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Abstract. Many researchers focus on resource intensive tasks which
have to be run continuously over long periods. A Grid may offer resources
for these tasks, but they are contested by multiple client agents. Hence,
a Grid might be unwilling to allocate its resources for long terms, lead-
ing to tasks’ interruptions. This issue becomes more substantial when
tasks are data inter-dependent, where one interrupted task may cause
an interruption of a bundle of other tasks. In this paper, we discuss a
new resource re-allocation strategy for a client, in which resources are
re-allocated between the client tasks in order to avoid prolonged inter-
ruptions. Those re-allocations are decided by a client agent, but they
should be agreed with a Grid and can be performed only by a Grid.
Our strategy has been tested within different Grid environments and
noticeably improves client utilities in almost all cases.

Keywords: Continuous inter-dependent tasks, Resource re-allocation,
Client’s decision-making mechanism

1 Introduction

Recently much research has focused on smart systems which, for example, mon-
itor the level of pollution in the environment [5]. These systems have to acquire
and process data continuously to be able to produce up-to-date results, and the
tasks which process these data have to be run continuously and for long periods
of time [7, 8]. It is desirable for these tasks to run without interruption, but short
interruptions whose duration depends on the nature of a task, may not affect
significantly the controlled parameters e.g., temperature. These tasks also have
to be executed for so long periods of time that a Grid is unable or unwilling to
allocate them for the whole period at once. This means that a task will be inter-
rupted after some agreed period of time and it has to obtain new resources [8].
A task might also be interrupted unexpectedly due to a resource failure. Here,
we assume that the resource availability changes near-periodically over time [1,
9, 11], allowing its peaks to be approximately overseen in the future [8].

These tasks can also depend on each others’ data, i.e. one task might require
data from other tasks in order to run. For example, two data streams which
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monitor temperature and humidity are linked as the weather observation in the
airport [12]. Other use cases include traffic monitoring (control) on a road [19],
where the vehicles’ speed and location are streamed in order to identify traffic
congestion. These scenarios show continuous tasks linked in terms of data and
it would be realistic for these tasks to run simultaneously.

Some research e.g., [10, 13], focuses on execution of inter-dependent tasks,
but it is generally lacking decision making mechanisms for a client in respect
of allocation and execution of such tasks. The dependence among tasks is often
depicted in terms of the data exchange and has an explicit connection between
sender and recipient tasks. In our model, the tasks do not have just an explicit
dependence, but also an implicit one which means that a failure of the recipient-
task affects the execution of the corresponding sender-task as much as the sender-
tasks affect the execution of their recipients. We also take into account that tasks
are not executed just once, but have to be executed continually over the long
term, where any failed tasks might affect a controlled parameter.

Hence, if data is not received in time by a recipient-task, then the client’s
system will produce erroneous results to some degree, i.e. the longer this delay,
the larger the probability that the last received data from a sender-task is signifi-
cantly different from the current data that would be received. As time passes, the
recipient-task has to stop eventually, avoiding to produce substantially deviated
results. In comparison, other work generally does not focus on how a client agent
can avoid or shorten these delays in the case of highly contested Grid resources
and how those delays may affect its system.

We propose a new resource re-allocation strategy, SimTask, for a client which
allows a client agent to exchange the allocated resources among its own tasks by
negotiating with the Grid Resource Allocator (GRA). The aim of this exchange
is to avoid long interruptions which cause a significant change in the param-
eter controlled by the interrupted task e.g., a significant drop in temperature.
This strategy incorporates a decision-making mechanism for a client agent (re-
ferred further as a client) to initiate resource re-allocation and choose the most
appropriate task for donating resources. The agents’ abilities [21] as to decide au-
tonomously and respond actively to any changes are crucial for this mechanism,
considering the large number of negotiating agents at the same time.

The paper is structured as follows.1 Section 2 discusses related work in respect
of the inter-dependent tasks. Then, Section 3 describes the formal model, while
Section 4 presents our SimTask re-allocation strategy. The evaluation results are
discussed in Section 5, and Section 6 concludes the paper.

