (see detailed discussion below). In anticipation, we will refer to all
finite dimensional faces of conv(Ib) (with rational or non-rational P, b) as corner polyhedra.

1.1 Results and their implications.

We first study the infinite dimensional objects Mb and Ib, and then derive some consequences
for the finite dimensional faces of conv(Mb) and conv(Ib). For later reference, we define a
canonical face of conv(Mb) as conv(Mb)∩{(s, y) : s(r) = 0 ∀r ∈ Rn\R, y(r) = 0 ∀r ∈ Rn\P}
for some R,P ⊆ Rn. Similarly, a canonical face of conv(Ib) is conv(Ib) ∩ {y : y(r) = 0 ∀r ∈
Rn \P} for some P ⊆ Rn. These will be called finite canonical faces if R,P are finite subsets
of Rn, which will be the focus of our investigations.

Structure of the infinite dimensional models. Regarding the infinite dimensional ob-

jects Mb and Ib, one would expect that the intersection of R
(Rn)
+ × R

(Rn)
+ and all halfspaces
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in R(Rn) × R(Rn) defined by valid tuples for Mb would be equal to conv(Mb), where conv(·)
denotes the convex hull operator. However, this is not true: one of our main results (Theo-
rem 2.14) shows that this intersection is the closure of conv(Mb) under a norm topology on
R(Rn) × R(Rn) that was first defined by Basu et al. [2]. We then show that the closure of

conv(Mb) coincides with conv(Mb) + (R
(Rn)
+ × R

(Rn)
+ ), which is a strict superset of conv(Mb)

(Remark 4.6). The same set of results holds for conv(Ib) (Theorem 2.15, Remark 3.5 and
Example 4.7). We also obtain precise characterizations of the affine hulls ofMb and Ib (Propo-
sitions 3.2 and 3.4 respectively); our characterization of the equations defining the affine hull
of conv(Ib) extends a result in [5].

Crucial to the above results is the characterization of what we call liftable tuples. We say
that a valid tuple (π, α) for Ib is liftable if there exists ψ : Rn → R such that (ψ, π, α) is a valid
tuple for Mb. Minimal valid tuples (π, α) that are liftable are a strict subset of minimal valid
tuples, as we show that such π have to be nonnegative and Lipschitz continuous (Proposition
2.6 and Remark 2.7).

Restricting to well-behaved valid tuples. Most of the prior literature on valid tuples
(π, α) for Ib proceeds under the assumption that π is nonnegative (in fact, Gomory and
Johnson included the assumption π ≥ 0 in their original definition of valid tuple for Ib). This
assumption is restrictive as there are valid tuples not satisfying π ≥ 0 [5], and the assumption
has been investigated in more recent work on Ib [5, 6] (work on generalizations of Ib also allows
for negative values in the valid tuples [21–23, 30]). The standard justification behind the π ≥ 0
assumption is the fact that valid tuples are nonnegative on the rational vectors; see, e.g., the
discussion in Section 2.1.2 in [5]. Since in practice we are interested in finite canonical faces
of conv(Ib) defined by P ∪ {b} ⊂ Qn, such an assumption seems reasonable. However, no
mathematical evidence exists in the literature that a complete inequality description of the
finite canonical faces (even with rational data) can be obtained from the nonnegative valid
tuples only.1

In this paper we give concrete mathematical evidence that one can restrict to nonnegative
valid tuples without any loss of generality. Being able to restrict to nonnegative valid tuples
has the added advantage that nonnegative minimal valid tuples form a compact, convex
set under the natural product topology on functions. Thus, one approach to understanding
valid tuples is to understand the extreme points of this compact convex set, which are termed
extreme functions/tuples in the literature. While this nonnegativity assumption was standard
for the area, our results discussed below about nonnegative valid tuples now give a rigorous
justification for this.

First, we show that for every minimal valid tuple (π, α), there exist a unique θ : Rn → R

and a ∈ R such that both (θ, a), (−θ,−a) are minimal valid tuples and the minimal valid
tuple (π′, α′) = (π − θ, α− a) satisfies π′ ≥ 0 (Theorem 3.7). In other words, every minimal
valid tuple is equivalent to a (unique) nonnegative minimal valid tuple, modulo an equation
for the affine hull of Ib. Since every valid tuple is dominated by a minimal valid tuple, this

1Such results are obtainable in the one-dimensional (n = 1) rational case by elementary means such as
interpolation (using lifting techniques for finite dimensional rational polyhedra and results like [6, Theorem
8.3]; see also the recent work in [25]). We are unaware of a way to establish these results for general n ≥ 2
without using the technology developed in this paper.
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shows that every valid tuple is dominated by a nonnegative minimal valid tuple, modulo the
affine hull of Ib. This settles an open question in [5, Open Question 2.5].

Second, we show that any finite canonical face F of conv(Ib) is a rational polyhedron, even
if P∪{b} contains non-rational vectors (Theorem 4.2). This justifies our use of the term corner
polyhedron to refer to any finite canonical face, extending Gomory’s original use of corner
polyhedron which applied only to finite canonical faces with rational data. Moreover, we prove
that F is given by the intersection of aff(F ) and the inequalities obtained by the restriction
of minimal, liftable tuples for Ib (Theorem 5.2). Since liftable tuples are always nonnegative
and Lipschitz continuous, this reinforces the claim that one can restrict attention to only
nonnegative minimal tuples. Theorem 5.2 also has the infinite dimensional interpretation that

conv(Ib) is given by the intersection of R
(Rn)
+ with the affine hull aff(Ib) and the halfspaces

given by liftable tuples (Corollary 5.3). Combined with the structural results for Ib mentioned

above, this also implies that conv(Ib) = cl(conv(Ib)) ∩ aff(Ib) = (conv(Ib) + R
(Rn)
+ ) ∩ aff(Ib),

where cl(·) denotes the closure operator with respect to the norm topology discussed above.
Finally, we strengthen the above result for corner polyhedra with rational data, i.e.,

P ⊆ Qn. Theorem 5.2 only gives the guarantee that when we intersect all liftable tuples
(restricted to the appropriate finite dimensional space), we obtain the corner polyhedron.
Theorem 5.2 does not rule out the possibility that for a given corner polyhedron and a
particular facet defining inequality for it, this inequality can only be obtained as a “limit”
of minimal liftable tuples; i.e., there is no single liftable tuple that dominates the given
facet defining inequality. We show that if we have rational data, i.e., P ⊆ Qn, then this
issue does not occur (Theorem 5.4). In particular, we show that if a corner polyhedron is
nonempty, then any nontrivial valid inequality for it (i.e., an inequality that is not implied
by the nonnegativity constraints on the y variables) is dominated by the restriction of an
inequality given by some minimal liftable tuple. Consequently, for any finite P ⊆ Qn, the
associated corner polyhedron can be given a complete, finite description by the restriction of
some minimal, liftable tuples and the nonnegativity constraints on the y variables.

Literature on valid tuples contains constructions of families of extreme valid tuples (π, α)
such that π is discontinuous [12, 13, 18, 24, 27, 29] (or continuous but not Lipschitz continu-
ous [24]). Our result above shows that such functions may be disregarded, if one is interested
in valid inequalities or facets of rational corner polyhedra. Our results show that such ex-
treme tuples are redundant within the set of valid tuples, as far as rational corner polyhedra
are concerned. Moreover, even for corner polyhedra with non-rational data, one can restrict
attention to liftable tuples (and therefore nonnegative and Lipschitz continuous valid tuples)
as long as one is interested in a (not necessarily finite) halfspace description of the corner
polyhedron. We also note that related results on sufficiency of valid tuples were obtained
in [8, 11, 22, 23, 31].

Geometry of corner polyhedra. The above results are derived out of a detailed study of
the geometry of corner polyhedra, which is interesting in its own right. As mentioned above,
Theorem 4.2 shows that the finite canonical faces of conv(Ib) are always rational polyhedra,
justifying the use of “corner polyhedra” even in the presence of non-rational data. Theorem
4.2 also characterizes the recession cone of such a face; it is simply the intersection of the
nonnegative orthant and the linear space parallel to the affine hull of conv(Ib), restricted to the
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finite dimensional space containing the face. This proves to be a crucial insight. Theorem 4.3
sharpens these results to give a tight characterization of corner polyhedra with rational data.
In particular, it shows that a corner polyhedron is defined using rational data if and only
if its recession cone is the nonnegative orthant, which happens if and only if the corner
polyhedron is full-dimensional. Both of these theorems rely on the structure of the infinite
models unveiled in this paper. It is interesting to note that several important properties of
finite dimensional corner polyhedra – which are most relevant for integer programming – are
revealed through a detailed study of the infinite dimensional models.

Topological pathologies in finite canonical faces of Mb. While the finite canonical
faces of conv(Ib) are always rational polyhedra, the finite canonical faces of conv(Mb) are not
as well-behaved: there exist finite canonical faces of Mb that are not closed (in the standard
finite dimensional topology) – see Example 4.5.

The remainder of the paper is dedicated to establishing the results discussed above.

2 The structure of conv(Mb) and conv(Ib).

We start with a well-known fact about minimal valid tuples.

Remark 2.1. An application of Zorn’s lemma (see, e.g., [7, Proposition A.1]) shows that,
given a valid tuple (ψ, π, α) for Mb, there exists a minimal valid tuple (ψ′, π′, α) for Mb with
ψ′ ≤ ψ and π′ ≤ π. Similarly, given a valid tuple (π, α) for Ib, there exists a minimal valid
tuple (π′, α) for Ib with π

′ ≤ π. We will use this throughout the paper.