2 Related Work

In this paper, we focus on the tasks which run near-continuously [7, 8] over time,
and also depend on each other’s data. In other words, each task sends a data
point to another task, while processing new input data. Hence, these tasks have
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to be run simultaneously in terms of processing each input data point as soon
as it has arrived, and repeat this processing over time. Much research e.g., [10,
13, 15, 23], considers processing of inter-dependent tasks in Grid systems where
dependencies are presented as a directed acyclic graph. In particular, Meriem and
Belabbas [15] dynamically allocate tasks to resources, which arrive as a contin-
uous stream over time. Dynamic allocation is meant to respond to any resource
availability changes in a Grid, and resolve the problem of load-balancing at run-
time. Although all this work considers task dependencies in resource allocation,
tasks are not considered to be repeated continuously in real-time. Nevertheless,
this research describes relevant concepts which can be applicable to continuous
tasks such as spare time [23], which defines the maximal time of task execution
before it affects the schedule of dependent tasks. Other work considers a cyclic
task graph [17, 18, 22], where tasks are executed repeatedly over time and each
task in a cycle obtains and sends data. Here, the cycles of task dependencies are
represented in terms of data, instructions, etc.

There are other examples of inter-dependent tasks that were discussed in the
literature. For example, the work [14] focuses on accomplishing a high-level task
by completing a number of time-constrained possibly inter-dependent other tasks
e.g., gathering information from the Web in order to offer appropriate products
to the customers. Motwani et al. [16] focus on continuous queries (e.g. continuous
tasks), which process stream data from multiple sources. A continuous query is
the type of query which is issued once for a particular data-type and then runs
continuously, updating a client with new results without being issued repeat-
edly [3, 20]. In the work [16], one query may consist of a number of sub-queries
(operators), where the outputs of these sub-queries might be shared with other
queries or sub-queries. Although this work discusses the techniques to approxi-
mate the query outputs in the case of scarce resources, it does not focus on how
data delays or failed sub-queries might affect the results from other sub-query
or query, or whether the latter query can even be performed.

Different platforms (engines) e.g., Apache Storm [2], attempt to solve the
problems of scalability, performance and memory usage in terms of execution
of data streams. However, the problem of tasks’ inter-dependencies as discussed
above and how they can be run without some input data is not the focus of
these engines. Note that in an open and dynamic computational environment
such as a Grid, where other clients also require resources, it might be difficult
to re-allocate a task without affecting other clients’ interests.

3 Formal Model

In this work, we consider that tasks have inter-dependencies, where some tasks,
sender-tasks, send data to other tasks, recipient-tasks. The dependencies among
tasks are presented as a rooted tree Tr, where data streams flow from the bottom
to the top of this tree (i.e. from leaf to root). Each node of this tree denotes a
task i and each edge indicates a data inter-dependence between sender-task i ∈ N
and recipient-task j ∈ N with a weight αi,j ∈ [0, 1]. The weight denotes the level



of importance of the data from a particular sender-task for the corresponding
recipient-task, i.e. each edge has a direction from the lower-layer tasks (senders)
towards the upper-layer tasks (recipients) of the tree. In this way, some tasks
in the middle of the tree are also senders and recipients at the same time. We
assume that each sender-task has only one corresponding recipient-task, but
every recipient-task might have one or more sender-task(s). We also assume
that the sum of weights for all sender-tasks which are connected directly to the
same recipient-task is equal to 1.0, and the smaller this weight αi,j , the less
impact sender-task, i, has on the work of recipient-task, j. This model of task
inter-dependencies can follow, for example, a scenario of data aggregation from
multiple sources by counting, adding, etc. the data instances over some time [4].
We also consider a sub-tree sTrk ∈ Tr with the root task k ∈ N.

Here, we define an abstract parameter P which is estimated by client tasks.
This parameter Pi,Si (t) ∈ R for task i ∈ N with the corresponding set of direct
sender-tasks Si = {m, ..., k} at time t is a real-life characteristic (e.g. tempera-
ture), which is continuous or can be presented as continuous over time t ∈ R,
considering |(Pi,Si

(t+∆t)− Pi,Si
(t)) /Pi,Si

(t)| � 1 where ∆t ∈ R is an ar-
bitrary small time step. The parameter Pi,Si

(t) is estimated directly by task
i, if this task belongs to the lowest layer of a tree, i.e. Si ∈ ∅. If task i be-
longs to any upper layer of a tree, i.e. Si 6= ∅, then Pi,Si (t) is estimated as
a linear combination of all parameters Pj 6=i,Sj (t) sent by its sender-task(s)2

Pi,Si
(t) =

∑
j∈Si

αj,i×Pj 6=i,Sj
(t) , Si 6= ∅, i, j ∈ N, where Sj can be empty set.

3.1 Status and Layer

In our model, each task i has its status Statusi (t) of execution at time t, which
can be: ‘interrupted’ means a task is not running and does not possess resources;
‘stopped’ denotes a task is not running (i.e. its recipient-task is interrupted or it
has produced inaccurate results for too long), but it possesses resources; ‘inac-
curate’ means a task is running, but at least one of its sender-task(s) either does
not send any data or sends inaccurate data; ‘accurate’ means a task is running
and all its sender-tasks send accurate data. A task produces inaccurate data
when at least one of its sender-tasks has status other than ‘accurate’.

We also consider that each task i belongs to a specific layer Layeri in a tree,
and sends its data, except the root task, to the corresponding recipient-task j
which belongs to the nearest upper layer, i.e. Layerj = Layeri + 1. Note that
the lower layer tasks are stopped when a recipient-task on the top of a sub-tree
or the whole tree is stopped or interrupted. This means that if sender-tasks have
no tasks to send their data to, they are stopped. This dependence shows the
continuous and real time nature of the tasks.

3.2 Damping and Delay Time

As we discussed a notion of short interruption, we define a damping time which
determines for how long a task can be interrupted or stopped without substantial

2 A linear combination is chosen for a greater clarity of evaluation of SimTask.



negative consequences for parameter estimation e.g., a significant rise in tem-
perature. If any task has been interrupted or stopped, then it does not estimate
this parameter any more. In this way, a parameter changes in a way which is not
under control of a client. Hence, the longer this task is not running, the higher
probability that the change of this parameter might have a substantial negative
effect for a client. We consider that this effect occurs when the damping time
τdami (td), starting at time td ∈ R, has passed for task i. That is, the absolute
difference ∆Pi,Si

(t) between the last produced value of parameter Pi,Si
(td) by

task i before interruption and the linearly extrapolated value of this parameter
P exi,Si

(t) at time t becomes larger than the predefined threshold ηdami ∈ R. This
threshold is determined by the nature of this parameter.

A delay time determines for how long a task can be running when it has
to use inaccurate data for its calculations and it stops after this time. A delay
time τdeli (tdl, t), starting at time tdl ∈ R, for recipient-task i ∈ N is the duration
of time when this task can still run, but it has to use inaccurate input data
for its calculations due to the interruption of some (at least one) sender-task(s)
from its sub-tree sTri. This time ends when the absolute difference ∆Pi,Si

(t) =∑
j∈Si

αj,i∆Pj 6=i,Sj
(t), Si 6= ∅ at time t becomes larger than the predefined

threshold ηdeli ∈ R, where ηdeli < ηdami . Note that the difference ∆Pi,Si (t) is
a linear combination of such differences for the lower layer tasks which belong
to a sub-tree sTri and have the statuses of execution as ‘inaccurate’, ‘stopped’
or ‘interrupted’. As for the lowest layer tasks, i.e. Sj = ∅, these differences at
time t are calculated as ∆Pj,Sj

(t) = Pj,Sj
(tdl)−P exj,Sj

(t), where Pj,Sj
(tdl) is the

last value of parameter produced by task j before its interruption at time tdl.
The difference ∆Pi,Si (t) may change dramatically if some sender-tasks switch to
other statuses of execution. The delay time for recipient-task i becomes longer
(i.e. ∆Pi,Si

(t) becomes smaller), if at least one of its sender-task(s) switches to
the ‘accurate’ status, and shorter if this switch is opposite.

3.3 Client Utility

In our model, each task is near-continuous [7, 8], and hence each task i has
periods of interruption τ inti,l ∈ R and execution τexei,l ∈ R, and the pairs of con-

secutive interruption and execution periods
(
τ inti , τexei

)
l

have a counter l ∈ N
within a total duration of task execution τ tot ∈ R. Each τ inti,l starts at tendi,l−1 and

ends at tstri,l , while each τexei,l starts at tstri,l and ends at tendi,l . τ tot starts at tstrtot ,
when a client has submitted initial resource requests for all its tasks, and ends
at tendtot for all tasks. The start and end times for τ tot are the same for all tasks
as they are expected to be run simultaneously. If one task is interrupted, this
starts affecting negatively the lower layer tasks from the same sub-tree and all
upper layer tasks from the same branch at once. We also consider a cumulative
duration of interruption τ cumi,l =