Given a tuple (ψ, π, α), we define

Hψ,π,α :=

{

(s, y) ∈ R(Rn) × R(Rn) :
∑

r∈Rn

ψ(r)s(r) +
∑

p∈Rn

π(p)y(p) ≥ α

}

.

A valid tuple (ψ, π, α) for Mb is trivial if R
(Rn)
+ × R

(Rn)
+ ⊆ Hψ,π,α. This happens if and

only if ψ ≥ 0, π ≥ 0 and α ∈ {0,−1}. Similarly, a valid tuple (π, α) for Ib is trivial if π ≥ 0
and α ∈ {0,−1}.

A function φ : Rn → R is subadditive if φ(r1)+φ(r2) ≥ φ(r1+r2) for every r1, r2 ∈ Rn, and
is positively homogenous if φ(λr) = λφ(r) for every r ∈ Rn and λ ≥ 0. If φ is subadditive and
positively homogenous, then φ is called sublinear. The following proposition is well-known
and its proof can be found in the Appendix.

Proposition 2.2. Let (ψ, π, α) be a minimal valid tuple for Mb. Then ψ is sublinear and
π ≤ ψ.

Lemma 2.3. Suppose π : Rn → R is subadditive and supε>0
π(εr)
ε

< ∞ for all r ∈ Rn. Define

ψ : Rn → R by ψ(r) := supε>0
π(εr)
ε

. Then ψ is sublinear and π ≤ ψ.

Proof. Proof. Since π is subadditive, ψ is readily checked to be subadditive as well. The
fact that π ≤ ψ follows by taking ε = 1. Finally, positive homogeneity of ψ follows from the
definition of ψ.
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Theorem 2.4. Let ψ : Rn → R, π : Rn → R be any functions, and α ∈ {−1, 0, 1}. Then
(ψ, π, α) is a nontrivial minimal valid tuple for Mb if and only if all of the following hold:

(a) π is subadditive;

(b) ψ(r) = supε>0
π(εr)
ε

= limε→0+
π(εr)
ε

= lim supε→0+
π(εr)
ε

for every r ∈ Rn;

(c) π is Lipschitz continuous with Lipschitz constant L := max‖r‖=1 ψ(r);

(d) π ≥ 0, π(z) = 0 for every z ∈ Zn, and α = 1;

(e) (symmetry condition) π satisfies π(r) + π(b− r) = 1 for all r ∈ Rn.

The above theorem, except for the Lipschitz continuity and nonnegativity of π, follows
from a result of Yıldız and Cornuéjols [30, Theorem 37] together with the characterization of
the nontrivial minimal valid tuples for Ib due to Gomory and Johnson (see, e.g., [9, Theorem
6.22]). See also the result of Johnson for valid tuples for Mb [9, Theorem 6.34]. We provide
a self-contained proof of Theorem 2.4 in the Appendix.

Corollary 2.5. Let (π, α) be a nontrivial minimal valid tuple for Ib such that supε>0
π(εr)
ε

<

∞ for every r ∈ Rn. Define ψ : Rn → R by ψ(r) := supε>0
π(εr)
ε

. Then (ψ, π, α) is a nontrivial
minimal valid tuple for Mb.

Conversely, if (ψ, π, α) is a nontrivial minimal valid tuple for Mb, then (π, α) is a non-
trivial minimal valid tuple for Ib.

Proof. Proof. Since (π, α) is minimal, the same argument as in the proof of Proposition 2.2
shows that π is subadditive. Let ψ be defined as above. Following the proof of Theorem 2.4
it can be checked that minimality and nontriviality of (π, α) suffice to show that (ψ, π, α)
satisfies (a)–(e) of Theorem 2.4, and therefore (ψ, π, α) is a nontrivial minimal valid tuple for
Mb.

For the converse, we use a theorem of Gomory and Johnson (see, e.g., [9, Theorem 6.22])
stating that if (π, 1) is a nontrivial valid tuple with π ≥ 0, then (π, 1) is minimal if and only
if π is subadditive, π(z) = 0 for every z ∈ Zn, and π satisfies the symmetry condition. Let
(ψ, π, α) be a nontrivial minimal valid tuple for Mb. By Theorem 2.4, π ≥ 0, α = 1, π is
subadditive, π(z) = 0 for every z ∈ Zn, and π satisfies the symmetry condition. Therefore,
by the above theorem, (π, α) is a nontrivial minimal valid tuple for Ib.

A valid tuple (π, α) for Ib is called liftable if there exists a function ψ : Rn → R such that
(ψ, π, α) is a valid tuple for Mb.

Proposition 2.6. Let (π, α) be a nontrivial valid tuple for Ib. Then (π, α) is liftable if and

only if there exists a minimal valid tuple (π′, α) such that π′ ≤ π and supε>0
π′(εr)
ε

< ∞

for every r ∈ Rn. In this case, defining ψ(r) = supε>0
π′(εr)
ε

, we have that (ψ, π′, α) is a
nontrivial valid tuple for Mb which is minimal .

Proof. Proof. If (π, α) is nontrivial and liftable, then there exists ψ such that (ψ, π, α) is a
valid tuple for Mb. Let (ψ′, π′, α) be a minimal valid tuple with ψ′ ≤ ψ and π′ ≤ π. Since

(π, α) is nontrivial, so is (ψ′, π′, α). By Theorem 2.4, supε>0
π′(εr)
ε

<∞ for every r ∈ Rn. By
Corollary 2.5, (π′, α) is minimal.
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Conversely, let (π, α) be a nontrivial valid tuple for Ib, and let π′ ≤ π be such that (π′, α)

is minimal (and nontrivial) and ψ(r) := supε>0
π′(εr)
ε

is finite for every r ∈ Rn. By Corollary
2.5, (ψ, π′, α) is a nontrivial minimal valid tuple forMb, and therefore (π′, α) is liftable. Since
π ≥ π′, (ψ, π, α) is a valid tuple for Mb and therefore (π, α) is liftable as well.

Remark 2.7. Let (π, α) be a nontrivial valid tuple for Ib that is minimal and liftable. It

follows from Proposition 2.6 (with π′ = π) that ψ(r) := supε>0
π(εr)
ε

is finite for all r ∈ Rn

and (ψ, π, α) nontrivial valid tuple for Mb that is minimal. Therefore by Theorem 2.4, π is
Lipschitz continuous and π ≥ 0.

There are nontrivial minimal valid tuples (π, α) for Ib for which π is not continuous, or
π is continuous but not Lipschitz continuous, see the construction in [24, Section 5]. There
are also nontrivial minimal valid tuples (π, α) for Ib with π 6≥ 0. By the above results, none
of these minimal tuples are liftable.

2.1 The closure of conv(Mb).

Lemma 2.8. The following sets coincide:

(a)
(

R
(Rn)
+ × R

(Rn)
+

)

∩
⋂

{Hψ,π,α : (ψ, π, α) valid tuple}

(b)
(

R
(Rn)
+ × R

(Rn)
+

)

∩
⋂

{Hψ,π,α : (ψ, π, α) nontrivial valid tuple}

(c)
(

R
(Rn)
+ × R

(Rn)
+

)

∩
⋂

{Hψ,π,α : (ψ, π, α) nontrivial minimal valid tuple}

(d)
(

R
(Rn)
+ × R

(Rn)
+

)

∩
⋂

{Hψ,π,α : (ψ, π, α) nontrivial minimal valid tuple, ψ, π ≥ 0, α = 1}

Proof. Proof. The equivalence of (a) and (b) follows from the definition of nontrivial valid
tuple. The sets (b) and (c) coincide by Remark 2.1. Finally, Theorem 2.4 shows that (c) is
equal to (d).

From now on, we denote by Qb the set(s) of Lemma 2.8.

While conv(Mb) ⊆ Qb, this containment is strict, as shown in Remark 4.6. However,
Theorem 2.14 below proves that, under an appropriate topology, the closure of conv(Mb)
is exactly Qb. In order to show this result, we need the following lemma, that may be of
independent interest.

Lemma 2.9. If C ⊆ Rn+ is closed, then so is conv(C) + Rn+.

Proof. Proof. Let (xi)i∈N be a sequence of points in conv(C) + Rn+ that converges to some
x̄ ∈ Rn. We need to show that x̄ ∈ conv(C) + Rn+.

By Carathéodory’s theorem, for every i ∈ N we can write

xi =

n+1
∑

t=1

λtix
t
i + ri, (2.1)

where xti ∈ C for all t, λti ≥ 0 for all t,
∑

t λ
t
i = 1, and ri ∈ Rn+.

Since C is a closed set and the interval [0, 1] is compact, by repeatedly taking subsequences
of the original sequence (xi)i∈N, we assume that for every t = 1, . . . , n+ 1 the following two
conditions hold:

7



(a) either the sequence (xti)i∈N is unbounded or it converges to some x̄t ∈ C;

(b) the sequence (λti)i∈N converges to some number λ̄t ∈ [0, 1].

Note that
∑n+1

t=1 λ̄
t = 1.

Let T1 ⊆ {1, . . . , n+ 1} be the set of indices such that the sequence (xti)i∈N converges to
x̄t, and let T2 = {1, . . . , n+ 1} \ T1. For i ∈ N we rewrite (2.1) as

xi −
∑

t∈T1

λtix
t
i =

∑

t∈T2

λtix
t
i + ri. (2.2)

Since the left-hand side of (2.2) converges to

r̄ := x̄−
∑

t∈T1

λ̄tx̄t, (2.3)

the right-hand side must also converge to r̄. Note that r̄ ∈ Rn+, as the right-hand side of
(2.2) is a nonnegative vector for all i ∈ N. Furthermore, λ̄t = 0 for every t ∈ T2, otherwise
the right-hand side of (2.2) would not converge. This implies that

∑

t∈T1
λ̄t = 1 and thus

equation (2.3) proves that x̄ ∈ conv(C) + Rn+.