∑l
k=1 τ

int
i,k for each task i which reflects on the

overall success of task execution.
In addition to single and cumulative interruptions [7, 8], our model of inter-

dependent tasks also considers inaccurate processing of data as a factor which



negatively affects client utility. That is, the longer the task is running with in-
accurate input data (not running), the more substantial becomes a negative
impact on client utility. The impact of any negative factor (interruption or in-
accurate data processing) is designed as the corresponding damping function

SI
(
τ inti,l

)
for a single interruption, CI

(
τ cumi,l

)
for a cumulative interruption

and IP
(
τ̂deli (tdl, t)

)
for a duration of inaccurate data processing τ̂deli (tdl, t),

starting at tdl. The duration τ̂deli (tdl, t) denotes a part of delay time τdeli (tdl, t)
which has passed till time t. Each damping function produces values from the
interval ]0, 1], where 1 denotes no impact. These functions comply with our as-
sumption that the client’s estimation of the parameter becomes gradually rather
than immediately unrealistic after the task’s failure, which also echoes a notion
of short interruption. Only execution periods contribute positively to client util-
ity, and the amount of such contribution is affected negatively by these damping
functions:

SI
(
τ inti,l

)
=

1

e

(
τ int
i,l −τ

max
int[i]

(td)
)
/εint[i](td) + 1

,

CI
(
τ cumi,l

)
=

1

e

(
τcum
i,l −τ

max
cum[i]

(td)
)
/εcum[i](td) + 1

,

IP
(
τ̂deli (tdl, t)

)
=

1

e

(
τ̂del
i (tdl,t)−τmax

del[i]
(tdl,t)

)
/εdel[i](tdl,t) + 1

,

(1)

where τmaxint[i] (td), τ
max
cum[i] (td) and τmaxdel[i] (tdl, t) are inflection points, which denote

the durations of time after which client utility is noticeably affected by the
corresponding factor, and εint[i] (td), εcum[i] (td) and εdel[i] (tdl, t) determine the
speed of decrease of the corresponding damping functions around the inflection

points. As SI
(
τ inti,l

)
and CI

(
τ cumi,l

)
show the impact of interruptions on client

utility, their inflection points can be calculated in proportion to the damping
time τdami (td). In this work, τmaxint[i] (td) = τdami (td) as the damping time shows
how fast task’s interruption substantially affects client utility in terms of the
unobserved changes in the estimated parameter. Considering IP

(
τ̂deli (tdl, t)

)
shows the impact of inaccurate data processing on client utility, its inflection
point is equal to the delay time τdeli (tdl, t). The values of εint[i] (td), εcum[i] (td)
and εdel[i] (tdl, t) are calculated in proportion to their respective inflection points.

In our work, the effectiveness function E (t) [7, 8] demonstrates the success of
task execution over time t. This function changes only during execution periods,
and it can be reduced, multiplying by the values of damping functions. First, an

estimate Es
(
t, E

(
tendi,l−1

))
is linearly increasing during an execution period:

Es
(
t, E

(
tendi,l−1

))
=

(
1− E

(
tendi,l−1

))
t+ E

(
tendi,l−1

)
tendtot − tstri,l

tendtot − tstri,l
. (2)

This estimate Es (·) starts increasing from the value of effectiveness function

E
(
tendi,l−1

)
at the end of previous execution period τexei,l−1 towards the desirable



end of execution at time tendtot when the value of effectiveness function is equal to
1. The full effectiveness function is presented below:

E (t) =



Es
(
t, E

(
tendi,l−1

))
SI
(
τ inti,l

)
CI
(
τ cumi,l

)
IP
(
τ̂deli (tdl, t)

)
,

if τexei,l 6= 0 and τdeli (tdl, t) 6= 0,

Es
(
t, E

(
tendi,l−1

))
SI
(
τ inti,l

)
CI
(
τ cumi,l

)
,

if τexei,l 6= 0 and τdeli (tdl, t) = 0,

E
(
tendi,l−1

)
, if τexei,l = 0.

(3)

Note that the values of SI
(
τ inti,l

)
and CI

(
τ cumi,l

)
are constants within an exe-

cution period τexei,l (i.e. τexei,l 6= 0), while the values of IP
(
τ̂deli (tdl, t)

)
decrease

within this period. IP
(
τ̂deli (tdl, t)

)
affects the effectiveness of task execution

only when task i is using inaccurate input data (i.e. τdeli (tdl, t) 6= 0) from its
sender-task(s). The utility Ui for each task i is calculated as the square under
the broken curve of E (t), i.e.