Define the following norm on R(Rn) × R(Rn), which was first introduced in [2]:

|(s, y)|∗ := |s(0)|+
∑

r∈Rn

‖r‖|s(r)|+ |y(0)| +
∑

p∈Rn

‖p‖|y(p)|.

For any two functions ψ : Rn → R, π : Rn → R, we define a linear functional Fψ,π on the
space R(Rn) × R(Rn) as follows:

Fψ,π(s, y) :=
∑

r∈Rn

ψ(r)s(r) +
∑

p∈Rn

π(p)y(p).

Lemma 2.10. Under the |(·, ·)|∗ norm, the linear functional Fψ,π is continuous if (ψ, π, 1) is
a nontrivial minimal valid tuple for Mb.

Proof. Proof. Since (ψ, π, 1) is a nontrivial minimal valid tuple for Mb, conditions (a)–(e) of
Theorem 2.4 are satisfied. In order to show that Fψ,π is continuous, it is equivalent to show
that Fψ,π is bounded, i.e., there exists a number M such that |Fψ,π(s, y)| ≤ M for all (s, y)
satisfying |(s, y)|∗ = 1 (see Conway [10, Chapter III, Proposition 2.1]).

We claim that M can be chosen to be max‖r‖=1 ψ(r). (This maximum exists because,
by condition (b) in Theorem 2.4, ψ is sublinear and therefore continuous on Rn.) Consider
(s, y) such that |(s, y)|∗ = 1. Using π ≤ ψ (Proposition 2.2), π, ψ ≥ 0 and ψ(0) = π(0) = 0
(Theorem 2.4), we have

|Fψ,π(s, y)| =
∣

∣

∣

∑

r∈Rn\{0} ψ(r)s(r) +
∑

p∈Rn\{0} π(p)y(p)
∣

∣

∣

≤
∑

r∈Rn\{0} ψ(r)|s(r)|+
∑

p∈Rn\{0} ψ(p)|y(p)|

=
∑

r∈Rn\{0} ψ
(

r
‖r‖

)

‖r‖|s(r)|+
∑

p∈Rn\{0} ψ
(

p
‖p‖

)

‖p‖|y(p)|

≤M
(

∑

r∈Rn\{0} ‖r‖|s(r)|+
∑

p∈Rn\{0} ‖p‖|y(p)|
)

≤M
(

|s(0)| +
∑

r∈Rn ‖r‖|s(r)|+ |y(0)| +
∑

p∈Rn ‖p‖|y(p)|
)

=M |(s, y)|∗ =M.
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Lemma 2.11. Under the |(·, ·)|∗ norm, the linear functional Fψ,π is continuous if ψ and π
have finite supports.

Proof. Proof. Let R,P ⊆ Rn be the supports of ψ, π respectively. We assume R ∪ P 6= ∅,
otherwise the continuity of Fψ,π is obvious. Define

N := max

{

1, max
r∈R\{0}

1

‖r‖
, max
p∈P\{0}

1

‖p‖

}

, L := max

{

max
r∈R

|ψ(r)|, max
p∈P

|π(p)|

}

,

and M := N · L. One now checks that

|Fψ,π(s, y)| =
∣

∣

∣

∑

r∈R ψ(r)s(r) +
∑

p∈P π(p)y(p)
∣

∣

∣

≤ L
(

∑

r∈R |s(r)|+
∑

p∈P |y(p)|
)

≤ LN
(

|s(0)|+
∑

r∈R\{0} ‖r‖|s(r)|+ |y(0)| +
∑

p∈P\{0} ‖p‖|y(p)|
)

=M |(s, y)|∗.

This shows that Fψ,π is a bounded linear functional, and hence continuous.

Lemma 2.12. Under the topology induced by |(·, ·)|∗, the set Qb is closed.

Proof. Proof. Since R
(Rn)
+ × R

(Rn)
+ is the intersection of a family of halfspaces with finite

support, by Lemma 2.11 this set is closed. Furthermore, Lemma 2.10 implies that the set
Hψ,π,1 is closed whenever (ψ, π, 1) is a nontrivial minimal valid tuple for Mb. The thesis now
follows as Qb can be defined as set (d) in Lemma 2.8.

For any subsets R,P ⊆ Rn, define

VR,P :=
{

(s, y) ∈ R(Rn) × R(Rn) : s(r) = 0 ∀r 6∈ R, y(p) = 0 ∀p 6∈ P
}

.

When convenient, we will see VR,P as a subset of RR×RP by dropping the variables set to 0.

Lemma 2.13. For any R,P ⊆ Rn, VR,P is a closed subspace of R(Rn) × R(Rn) under the
topology induced by |(·, ·)|∗.

Proof. Proof. VR,P can be seen as the intersection of a family of hyperplanes with finite
support and therefore, by Lemma 2.11 this set is closed.

Define cl(·) as the closure operator with respect to the topology induced by |(·, ·)|∗.

Theorem 2.14. Qb = cl(conv(Mb)) = conv(Mb) + (R
(Rn)
+ × R

(Rn)
+ ).

Proof. Proof. We first show that Qb ⊇ cl(conv(Mb)). Since, under the topology induced by
|(·, ·)|∗, Qb is a closed convex set by Lemma 2.12, it suffices to show that Qb ⊇ Mb. This

follows from the fact that Mb ⊆ R
(Rn)
+ × R

(Rn)
+ and every inequality that defines Qb is valid

for Mb.
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We next show that Qb ⊆ cl(conv(Mb)). Consider a point (s, y) 6∈ cl(conv(Mb)). By the
Hahn-Banach theorem, there exists a continuous linear functional that separates (s, y) from
cl(conv(Mb)). In other words, there exist two functions ψ, π : Rn → R and a real number α
such that Fψ,π(s, y) < α and cl(conv(Mb)) ⊆ Hψ,π,α, implying that (ψ, π, α) is a valid tuple
for Mb. Thus, (s, y) /∈ Qb.

We now show that conv(Mb)+(R
(Rn)
+ ×R

(Rn)
+ ) ⊆ Qb. Consider any point (s1, y1)+(s2, y2),

where (s1, y1) ∈ conv(Mb) and s2 ≥ 0, y2 ≥ 0. SinceQb can be written as the set (d) in Lemma

2.8 and conv(Mb) ⊆ R
(Rn)
+ × R

(Rn)
+ , we just need to verify that (s1, y1) + (s2, y2) ∈ Hψ,π,1 for

all valid tuples (ψ, π, 1) such that ψ, π ≥ 0. This follows because (s1, y1) ∈ Hψ,π,1 and (s2, y2)
and ψ, π are all nonnegative.

We finally show that conv(Mb) + (R
(Rn)
+ × R

(Rn)
+ ) ⊇ Qb. Consider (s∗, y∗) 6∈ conv(Mb) +

(R
(Rn)
+ × R

(Rn)
+ ). We prove that (s∗, y∗) 6∈ Qb. This is obvious when (s∗, y∗) /∈ R

(Rn)
+ × R

(Rn)
+ .

Therefore we assume s∗ ≥ 0, y∗ ≥ 0. Let R ⊆ Rn be a finite set containing the support of s∗

and satisfying cone(R) = Rn (where cone(R) denotes the conical hull of R), and let P ⊆ Rn

be a finite set containing the support of y∗. Then (s∗, y∗) 6∈ conv(Mb ∩ VR,P ) + (RR+ × RP+).
(We use the same notation (s∗, y∗) to indicate the restriction of (s∗, y∗) to RR × RP .) Since
Mb ∩ VR,P is the inverse image of the closed set b+Zn under the linear transformation given
by the matrix (R,P ), Mb ∩ VR,P is closed in the usual finite dimensional topology of VR,P .
Therefore, by Lemma 2.9, conv(Mb ∩ VR,P ) + (RR+ ×RP+) is closed as well. This implies that
there exists a valid inequality in RR×RP separating (s∗, y∗) from conv(Mb∩VR,P )+(RR+×RP+).
Since the recession cone of conv(Mb ∩ VR,P ) + (RR+ × RP+) contains (RR+ × RP+) and because
s∗, y∗ ≥ 0, this valid inequality is of the form

∑

r∈R h(r)s(r) +
∑

p∈P d(p)y(p) ≥ 1, where
h(r) ≥ 0 for r ∈ R and d(p) ≥ 0 for p ∈ P .

Now define the functions

ψ(r) := inf
{
∑

r′∈R h(r
′)s(r′) : r =

∑

r′∈R r
′s(r′), s : R→ R+

}

,

π(p) := inf
{
∑

r′∈R h(r
′)s(r′) +

∑

p′∈P d(p
′)y(p′) :

p =
∑

r′∈R r
′s(r′) +

∑

p′∈P p
′y(p′), s : R→ R+, y : P → Z+

}

.

Since cone(R) = Rn, ψ and π are well-defined functions. As the sum only involves nonnegative
terms, ψ, π ≥ 0. It was shown in [4, Theorem 5] that (ψ, π, 1) is a valid tuple for Mb, and
since (s∗, y∗) /∈ Hψ,π,1, we have (s∗, y∗) 6∈ Qb.

2.2 The closure of conv(Ib).

In the following, we see R(Rn) as a topological vector subspace of the space R(Rn) × R(Rn)

endowed with the topology induced by the norm |(·, ·)|∗. With a slight abuse of notation, for
any y ∈ R(Rn) we write |y|∗ := |y(0)| +

∑

p∈Rn ‖p‖|y(p)|. Also, given π : Rn → R and α ∈ R,

we let Hπ,α :=
{

y ∈ R(Rn) :
∑

p∈Rn π(p)y(p) ≥ α
}

.