Ui = 1/Smax

Li∑
l=1

∫ tend
i,l

tstri,l

E (t) dt. (4)

Smax = τ tot/2 is the largest possible square under E (t) if task i has no failures
till tendtot and Li is the number of execution periods within

[
tstrtot , t

end
tot

]
.

The total client utility Utotal is calculated as a sum of all Ui with the respec-
tive coefficients $i which denote the task’s level of relevance for the client.

Utotal =

N∑
i=1

$i × Ui, (5)

where N denotes the total number of client tasks. The sum of $i over all client
tasks is equal to 1.0, where the total sum of all $i from the same tree layer is
equal for each layer. In this way, the upper layer tasks have a more substantial
impact on the client’s utility, according to our model.

4 Re-allocation Strategy

In this paper, a novel re-allocation strategy SimTask for a client is proposed
which allows a client to exchange the allocated resources among its own tasks
by negotiating such exchange with the GRA. The tasks which lost resources
can resume their execution instead of other tasks, and the tasks which have
donated their resources to other tasks are called donor-tasks. Note that a client
is only allowed to ask the GRA to re-allocate resources among its own tasks,
but it cannot ask the GRA to re-allocate resources from another client’s tasks.
The aim of this internal resource re-allocation is to avoid too long interruptions
which might lead to substantial utility loss. As long as the length of time is only



considered as a resource allocated by the GRA, then a task cannot share this
resource with the other task, but it can donate this resource to the other task.
Note that the scalability of this approach can potentially be increased if tasks
are clustered into relatively data-independent groups with their respective trees
and client agents, which is the focus of our future research.

A problem following from resource re-allocation is not only which task to
stop in order to launch the interrupted one with a smaller loss in the client
utility, but also to which extent the GRA is willing to make an exchange of the
allocated resources between client tasks. Hence, the GRA is assumed to allow
such re-allocations, but only with a penalty due to its own resource cost, i.e. a
task might be allocated a much shorter donor’s remainder of execution period.

4.1 Condition to Use the Strategy

A client decides whether an interrupted task has not been running for too long
and, therefore, it needs to be donated resource from another client’s task. The
resource re-allocation from one task to another one might not be beneficial for a
client, because another task has to be interrupted instead of the current one and
the re-allocated remainder of execution period can be shortened by the GRA.
However, if any task is interrupted for so long that its damping time τdami (td) is
passed, then the client’s utility will be substantially decreased. Hence, we argue
that the interrupted task has to receive resources before its damping time is
exceeded. Then, the condition for resource re-allocation is:

τ̂ inti,l (t) > kdami ∗ τdami (td) , (6)

where τ̂ inti,l (t) is the current duration of interruption and kdami ∈ [0, 1] determines

a portion of τdami (td) which becomes critical for a client’s task. That is, if the
duration of interruption becomes longer than a specified part of the damping
time, a client starts negotiation with the GRA in respect of resource re-allocation
from a chosen donor-task to this task i.

4.2 Criteria to Choose a Donor-Task

When a client decides that the interrupted task should be donated a resource
from another task, then it has to choose a donor-task whose remainder (or a part
of it due to the GRA’s penalty) of the execution period might be re-allocated to
this interrupted task. Here, a client aims to choose a donor-task which will have
the least impact on the client’s utility, if it loses its resources. We distinguish two
criteria to choose the best donor-task, where the first one shows the duration of
time which can be allocated for the interrupted task and the second one considers
the dependencies between a donor candidate and other tasks.

The Execution Period’s Remainder Generally, a client prefers to allocate a
longer execution period for the interrupted task, and this execution period should



preferably end at the maximum of resource availability [7, 8]. In the context of
this paper, it is only important to note that our previously developed negotiation
strategy, ConTask, was intended for a client to start the next interruption period
in the proximity of a peak of resource availability. Hence, it is desirable for the
donor’s remainder of execution period to have at least one maximum of resource
availability. A client also considers that the re-allocated remainder τ remj,l (t) can
substantially be shortened by the GRA.

Hence, a client is designed to find donor-task j with a remainder τ remj,l (t) of
execution period which is closer to an arithmetical average τ remav (t) between the
minimum acceptable τ remmin (t) and the maximum available τ remmax (t) remainders
among all client tasks which possess resources at time t. The maximum available
remainder τ remmax (t) is the longest remainder available among the client tasks.
The minimum acceptable donor-task’s remainder τ remmin (t) of execution period
should ideally end around the next maximum of resource availability from the
current point in time. However, if all available remainders have no peaks of
resource availability, the minimum acceptable remainder τ remmin (t) is calculated
as τ remmin (t) = krem × τ remmax (t), where krem ∈ [0, 1] is a chosen coefficient.

Assume Remj,l (t) is the first criterion for a client to choose the best donor-
task. This criterion is a function which formally reflects the client’s preference in
respect of the duration of the execution period’s remainder as discussed above
and its values are from 0 to 1, i.e. from the worst to the best donor-task. If the
execution remainder is shorter than the minimum acceptable one, this function
will return a negative number, which is then algorithmically substituted by 0.
Although those tasks are not excluded as possible donors, they are unlikely to
be chosen. This function is presented below for the donor candidate j at time t.

Remj,l (t) =

(
τ remj,l (t)− τ remmin (t)

)
×
(
τ remmax (t)− τ remj,l (t)

)
(τ remav (t)− τ remmin (t))× (τ remmax (t)− τ remav (t))

. (7)

The Donor-Task’s Dependencies A client aims to minimise the negative
impact on its utility when a donor task loses its resource. Assume that a client has
a list of donor candidates and each of them has some remaining execution time.
However, the data from these candidates have different levels of importance in
respect of their corresponding recipient-task(s). If the recipient-task of the donor
candidate is running, then a client has to estimate when this task will be stopped
due to inaccurate input data, considering the corresponding donor candidate is
interrupted. If the data from this donor candidate is of less importance for its
corresponding recipient-task, then the delay time for this recipient-task will be
longer. The longer delay time means the longer task is able to run with inaccurate
data, contributing into the client utility. In the case when the recipient-task i of
the donor candidate has already been ‘stopped’ or ‘interrupted’, the desirable
donor candidate j for a client should still be of less importance to this recipient-
task as defined by the weight αj,i.

Consequently, a client prefers more as a donor that task j at time t which has
the smallest level of importance for its recipient-task. This condition means that



the most preferable donor candidate should ideally have the longest remaining
delay time τ̌deli (tdl, t) = τdeli (tdl, t)−τ̂deli (tdl, t) for its recipient-task i in the case
it is chosen as a donor if its recipient-task is running, or the smallest level of
importance αj,i if its recipient-task is not running among all donor candidates.
Hence, a variable Conij (tdl, t) is determined at time t for each donor candidate
j, which value varies from the least 0 to most 1 preferable donor candidate (this
applies to other variables below).

Conij (tdl, t) =


τ̌deli (tdl, t)− τ̌delmin (t)

τ̌delmax (t)− τ̌delmin (t)
, when task i is running,

αmax − αj,i
αmax − αmin

, when task i is not running.

(8)

where τ̌delmax (t) and τ̌delmin (t) would be the longest and shortest remaining delay
times at time t among all running recipient-tasks of donor candidates as if those
candidates were chosen as donors, while αmax and αmin are the largest and
smallest levels of importance among all client tasks (not only donor candidates).

The donor candidates from the lower layers of a tree are considered to be
more preferable for a client as compared to the donor candidates from the upper
layers, because interruption of an upper layer task will decrease the client utility
more significantly than interruption of a lower layer task. The root task indicates
the highest layer Nlay − 1, while the lowest layer of a tree is identified as a zero
layer. Hence, a variable

Layj = 1− (Layerj/(Nlay − 1)), Layj ∈ [0, 1] . (9)

is defined, which value varies between 0, i.e. the least, and 1, i.e. the most
preferable donor candidate.

A client also considers a status of execution Statusj (t) (see Section 3.1) of
a donor candidate j at time t. A client does not consider tasks with the sta-
tus ‘interrupted’ as possible donor candidates. The ‘stopped’ donor candidates
are considered to be the most preferable for a client in terms of the least neg-
ative impact on the client utility. However, if a donor candidate has the status
‘inaccurate’ or ‘accurate’ and it is interrupted, then this will affect negatively
all other dependent tasks which are running without or smaller error. That is,
the statuses ‘inaccurate’ and ‘accurate’ are regarded as equally non-preferable
statuses. Finally, we introduce a variable Statj (t) for a donor candidate j as:

Statj (t) =


0, if Statusj (t) = ‘interrupted′,

λ, if Statusj (t) = ‘inaccurate′ ∨ ‘accurate′,

1, if Statusj (t) = ‘stopped′,

(10)

where λ ∈ ]0, 1[. The second criterion for a client to choose the best donor-task
is a function Depij (tdl, t), j ∈ Si, j 6= i, which determines the client’s decision in
terms of the values from 0 to 1, considering client preferences mentioned above.