We define Gb := {y ∈ R(Rn) : (0, y) ∈ Qb}. Since Qb can be written as the set (c) in
Lemma 2.8, by Corollary 2.5 and Remark 2.7, we have that

Gb = R
(Rn)
+ ∩

⋂

{Hπ,α : (π, α) minimal nontrivial liftable tuple}. (2.4)
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Similar to the mixed-integer case, conv(Ib) ( Gb (this will be shown in Remark 3.5).

Theorem 2.15. Gb = cl(conv(Ib)) = conv(Ib) + R
(Rn)
+ .

Proof. Proof. By Theorem 2.14, Qb = conv(Mb)+(R
(Rn)
+ ×R

(Rn)
+ ). Since the inequality s ≥ 0

is valid for Qb, by taking the intersection of Qb with the subspace {(s, y) : s = 0} we obtain

the equality Gb = conv(Ib) + R
(Rn)
+ . Furthermore, since Gb coincides with the intersection

of the closed set Qb with the closed subspace defined by s = 0 (this subspace is closed by
Lemma 2.13), Gb is a closed set. Therefore, cl(conv(Ib)) ⊆ Gb.

It remains to show that Gb ⊆ cl(conv(Ib)). Consider ȳ 6∈ cl(conv(Ib)). By the Hahn-
Banach theorem, there exists a continuous linear functional that separates ȳ from cl(conv(Ib)).
In other words, there exists a function π : Rn → R and α ∈ R such that

∑

r∈Rn π(r)ȳ(r) < α
and cl(conv(Ib)) ⊆ {y :

∑

r∈Rn π(r)y(r) ≥ α}, implying that (π, α) is a valid tuple for Ib. We
may assume without loss of generality that (π, α) is a nontrivial minimal valid tuple for Ib.

Moreover, by Lemma B.1, supε>0
π(εr)
ε

< ∞ for all r ∈ Rn \ {0}. By Corollary 2.5, (π, α) is
a liftable valid tuple. Thus, ȳ /∈ Gb by (2.4).

We remark that the above theorem does not seem to follow easily from Theorem 2.14,
despite the similarities in the proofs.

3 Hamel bases, affine hulls and nonnegative representation of

valid tuples.

In finite dimensional spaces, the affine hull of any subset C can be equivalently described as
the set of affine combinations of points in C or the intersection of all hyperplanes containing
C. Lemma 3.1 shows that the same holds in infinite dimension.

Before stating and proving the lemma, we give a precise definition of hyperplane in infinite
dimensional vector spaces. Given a vector space V over a field F, a subset H ⊆ V is said to
be a hyperplane in V if there exists a nonzero linear functional F : V → F and a scalar δ ∈ F

such that H = {v ∈ V : F (v) = δ}.

Lemma 3.1. Let V be a vector space over a field F. For every C ⊆ V , the set of affine
combinations of points in C is equal to the intersection of all hyperplanes containing C.

Proof. Proof. By possibly translating C, we assume without loss of generality that the set
of all affine combinations of points in C, which we denote by L, is a linear subspace. If
x ∈ C, then x belongs to every hyperplane containing C, and therefore L is contained in the
intersection of all hyperplanes containing C.

For the reverse inclusion, let x̄ be a point not in L. By the axiom of choice, there exists
a basis B of V containing x̄ such that B ∩ L is a basis of L. Let F be the linear functional
that takes value 1 on x̄ and 0 on every element in B \ {x̄}. Then L ⊆ {x : F (x) = 0}, but
F (x̄) = 1.

Let V be a vector space over a field F. In the remainder, for any C ⊆ V , we will use
the notation aff(C) to denote the set of affine combinations of points in the set C, which
by the above result is equal to the intersection of all hyperplanes that contain C. The next
proposition shows that there is no hyperplane containing Mb.
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Proposition 3.2. aff(Mb) = R(Rn) × R(Rn).

Proof. Proof. Assume by contradiction that aff(Mb) ( R(Rn) × R(Rn). By Lemma 3.1, there
exists an equation

∑

r∈Rn γ(r)s(r) +
∑

p∈Rn θ(p)y(p) = α satisfied by all points in Mb, where

(γ, θ, α) 6= (0, 0, 0). As R
(Rn)
+ × R

(Rn)
+ is not contained in any hyperplane, either the valid

tuple (γ, θ, α) or the valid tuple (−γ,−θ,−α) is nontrivial. Without loss of generality, we
assume that (γ, θ, α) is nontrivial. Let (γ′, θ′, α) be a minimal valid tuple with γ′ ≤ γ and
θ′ ≤ θ. Note that (γ′, θ′) 6= (0, 0), as (γ′, θ′, α) is nontrivial. Since (γ′, θ′, α) is minimal
and nontrivial, Theorem 2.4 implies that γ′ and θ′ are continuous nonnegative functions.
Therefore, as (γ′, θ′) 6= (0, 0), there exists r̄ ∈ Qn such that γ′(r̄) > 0 or θ′(r̄) > 0. Assume
γ′(r̄) > 0 (the other case is similar) and let (s̄, ȳ) ∈ Mb. Then there exists a large enough
integer k > 0 such that the point (s′, ȳ) defined by s′(r̄) = s̄(r̄)+ k and s′(r) = s̄(r) for r 6= r̄
is in Mb, and

∑

r∈Rn

γ(r)s′(r) +
∑

p∈Rn

θ(p)ȳ(p) ≥
∑

r∈Rn

γ′(r)s′(r) +
∑

p∈Rn

θ′(p)ȳ(p) > α,

contradicting the assumption that
∑

r∈Rn γ(r)s(r) +
∑

p∈Rn θ(p)y(p) = α for all (s, y) ∈
Mb.

The characterization of aff(Ib) is more involved and requires some preliminary notions.

3.1 Hamel bases and the solutions to the Cauchy functional equation.

A function θ : Rn → R is additive if it satisfies the following Cauchy functional equation in
Rn:

θ(u+ v) = θ(u) + θ(v) for all u, v ∈ Rn. (3.1)

Note that if θ is an additive function, then

θ(qx) = qθ(x) for every x ∈ Rn and q ∈ Q.

Equation (3.1) has been extensively studied, see e.g. [1]. We summarize here the main
results that we will employ.

Given any c ∈ Rn, the linear function θ(x) = cTx is obviously a solution to the equation.
However, these are not the only solutions. Below we describe all solutions to the equation.

A Hamel basis for Rn is a basis of the vector space Rn over the field Q. In other words,
a Hamel basis is a subset B ⊆ Rn such that, for every x ∈ Rn, there exists a unique choice
of a finite subset {a1, . . . , at} ⊆ B (where t depends on x) and nonzero rational numbers
λ1, . . . , λt such that

x =

t
∑

i=1

λiai. (3.2)

The existence of B is guaranteed under the axiom of choice.
For every a ∈ B, let c(a) be a real number. Define θ as follows: for every x ∈ Rn, if (3.2)

is the unique decomposition of x, set

θ(x) =
t
∑

i=1

λic(ai). (3.3)
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It is easy to check that a function of this type is additive. The following theorem proves that
all additive functions are of this form [1, Theorem 10].

Theorem 3.3. Let B be a Hamel basis of Rn. Then every additive function is of the form
(3.3) for some choice of real numbers c(a), a ∈ B.

3.2 The affine hull of Ib.

The following result is an immediate extension of a result of Basu, Hildebrand and Köppe
(see [5, Propositions 2.2–2.3]).

Proposition 3.4. The affine hull of Ib is described by the equations

∑

p∈Rn

θ(p)y(p) = θ(b) (3.4)

for all additive functions θ : Rn → R such that θ(p) = 0 for every p ∈ Qn.

Proof. Proof. By Lemma 3.1, the affine hull of Ib is the intersection of all hyperplanes in
R(Rn) containing Ib.

We first show that any equation of the form (3.4) gives a hyperplane that contains Ib. If
y ∈ Ib, then there exists z ∈ Zn such that

∑

p∈Rn py(p) = b+ z. This implies that

∑

p∈Rn

θ(p)y(p) = θ

(

∑

p∈Rn

py(p)

)

= θ(b+ z) = θ(b),

where the first equation comes from the additivity of θ and the integrality of y(p), and the
last equation from θ(z) = 0. This shows that every equation of the form (3.4) is valid for Ib.

Next, we prove that any hyperplane in R(Rn) containing Ib has the form (3.4). Let
∑

p∈Rn θ(p)y(p) = α be a hyperplane containing Ib. We show that θ is an additive function.
Given p ∈ Rn, let ep denote the function such that ep(p) = 1 and ep(p

′) = 0 for p′ 6= p. Given
p1, p2 ∈ Rn, define y1 := ep1+p2 + eb−p1−p2 and y2 := ep1 + ep2 + eb−p1−p2 . Since y1, y2 ∈ Ib,
α =

∑

p∈Rn θ(p)y1(p) =
∑

p∈Rn θ(p)y2(p). This shows that θ(p1 + p2) = θ(p1) + θ(p2).
Therefore θ is additive.

Since (θ, α) and (−θ,−α) are valid tuples, and valid tuples are nonnegative on the rationals
(see Subsection 2.1.2 in [5]), it follows that θ(p) = 0 for every p ∈ Qn. Finally, since eb ∈ Ib,
we have that α = θ(b).

Remark 3.5. Since, by the above proposition, conv(Ib) is contained in some hyperplane,

conv(Ib) ( conv(Ib) + R
(Rn)
+ = Gb, where the equality follows from Theorem 2.15.