Depij (tdl, t) = Conij (tdl, t)× Layj × Statj (t) . (11)



A function Donij,l (tdl, t), which produces a value from 0 to 1 for each donor

candidate j, combines both client criteria, Remj,l (t) and Depij (tdl, t), as:

Donij,l (tdl, t) = Wrem ×Remj,l (t) +Wdep ×Depij (tdl, t) , (12)

where the weights Wrem and Wdep ∈ [0, 1] and their sum is equal to 1. In other
words, a client might prioritise the execution period’s remainder of a donor task
over the impact of this task’s interruption on a task tree, and vice verse. A client
chooses a donor candidate j for which Donij,l (tdl, t) is the largest at time t.

5 Evaluation

We evaluate the SimTask re-allocation strategy in terms of the client utility, com-
pared to the case when this strategy is not used, in various Grid environments
with different weights in respect of criteria to choose a donor-task. The different
environments are modelled by varying the probability of unexpected task inter-
ruption and an accuracy of the client’s estimation of the resource availability
maximum as this accuracy shows the level of periodic determinism in resource
availability fluctuations. The probability of unexpected task interruption denotes
the reliability of the Grid system in terms of resource failure and / or withdrawal.

The more accurate a client is able to identify the maximum of resource avail-
ability, the more favourable conditions are for negotiation during the tasks’ ex-
pected interruptions. The different priorities (see Equation (12)) over criteria
to choose the best donor-task denote whether the most suitable remaining exe-
cution period τ remj,l (t) or the least relevant donor candidate in respect of other
tasks’ execution affects the client decision to the larger extent.

In our evaluation, a client has 40 tasks which are connected hierarchically as a
four-layer tree, where each task has three sender-tasks (if applicable) respectively.
The values of αi,j are generated randomly for each test, where all tasks have to
be run continuously and simultaneously for τexecdl = 300000 virtual seconds.
The period of change in resource availability is equal to 3000 virtual seconds.
The average client utility is then calculated over 200 runs. Note that kdami (see
Equation (6)) and λ (see Equation (10)) are set to 0.5 and 0.6 for all tasks.

A possibility for a task to obtain a longer duration of an execution period is
simulated, following a periodicity of resource availability, where these durations
fluctuate periodically over time. The probability of successful negotiation also
increases when resources are more available. We also assume that in the resource
re-allocation negotiation the GRA is less greedy than in the ordinary negotia-
tion, because it re-allocates resources which are granted to a client. Hence, the
re-allocation negotiation has a high probability of succeeding. The change of an
estimated parameter Pi,Si

(t) can be modelled with any functional dependence
which satisfies the condition stated in Section 3.2. For transparency, it is mod-
elled as a periodic function over time, considering that this parameter should
not change abruptly (e.g. temperature).



5.1 Grid Environments

In this section, we evaluate the change in the client’s utility for the different
probabilities of unexpected task interruption and levels of accuracy with which
a client estimates the maximum of resource availability. These different settings
simulate more or less favourable Grid environments for negotiation. The prob-
abilities of unexpected task interruption are considered in the interval between
1.E-02 and 1.E-06. The probabilities larger than 1.E-02 are considered to be
non-realistic, because all tasks would be interrupted almost every virtual second.
Figure 1 supports this assumption as it shows that the client utility changes in-
significantly above the probability 5.E-04 and it generally tends to zero towards
the larger probabilities. This occurs due to the fewer number of unexpected task
interruptions which is approximately the same for such small probabilities and
any possible difference averages over multiple runs.
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Fig. 1. The changes in the client utility in the different Grid environments

The different level of accuracy with which a client is able to estimate the
maximum of resource availability mean that a task might stop running farther
from the maximum of resource availability due to the client’s inability to estimate
this maximum accurately. Then, it will be more challenging for a client to obtain
an acceptable execution period through an ordinary negotiation with the GRA.
In this case, a client is more likely to use the SimTask re-allocation strategy in
order to run the interrupted tasks. We consider four different levels of accuracy
in the estimation of the maximum resource availability by a client, where a
precise estimation is indicated as ‘Exact’, while an inaccurate estimation with
a small deviation is indicated as ‘Small’, with a large deviation as ‘Large’, and



with a very large deviation as ‘Very Large’ in Figure 1. Here, a small deviation
(positive or negative) from the maximum resource availability is considered to
be up to 1% of the duration of a period (one virtual day) of resource availability
fluctuation. Large and very large deviations denote up to 2% and 4% of the
duration of this period respectively. Finally, we compare the cases when a client
uses the SimTask re-allocation strategy (i.e. ‘ReAll’) and when it does not use
this strategy (i.e. ‘NoReAll’). In the cases ‘ReAll’, the weights which are used
to choose the best donor-task are Wrem = 0.3 and Wdep = 0.7 (see Equation
(12)), and these weights is the most successful combination among all considered
combinations as discussed in the following section.

Figure 1 shows the average client utilities for the different probabilities of
unexpected task interruption in a logarithmic scale. Note that the SimTask re-
allocation strategy improves the client utility in almost all presented cases, except
for the two smallest probabilities when the maximum resource availability can
be estimated precisely. An effectiveness of the re-allocation strategy decreases
when the number of unexpected interruptions drastically drops and negotiation
conditions are favourable in terms of resource availability. However, in the cases
of small, large or very large estimation deviations, the SimTask re-allocation
strategy shows a noticeable improvement (especially, for the larger deviations)
in the client’s utility over the cases when this strategy is not used.

5.2 Client Priorities

We evaluate how the priorities for the two criteria which are used to choose the
best donor-task, might affect the client’s utility for the different probabilities of
unexpected task interruption. Here, we consider the different values of Wrem and
Wdep for the SimTask re-allocation strategy ‘ReAll’, which is compared to the
cases when this strategy is not used, i.e. ‘NoReAll’ and ‘NoReAll NoMax’. The
case ‘NoReAll NoMax’ also considers that a client cannot estimate the maximum
resource availability, while all other cases assume that a client can estimate it
with high precision. Figure 2 shows the average client utilities for the different
weights over various Grid environments, where Wrem and Wdep are indicated on
the labels ‘ReAll’ e.g., ‘ReAll 0.0 1.0’ denotes Wrem = 0.0 and Wdep = 1.0.

Generally, the utilities for the case Wrem = 0.3 and Wdep = 0.7 are larger
than for all other combinations of the weight coefficients. Note that a strict
prioritisation of one of the criteria, i.e. ‘ReAll 1.0 0.0’ or ‘ReAll 0.0 1.0’, gen-
erally show the smallest utilities among all weights’ combinations. However,
‘ReAll 0.0 1.0’ demonstrates the larger utilities for the smaller probabilities (be-
low 5.E-04). Hence, it is more beneficial for a client to prioritise the criterion
Depij (tdl, t) a bit more over the criterion Remj,l (t), i.e. ‘ReAll 0.3 0.7’. Note that
the difference in utilities is not large for the cases where the weights are more
balanced such as ‘ReAll 0.3 0.7’, ‘ReAll 0.7 0.3’ and ‘ReAll 0.5 0.5’, while ‘Re-
All 0.3 0.7’ usually shows the better utilities. However, the best choice of those
weights might depend on a use case. Finally, the SimTask re-allocation strategy
with any weights’ combination outperforms almost all cases ‘NoReAll ’.
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6 Conclusions and Future Work

This paper presents a formal model for inter-dependent continuous tasks, where
some tasks depend on data from other tasks. This model takes into account
not only a direct data dependence between a sender and recipient-tasks, but
also a reverse dependence when a sender-task is stopped due to the interruption
(stopping) of its recipient-task. If a recipient-task does not receive data from
some (all) of its corresponding sender-tasks for some time, it stops due to a
substantial increase in its parameter estimation’s error. If one task is interrupted,
it affects its whole sub-tree and all corresponding recipients up to the root.

Here, a new re-allocation strategy, SimTask, has been introduced which al-
lows a client agent to re-allocate resources among its own tasks through ne-
gotiation with the GRA, if ordinary resource negotiation becomes too long as
resources are contested by other clients. This strategy includes a decision mecha-
nism with two criteria to choose a donor-task if necessary. These criteria consider
the execution period’s remainder of each candidate and its importance for other
tasks in a tree. As evaluated, SimTask increases the client utility for almost
all probabilities of unexpected task interruption with the different estimation
accuracy of the maximum resource availability.
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