In the following, e1, . . . , en denote the vectors of the standard basis of Rn. For any subset
P ⊆ Rn, we will use the notation

VP := {y ∈ R(Rn) : y(p) = 0 ∀p 6∈ P}.

When convenient, we will see VP as a subset of RP by dropping the variables set to 0.
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Proposition 3.6. Let P be a finite subset of Rn. Then aff(Ib) ∩ VP is a rational affine
subspace of RP , i.e., there exist a natural number m ≤ |P |, a rational matrix Θ ∈ Qm×|P |

and a vector d ∈ Rm such that aff(Ib)∩VP = {y ∈ RP : Θy = d}. Moreover, aff(Ib)∩VP = VP
if and only if P ⊆ Qn.

Proof. Proof. Let I = {p1, . . . , pk} be a maximal subset of vectors in P such that I ∪
{e1, . . . , en} is linearly independent over Q, and let B be a Hamel basis of Rn containing
I ∪ {e1, . . . , en}. Note that I = ∅ if and only if P ⊆ Qn.

For every i = 1, . . . , k, let θi be the additive function defined by θi(pi) = 1 and θi(p) = 0
for every p ∈ B \ {pi}. Note that every θi is an additive function that takes value 0 on
the rationals, since {e1, . . . , en} ⊆ B. Moreover, θi(p) ∈ Q for all p ∈ P . Therefore, by
Proposition 3.4,

∑

p∈P θi(p)y(p) = θi(b) is an equation satisfied by aff(Ib) ∩ VP with rational
coefficients on the left hand side. Again by Proposition 3.4, in order to show that these
equations suffice to describe aff(Ib) ∩ VP it suffices to show the following: for every additive
function θ that takes value 0 on the rationals, there exist λ1, . . . , λk ∈ R such that θ(p) =
∑k

i=1 λiθi(p) for every p ∈ P .
Let θ be an additive function that takes value 0 on the rationals, and define λi := θ(pi)

for i = 1, . . . , k. For every p ∈ P , there exist q̄ ∈ Qn and q1, . . . , qk ∈ Q such that p =
q̄ +

∑k
i=1 qipi. Then, since θi is additive and θi(q̄) = 0, we have θi(p) = θi(

∑k
j=1 qjpj) =

∑k
j=1 qjθi(pj) = qi for every i = 1, . . . , k. It follows that

θ(p) = θ

(

k
∑

i=1

qipi

)

=
k
∑

i=1

qiθ(pi) =
k
∑

i=1

θi(p)λi.

We finally observe that in the above arguments, if I 6= ∅, then we get at least one non-trivial
equation corresponding to θi, i ∈ I. Therefore, aff(Ib) ∩ VP = VP if and only if I = ∅, which
is equivalent to P ⊆ Qn.

3.3 Every minimal tuple is equivalent to a unique nonnegative valid tuple.

Theorem 3.7. For every minimal valid tuple (π, α) for Ib, there exists a unique additive
function θ : Rn → R such that θ(p) = 0 for every p ∈ Qn, (π′, α′) = (π − θ, α− θ(b)) and the
valid tuple is minimal and satisfies π′ ≥ 0.

Recall that the additive functions θ : Rn → R such that θ(p) = 0 for every p ∈ Qn are
precisely the functions that define the affine hull of Ib (Proposition 3.4). Thus, the above
theorem answers Open Question 2.5 in [5]. The rest of this subsection is devoted to proving
Theorem 3.7.

Note that if B is a Hamel basis of Rn such that ei ∈ B for all i ∈ [n] and θ is an additive
function as in (3.3), the requirement that θ(p) = 0 for every p ∈ Qn is equivalent to c(ei) = 0
for i ∈ [n]. Therefore, in order to prove the theorem, we show that given a minimal valid
tuple (π, α), there exists a unique additive function θ such that θ(ei) = 0 for all i ∈ [n] and
π− θ is a nonnegative function. If this happens, note that (π− θ, α− θ(b)) is still a minimal
valid tuple.

Lemma 3.8. If (π, α) is a minimal valid tuple, then π is subadditive, π(z) = 0 for every
z ∈ Zn, and π is periodic modulo Zn (i.e, π(p + z) = π(p) for every p ∈ Rn and z ∈ Zn).
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Proof. Proof. We refer to the proof of Theorem 6.22 in [9], which however assumes the
nonnegativity of π. It is easy to check that the proof of subadditivity in [9] does not require
the nonnegativity of π. On the contrary, the proof in [9] that π(z) = 0 for every z ∈ Zn uses
nonnegativity of π. However, one observes that π must be nonnegative on the rationals (and
thus on the integers), and this suffices to apply the same proof as in [9]. Periodicity now
follows as in [9].

Some useful results from [30] We will need some results of Yıldız and Cornuéjols [30],
which need to be slightly generalized, as only valid tuples with α = 1 are considered in [30].

Let (π, 1) be a minimal valid tuple. By Lemma 12 in [30] (with f = −b and S = Zn), π
satisfies the generalized symmetry condition (equation (4) in [30]), which, by periodicity of
π modulo Zn, reads as follows:

π(p) = sup
k∈Z>0

{

1− π(b− kp)

k

}

for all p ∈ Rn. (3.5)

Then, by Proposition 17 in [30] (with f = −b, S = Zn, X = {0}), for any p ∈ Rn, the
supremum in (3.5) is attained if and only if π(p) + π(b− p) = 1. Proposition 18 in [30] then
implies the following: if p ∈ Rn is such that π(p) + π(b− p) > 1, then

lim sup
k∈Z>0,k→∞

π(kp)

k
= lim sup

k∈Z>0,k→∞

−π(−kp)

k
.

One straightforwardly (and patiently) verifies that when (π, α) is a minimal valid tuple
with α not restricted to be 1, the above result generalizes as follows:

Proposition 3.9. Let (π, α) be a minimal valid tuple. If p ∈ Rn is such that π(p)+π(b−p) >
α, then

lim sup
k∈Z>0,k→∞

π(kp)

k
= lim sup

k∈Z>0,k→∞

−π(−kp)

k
.

Construction of θ In what follows, we will assume (π, α) is a minimal valid tuple for Ib.
Let B be a Hamel basis of Rn containing the unit vectors e1, . . . , en. For every a ∈ B, define

c(a) := inf
k∈Z>0

π(ka)

k
. (3.6)

We will show that this is the correct choice for the constant c(a).

Lemma 3.10. For all a ∈ B, the value of c(a) is finite and

c(a) = inf
k∈Z>0

π(ka)

k
= sup

k∈Z>0

−π(−ka)

k
.

Proof. Proof. We prove a sequence of claims.

Claim 3.11. The inequality “inf ≥ sup” holds and both terms are finite.
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Proof of Claim. Let h, k be positive integers. Then, by subadditivity, hπ(ka) + kπ(−ha) ≥

π(0) = 0, thus π(ka)
k

≥ −π(−ha)
h

. Since this holds for all positive integers h, k, the claim is
proven. ⋄

We now assume by contradiction that

inf
k∈Z>0

π(ka)

k
− sup
k∈Z>0

−π(−ka)

k
≥ ε

for some ε > 0. In other words,

inf
k∈Z>0

π(ka)

k
+ inf
k∈Z>0

π(−ka)

k
≥ ε. (3.7)

Claim 3.12. The following equation holds:

inf
k∈Z>0

π(ka)

k
+ inf
k∈Z>0

π(−ka)

k
= inf

k∈Z>0

π(ka) + π(−ka)

k
. (3.8)

Proof of Claim. Since the inequality “≤” is obvious, we prove the reverse inequality. To do
so, it is sufficient to show that given positive integers h, k, there exists a positive integer ℓ
such that

π(ha)

h
+
π(−ka)

k
≥
π(ℓa) + π(−ℓa)

ℓ
. (3.9)

Choose ℓ = hk. Then, by subadditivity,

kπ(ha) + hπ(−ka) ≥ π(ℓa) + π(−ℓa).

After dividing by ℓ = hk, we obtain (3.9) and the claim is proven. ⋄

By the previous claim, assumption (3.7) is equivalent to

π(ka)

k
+
π(−ka)

k
≥ ε for all positive integers k. (3.10)

Claim 3.13. There exists a positive integer k such that π(ka) + π(b− ka) > α.

Proof of Claim. By subadditivity, for every integer k we have

π(b− ka) ≥ π(−ka)− π(−b).

Combined with (3.10), we get that

π(ka) + π(b− ka) ≥ π(ka) + π(−ka)− π(−b) ≥ εk − π(−b),

for all positive integers k. The right-hand side is greater than α if k > α+π(−b)
ε

. ⋄

Define p := k̄a, where k̄ is the positive integer guaranteed by Claim 3.13.

Claim 3.14. The following inequalities hold:

lim sup
k∈Z>0,k→∞

π(kp)

k
≥ k̄ · inf

k∈Z>0

π(ka)

k
, lim sup

k∈Z>0,k→∞

−π(−kp)

k
≤ k̄ · sup

k∈Z>0

−π(−ka)

k
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Proof of Claim. Since the lim sup is always at least as large as the inf,

lim sup
k∈Z>0,k→∞

π(kp)

k
≥ inf

k∈Z>0

π(kp)

k
= k̄ · inf

k∈Z>0

π(kk̄a)

kk̄
≥ k̄ · inf

h∈Z>0

π(ha)

h

and thus the first inequality is verified.
Since the lim sup is always at most as large as the sup,

lim sup
k∈Z>0,k→∞

−π(−kp)

k
≤ sup

k∈Z>0

−π(−kp)

k
= k̄ · sup

k∈Z>0

−π(−kk̄a)

kk̄
≤ k̄ · sup

h∈Z>0

−π(−ha)

h

and thus the second inequality holds. ⋄

Since π(p) + π(b− p) > α, by Proposition 3.9,

lim sup
k∈Z>0,k→∞

π(kp)

k
= lim sup

k∈Z>0,k→∞

−π(−kp)

k
.

Claim 3.14 then implies that infk∈Z>0

π(ka)
k

≤ supk∈Z>0

−π(−ka)
k

. But this contradicts (3.10).
This concludes the proof of the lemma.

Now let θ be defined as in (3.3), where the constants c(a) for a ∈ B are chosen as in (3.6).
In the next two lemmas we prove that θ(ei) = 0 for all i ∈ [n] and π − θ is nonnegative.

Lemma 3.15. θ(ei) = 0 for all i ∈ [n].

Proof. Proof. Fix i ∈ [n]. Since ei ∈ B, it is sufficient to check that c(ei) = 0. By (3.6),

c(ei) = infk∈Z>0

π(kei)
k

. Since π(kei) = 0 for all k ∈ Z by Lemma 3.8, we immediately see
that c(ei) = 0.

Lemma 3.16. If θ is defined as in (3.3), with the constants c(a) given in (3.6), then the
function π − θ is nonnegative.

Proof. Proof. Let x ∈ Rn. Then there exist a1, . . . , at ∈ B and nonzero rational numbers
λ1, . . . , λt such that x =

∑t
i=1 λiai, and we have θ(x) =

∑t
i=1 λic(ai). We prove that π(x)−

θ(x) ≥ 0.
For every i ∈ {1, . . . , t}, we can write λi =

pi
qi
, where every pi is a nonzero integer and

every qi is a positive integer. Define Q :=
∏t
j=1 qj. Take arbitrary positive integers k1, . . . , kt

(these numbers will be fixed later) and define K :=
∏t
j=1 kj . Since Q

qi
and K

ki
are positive

integers for every i, by subadditivity we have

QKπ(x) +
t
∑

i=1

QK

qiki
π(−kipiai) ≥ π

(

QKx−
t
∑

i=1

QKλiai

)

= π(0) = 0.

This implies that

π(x) ≥
t
∑

i=1

λi
−π(−kipiai)

kipi
. (3.11)
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Now fix ε > 0. If i is an index such that pi > 0, by Lemma 3.10 we can choose ki such
that −π(−kiai)

ki
≥ c(ai)− ε. Then by subadditivity

−π(−kipiai)

kipi
≥

−π(−kiai)

ki
≥ c(ai)− ε.

If i is an index such that pi < 0, by Lemma 3.10 we can choose ki such that π(kiai)
ki

≤ c(ai)+ε.
Then by subadditivity

−π(−kipiai)

kipi
≤
π(kiai)

ki
≤ c(ai) + ε.

Then, rembering that λi > 0 if and only if pi > 0, equation (3.11) gives π(x) ≥
∑t

i=1 λic(ai)−
ε(
∑t

i=1 |λi|). Since this holds for every ε > 0, we have π(x) ≥
∑t

i=1 λic(ai) and thus π(x) −
θ(x) ≥ 0.

This concludes the proof of the existence of θ. To conclude, it only remains to show that
the choice of θ is unique. To see this, let θ′ be any additive function such that π − θ′ is
nonnegative. For every a ∈ B and k ∈ Z>0, we have

π(ka) ≥ θ′(ka) = kθ′(a), π(−ka) ≥ θ′(−ka) = −kθ′(a).

This implies

sup
k∈Z>0

−π(−ka)

k
≤ θ′(a) ≤ inf

k∈Z>0

π(ka)

k
.

Lemma 3.10 then shows that θ′(a) = c(a) = θ(a), which proves the uniqueness of θ.

4 Canonical faces and recession cones.

A canonical face of conv(Mb) is a face of the form F = conv(Mb)∩VR,P for some R,P ⊆ Rn.
If R and P are finite, F is a finite canonical face of conv(Mb). The same definitions can be
given for conv(Ib), cl(conv(Mb)) and cl(conv(Ib)). It is not hard to see that conv(Mb)∩VR,P =
conv(Mb ∩ VR,P ) and conv(Ib) ∩ VP = conv(Ib ∩ VP ). This observation shows that the finite
canonical faces of conv(Mb) and conv(Ib) are finite dimensional integer programming models.

The notion of recession cone of a closed convex set is standard (see, e.g., [26]). We
extend it to general convex sets in general (possibly infinite-dimensional) vector spaces in the
following way. Let V be a vector space and let C ⊆ V be a convex set. For any x ∈ C, define

C∞(x) := {r ∈ V : x+ λr ∈ C for all λ ≥ 0}.2

We define the recession cone of C as rec(C) :=
⋂

x∈C C∞(x). Theorem 2.14 yields the following
result.

Corollary 4.1. Given R,P ⊆ Rn (not necessarily finite), we have that conv(Mb) ∩ VR,P =

cl(conv(Mb)) ∩ VR,P if and only if rec(conv(Mb) ∩ VR,P ) = (R
(Rn)
+ × R

(Rn)
+ ) ∩ VR,P .

Given P ⊆ Rn, we have that conv(Ib)∩VP = cl(conv(Ib))∩VP if and only if rec(conv(Ib)∩

VP ) = R
(Rn)
+ ∩ VP .

2Using the Hahn-Banach separation theorem, it can be shown that if V is a topological vector space and
C is a closed convex subset, then C∞(x) = C∞(x′) for all x, x′

∈ C.
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Proof. Proof. Let F = conv(Mb) ∩ VR,P be a canonical face of conv(Mb). By Theorem 2.14,

cl(conv(Mb)) ∩ VR,P =
(

conv(Mb) + (R
(Rn)
+ × R

(Rn)
+ )

)

∩ VR,P

= (conv(Mb) ∩ VR,P ) + ((R
(Rn)
+ × R

(Rn)
+ ) ∩ VR,P )

= F + ((R
(Rn)
+ × R

(Rn)
+ ) ∩ VR,P ).

Then the result follows from the fact that F = F + ((R
(Rn)
+ × R

(Rn)
+ ) ∩ VR,P ) if and only if

the recession cone of F is ((R
(Rn)
+ × R

(Rn)
+ ) ∩ VR,P ).

The proof for Ib is the same, where we use Theorem 2.15 instead of Theorem 2.14.

Given P ⊆ Rn, let CP := conv(Ib) ∩ VP be the canonical face of conv(Ib) correspond-
ing to P . Also define L to be the linear space parallel to aff(conv(Ib)). Observe that, by
Proposition 3.4, L is the set of all y ∈ R(Rn) that satisfy

∑

p∈Rn θ(p)y(p) = 0 for all additive
functions θ : Rn → R such that θ(p) = 0 for all p ∈ Qn.

Theorem 4.2. For every finite subset P ⊆ Rn, the following are all true:

(a) the finite canonical face CP is a rational polyhedron in RP ;

(b) every extreme ray of CP is spanned by some d ∈ ZP+ such that
∑

p∈P pd(p) ∈ Zn;

(c) rec(CP ) = L ∩ R
(Rn)
+ ∩ VP = (L ∩ VP ) ∩RP+ whenever CP 6= ∅;

Proof. Proof. By dropping variables set to zero, Ib ∩ VP is the set of vectors y ∈ ZP+ such
that

∑

p∈P py(p) ∈ b+ Zn. We say that a feasible point y ∈ Ib ∩ VP is minimal if there is no

feasible point y′ 6= y such that y′ ≤ y. Every vector d ∈ ZP+ \ {0} such that
∑

p∈P pd(p) ∈ Zn

is called a ray. A ray d is minimal if there is no ray d′ 6= d such that d′ ≤ d.
Given feasible points y, y′ such that y′ 6= y, y′ ≤ y, we have that y − y′ is a ray. This

shows that any feasible point y is the sum of a minimal feasible point and a ray. Further,
given feasible rays d, d′ such that d′ 6= d, d′ ≤ d, we have that d − d′ is also a ray. Thus,
given a ray d, we can express it as the sum of a minimal ray d′ and a ray d − d′ whose
coordinates are smaller than d. Iterating a finite number of times (since we have nonnegative
integer coordinates), we can express d as a nonnegative integer combination of minimal rays.
Therefore, every feasible point y is the sum of a minimal feasible point ȳ and a nonnegative
integer combination of minimal rays.

Let Y be the set of points that are the sum of a minimal feasible point and a nonnegative
integer combination of minimal rays. The above observation proves that Y = Ib ∩ VP . By
Gordan–Dickson lemma (see, e.g., [14]), the set of minimal feasible points and the set of
minimal rays are both finite, i.e. there exist finite sets E ⊆ ZP+ and R ⊆ ZP+ such that
Y = E + integ . cone(R), where integ . cone(R) denotes the set of all nonnegative integer
combinations of vectors in R. Since conv(Ib) ∩ VP = conv(Y ) = conv(E + integ . cone(R)) =
conv(E)+conv(integ . cone(R)) = conv(E)+cone(R), where cone(R) denotes the conical hull
of R, by the Minkowski-Weyl Theorem [9, Theorem 3.13] we have that conv(Ib) ∩ VP is a
rational polyhedron.

The above analysis proves (a) and (b) simultaneously. We now prove (c).
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We first show that rec(CP ) ⊆ L ∩ R
(Rn)
+ ∩ VP . Consider any d̄ ∈ rec(CP ). By part (b),

d̄ is a nonnegative combination of vectors d ∈ ZP+ such that
∑

p∈P pd(p) ∈ Zn. Observe that
each such d is in L because for any additive function θ which is 0 on the rationals, we obtain
0 = θ(

∑

p∈P pd(p)) =
∑

p∈P θ(p)d(p). Thus, d̄ ∈ L since L is a linear space. Therefore,

rec(CP ) ⊆ L ∩R
(Rn)
+ ∩ VP .

We now want to establish that L ∩ R
(Rn)
+ ∩ VP ⊆ rec(CP ). First, consider any d ∈

L ∩ R
(Rn)
+ ∩ VP such that d ∈ QP . Let λ > 0 be such that d̄ := λd ∈ ZP+. We claim that

∑

p∈P pd̄(p) ∈ Qn. Otherwise, there exists3 an additive function θ : Rn → R that takes value

zero on the rationals such that 0 6= θ(
∑

p∈P pd̄(p)) =
∑

p∈P θ(p)d̄(p) = λ
∑

p∈P θ(p)d(p),

which violates the hypothesis that d ∈ L. Since
∑

p∈P pd̄(p) ∈ Qn, this implies that there

exists a positive scaling d̃ of d such that
∑

p∈P pd̃(p) ∈ Zn. It is easy to verify that d̃ ∈ rec(CP )

whenever CP 6= ∅, and therefore d ∈ rec(CP ). This shows that all rational vectors in

L ∩ R
(Rn)
+ ∩ VP are in rec(CP ). Since, by Proposition 3.6, L ∩ VP is a rational subspace of

RP , we conclude that L ∩R
(Rn)
+ ∩ VP ⊆ rec(CP ).

Note that the above theorem holds even if P 6⊆ Qn. In particular, a corner polyhedron
is a rational polyhedron even if P 6⊆ Qn. The next result characterizes the corner polyhedra
with P ⊆ Qn.

Theorem 4.3. Let P ⊆ Rn be finite such that CP 6= ∅. Then the following are equivalent:

(a) P ⊆ Qn;

(b) rec(CP ) = RP+;

(c) the dimension of CP is |P |;

(d) CP = Gb ∩ VP .

Proof. Proof. If we assume (a) and CP 6= ∅, we must have b ∈ Qn. This implies that
L = aff(Ib), since θ(b) = 0 for all additive functions that are 0 on the rationals. Now (a)
implies (b) by Proposition 3.6 and Theorem 4.2(c). (b) clearly implies (c). (c) implies (a) by
Proposition 3.6. The equivalence of (b) and (d) follows from Corollary 4.1 and Theorem 2.15.

We finally characterize the recession cone of conv(Ib).

Corollary 4.4. conv(Ib)∞(x) = L∩R
(Rn)
+ for every x ∈ conv(Ib). Consequently, rec(conv(Ib)) =

L ∩ R
(Rn)
+ .

Proof. Proof. Fix x ∈ conv(Ib) and y ∈ R
(Rn)
+ . Let P be the union of the supports of x and

y. Then y ∈ conv(Ib)∞(x) if and only if y ∈ CP∞(x) = rec(CP ), which, by Theorem 4.2(c),

happens if and only if y ∈ L ∩R
(Rn)
+ ∩ VP , and this is equivalent to y ∈ L ∩ R

(Rn)
+ .

3Such an additive function can be constructed by first constructing a Hamel basis of Rn containing∑
p∈P

pd̄(p), e1, . . . , en, and setting θ to be 1 on
∑

p∈P
pd̄(p) and 0 everywhere else on this basis.
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Examples. We now give examples that illustrate some of the pathologies that can show
up.

Example 4.5. There are finite dimensional faces of conv(Mb) that are not closed (in the finite
dimensional topology). Let n = 1, b ∈ Q, ω ∈ R \ Q, R = {−1}, P = {b, ω}. Consider the
point (s̄, ȳ) defined by s̄(−1) := 0 and ȳ(b) := ȳ(ω) = 1. Note that (s̄, ȳ) /∈ conv(Mb) ∩ VR,P ,
as the only point in Mb satisfying s(−1) = 0 and y(b) ≤ 1 has y(b) = 1, y(ω) = 0.

We now show that (s̄, ȳ) ∈ cl(conv(Mb)∩VR,P ) by constructing for every ε > 0 a point in
conv(Mb) ∩ VR,P whose Euclidean distance from (s̄, ȳ) is at most ε. So fix ε > 0. Let ŷ(ω)
be a positive integer such that the fractional part of ωŷ(ω) is at most ε. Let ŝ(−1) be equal
to this fractional part, and ŷ(b) = 1. Then (ŝ, ŷ) ∈ Mb ∩ VR,P . Let (s̃, ỹ) be the point of

Mb ∩ VR,P defined by ỹ(b) := 1, s̃(−1) := ỹ(ω) := 0. Then the point 1
ŷ(ω)(ŝ, ŷ) +

ŷ(ω)−1
ŷ(ω) (s̃, ỹ)

is in conv(Mb) ∩ VR,P and its distance from (s̄, ȳ) is ε
ŷ(ω) ≤ ε.

Remark 4.6. Since Qb = cl(conv(Mb)) by Theorem 2.14, for every R,P ⊆ Rn the set Qb ∩
VR,P is closed by Lemma 2.13. The previous example gives sets R,P such that conv(Mb)∩VR,P
is not closed. Thus conv(Mb) is a strict subset of Qb.

Example 4.7. We established in Theorem 2.15 and Remark 3.5 that

conv(Ib) (

{

y ∈ R(Rn) :
∑

r∈Rn

π(r)y(r) ≥ α, (π, α) valid tuple for Ib

}

= cl(conv(Ib)).

(4.1)
We now give a concrete example to illustrate this phenomenon. Let n = 1, b ∈ Q, ω ∈ R \Q
and P = {b, ω, 1 − ω}. Consider the canonical face of Ib given by CP = conv(Ib) ∩ VP , i.e.,

CP = conv{(yω, y1−ω, yb) ∈ Z3
+ : ωyω + (1− ω)y1−ω + byb ∈ b+ Z}.

Since ω 6∈ Q, it follows that for any ȳ ∈ CP we must have ȳω = ȳ1−ω. This implies that the
recession cone of CP is not full-dimensional. Moreover, we know that rec(CP ) = (L∩VP )∩R

P
+

by Theorem 4.2 (c). In this case, considering a Hamel basis of R which includes ω and the
particular additive function θ obtained by setting θ(ω) = 1 = −θ(1−ω) and 0 on the remaining
elements of the Hamel basis, we get the desired finite dimensional recession cone.

Also, observe that by Corollary 4.1, cl(conv(Ib))∩VP has RP+ as its recession cone. Thus,
this example explicitly shows the strict containment in (4.1).

5 Sufficiency of nontrivial minimal liftable functions to de-

scribe corner polyhedra.

Lemma 5.1. Given a closed, convex set X ⊆ Rd, let LX be the linear space parallel to aff(X).
If rec(X) = LX ∩Rd+, then (X + Rd+) ∩ aff(X) = X.

Proof. Proof. The inclusion ⊇ is clear. Now consider any x ∈ X and y ∈ Rd+ such that
x+ y ∈ aff(X). Thus, y ∈ aff(X) − x = LX since x ∈ X. Therefore y ∈ LX ∩ Rd+ = rec(X).
Therefore, x+ y ∈ X.
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Theorem 5.2. Let CP be a corner polyhedron for some finite set P ⊆ Rn. Then CP =
Gb ∩ aff(CP ).

Proof. Proof. If CP = ∅, the equality is trivial since aff(CP ) = ∅. So we assume CP 6= ∅.
Since CP ⊆ VP , we have

Gb ∩ aff(CP ) = (Gb ∩ VP ) ∩ aff(CP )

= ((conv(Ib) + R
(Rn)
+ ) ∩ VP ) ∩ aff(CP )

= (conv(Ib) ∩ VP + RP+) ∩ aff(CP )
= (CP + RP+) ∩ aff(CP )

where the second equality follows Theorem 2.15, the third equality follows from the ob-

servation that (conv(Ib) + R
(Rn)
+ ) ∩ VP = (conv(Ib) ∩ VP + RP+). We verify below that

rec(CP ) = L′ ∩ RP+, where L
′ is the linear space parallel to aff(CP ). Applying Lemma 5.1

with X = CP , we obtain that Gb ∩ aff(CP ) = (CP + RP+) ∩ aff(CP ) = CP , as desired.
We finally verify that rec(CP ) = L′ ∩ RP+. Since CP 6= ∅ and CP ⊆ RP+, we have that

rec(CP ) ⊆ L′∩RP+. Indeed, consider any x ∈ CP . Then, x+rec(CP ) ⊆ CP ⊆ aff(CP ) and so
rec(CP ) ⊆ aff(CP )−x = L′. To see the reverse inclusion, observe that CP = conv(Ib)∩VP =
conv(Ib ∩ VP ). Thus, aff(C

P ) = aff(conv(Ib ∩ VP )) = aff(Ib ∩ VP ) ⊆ aff(Ib) ∩ VP . Therefore,
L′ = aff(CP )−x ⊆ (aff(Ib)∩VP )−x = L∩VP , where L is the linear space parallel to aff(Ib),
and x ∈ CP is an arbitrary point. Hence, L′ ∩RP+ ⊆ (L∩ VP )∩RP+ = rec(CP ), where we use
Theorem 4.2 (c). We are done establishing the reverse inclusion.

Corollary 5.3. Let cl(·) be the closure operator with respect to the topology induced by | · |∗.
Then

conv(Ib) = Gb ∩ aff(Ib) = cl(conv(Ib)) ∩ aff(Ib) = (conv(Ib) + R
(Rn)
+ ) ∩ aff(Ib).

Proof. Proof. The first equality follows from Theorem 5.2 and the facts that

conv(Ib) =
⋃

P finite subset of Rn

CP , aff(Ib) =
⋃

P finite subset of Rn

aff(CP )

because conv(Ib) is a set of finite support functions. The remaining equalities are a conse-
quence of Theorem 2.15.

Theorem 5.4. Let CP be a nonempty corner polyhedron where P ⊆ Qn. Any valid inequality
for CP that is not valid for RP+, is dominated by the restriction to RP of the inequality defined
by some nontrivial, minimal liftable tuple for Ib.

Proof. Proof. By Theorem 4.3 (b), rec(CP ) = RP+; thus any inequality that is valid for
CP but not for RP+ is of the form

∑

p∈P d(p)y(p) ≥ 1, where d(p), p ∈ P are nonnegative

coefficients. Let R = {±e1, . . . ,±en}, where ei, i = 1, . . . , n are the standard unit vectors in
Rn; note that cone(R) = Rn. Then, CP is a face of the canonical face F = conv(Mb) ∩ VR,P
of Mb. Since R,P are sets of rational vectors and CP 6= ∅, b is rational as well. Therefore
by Meyer’s theorem [28] (see also [9, Theorem 4.30]) both F and CP are rational polyhedra.
Since

∑

p∈P d(p)y(p) ≥ 1 is a valid inequality for the face CP of F , it can be lifted to a
valid inequality

∑

r∈R h(r)s(r) +
∑

p∈P d(p)y(p) ≥ 1 for the polyhedron F . As in the proof
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of Theorem 2.14, using [4, Theorem 5] one can find a minimal valid tuple (ψ, π, 1) for Mb

that defines an inequality whose restriction dominates
∑

r∈R h(r)s(r) +
∑

p∈P d(p)y(p) ≥ 1.
In particular, the restriction of the inequality defined by the liftable tuple (π, 1) dominates
the inequality

∑

p∈P d(p)y(p) ≥ 1.
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A Missing proofs.

Proof. Proof of Proposition 2.2 Assume that ψ is not subadditive. Then ψ(r1+r2) > ψ(r1)+
ψ(r2) for some r1, r2 ∈ Rn. Let ψ′ : Rn → R be defined as ψ′(r1 + r2) := ψ(r1) + ψ(r2)
and ψ′(r) := ψ(r) for every r 6= r1 + r2. Then (ψ′, π, α) is easily seen to be a valid tuple, a
contradiction to the minimality of (ψ, π, α).

Now assume that ψ is not positively homogenous. Then ψ(λr1) < λψ(r1) for some r1 ∈ Rn

and λ > 0. Let ψ′ : Rn → R be defined as ψ′(r1) :=
ψ(λr1)
λ

and ψ′(r) := ψ(r) for every r 6= r1.
Again, (ψ′, π, α) is a valid tuple, a contradiction to the minimality of (ψ, π, α). Thus ψ is
sublinear.

Finally, assume that π(r1) > ψ(r1) for some r1 ∈ Rn. Let π′ : Rn → R be defined as
π′(r1) = ψ(r1) and π

′(r) = π(r) for every r 6= r1. The tuple (ψ, π
′, α) is valid, and this shows

that π ≤ ψ.

Proof. Proof of Theorem 2.4 (⇐) Theorem 6.34 in [9] shows that if conditions (a)–(e) are
satisfied, then (ψ, π, α) is a minimal valid tuple for Mb. Since α = 1, the tuple is nontrivial.

(⇒) Suppose that (ψ, π, α) is a nontrivial minimal valid tuple for Mb.

(a) This proof is the same as the subadditivity proof in Proposition 2.2.

(b) We first establish the following claim.

Claim A.1. ψ(r) ≥ supε>0
π(εr)
ε

= limε→0+
π(εr)
ε

= lim supε→0+
π(εr)
ε

.

Proof of Claim. Since (ψ, π, α) is minimal, from Proposition 2.2 ψ is sublinear and

π ≤ ψ. Hence for ε > 0 and r ∈ Rn we have that π(εr)
ε

≤ ψ(εr)
ε

= ψ(r). Thus,

supε>0
π(εr)
ε

≤ ψ(r) and this implies that supε>0
π(εr)
ε

is a finite real number. By Theorem

7.11.1 in [19] and the subadditivity of π, this implies that supε>0
π(εr)
ε

= limε→0+
π(εr)
ε

=

lim supε→0+
π(εr)
ε

. ⋄
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The above claim shows that the function ψ′(r) := limε→0+
π(εr)
ε

is well defined, and
ψ′ ≤ ψ. Furthermore, by Lemma 2.3, ψ′ is sublinear. We prove below that (ψ′, π, α) is
a valid tuple. Therefore, since (ψ, π, α) is minimal, validity of (ψ′, π, α) will imply that
ψ = ψ′.

Assume by contradiction that (ψ′, π, α) is not valid. Then there exists (s, y) ∈ Mb such
that

∑

r∈Rn

ψ′(r)s(r) +
∑

p∈Rn

π(p)y(p) = α− δ

for some δ > 0. Define r̃ :=
∑

r∈Rn rs(r). Since ψ′(r) = limε→0+
π(εr)
ε

, there exists some
a > 0 such that

π(εr̃)

ε
< ψ′(r̃) + δ for all 0 < ε < a. (A.1)

Let D ∈ Z>0 be such that 1/D < a and define ỹ to be

ỹ(r) :=

{

y(r) +D if r = r̃/D,

y(r) if r 6= r̃/D.

Note that
∑

r∈Rn

rỹ(r) =
∑

r∈Rn

rs(r) +
∑

p∈Rn

py(p) ∈ b+ Zn,

and so (0, ỹ) ∈Mb. Hence
∑

p∈Rn π(p)ỹp ≥ α. However,

∑

p∈Rn

π(p)ỹ(p) =
π(r̃/D)

1/D
+
∑

p∈Rn

π(p)y(p)

< ψ′(r̃) + δ +
∑

p∈Rn

π(p)y(p) by (A.1) and by definition of D

≤
∑

r∈Rn

ψ′(r)s(r) + δ +
∑

p∈Rn

π(p)y(p) by sublinearity of ψ′

= α,

which is a contradiction.

(c) We now show that π is Lipschitz continuous with Lipschitz constant L := max‖r‖=1 ψ(r).
By Proposition 2.2, ψ is sublinear; thus, it is continuous. Therefore max‖r‖=1 ψ(r) is
attained. Moreover, by subadditivity of π, we obtain that π(x)− π(y) ≤ π(x− y) for all
x, y ∈ Rn. Therefore, |π(x)− π(y)| ≤ max{π(x− y), π(y − x)}. Thus, for all x 6= y,

|π(x)− π(y)|

‖x− y‖
≤

max{π(x− y), π(y − x)}

‖x− y‖
≤

max{ψ(x − y), ψ(y − x)}

‖x− y‖
≤ L,

where the second inequality follows from Proposition 2.2, and the last inequality from
the positive homogeneity of ψ.

(d) We prove this with a sequence of claims.
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Claim A.2. π(r) ≥ 0 for all r ∈ Rn.

Proof of Claim. Let p∗ ∈ Qn. Then there exists D ∈ Z>0 such that Dp∗ ∈ Zn. Let
(s, y) ∈ Mb and, for some k ∈ Z+, define (s, ỹ) by setting ỹ(p∗) := y(p∗) + kD and
ỹ(p) := y(p) for p 6= p∗. Note that (s, ỹ) ∈ Mb for every k ∈ Z+. This shows that
π(p∗) ≥ 0 for every p∗ ∈ Qn. Since π is Lipschitz continuous by part (c) above, we must
have π ≥ 0 everywhere. ⋄

Claim A.3. π(z) = 0 for all z ∈ Zn.

Proof of Claim. Assume to the contrary that there is some z ∈ Zn such that π(z) 6= 0.
By the previous claim, π(z) > 0. Define π′ to be π′(z) := 0 and π′(p) := π(p) for p 6= z.
Then (ψ, π′, α) is easily seen to be a valid tuple. This contradicts the minimality of
(ψ, π, α). ⋄

We now show that α = 1. Since ψ, π ≥ 0 by part (b) and Claim A.2, if α = 0 or α = −1
then this would contradict the fact that the tuple is nontrivial.

(e) The proof is identical to part (d) of the proof of Theorem 6.22 in [9].

This concludes the proof of the theorem.

B Continuity of linear functional F̂π.

Just like Fψ,π, define the linear functional F̂π on R(Rn) by

F̂π(y) :=
∑

p∈Rn

π(p)y(p).

Lemma B.1. Let π : Rn → R. If F̂π is a continuous linear functional with respect to the | · |∗
norm, then supε>0

π(εr)
ε

<∞ for all r ∈ Rn \ {0}.

Proof. Proof. F̂π is a continuous linear functional if and only if it is bounded, i.e., there exists

M ∈ R such that |F̂π(y)|
|y|∗

≤M for all y 6= 0 (see Conway [10, Chapter III, Proposition 2.1]).

Suppose F̂π is bounded and suppose to the contrary that for some r̄ ∈ Rn\{0}, supε>0
π(εr̄)
ε

=

∞. For every ε > 0, consider yε ∈ R(Rn) given by

yε(r) =

{

1 if r = εr̄,
0 otherwise.

Observe that

sup
ε>0

|F̂π(yε)|

|yε|∗
= sup

ε>0

|π(εr̄)|

‖εr̄‖
=

1

‖r̄‖
sup
ε>0

|π(εr̄)|

ε
= ∞.

This shows that F̂π is not bounded, contradicting the assumption.
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