Skip to main content

Towards Robot Fall Detection and Management for Russian Humanoid AR-601

  • Conference paper
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 74))

Abstract

While interacting in a human environment, a fall is the main threat to safety and successful operation of humanoid robots, and thus it is critical to explore ways to detect and manage an unavoidable fall of humanoid robots. Even assuming perfect bipedal walking strategies and algorithms, there exist several unexpected factors, which can threaten existing balance of a humanoid robot. These include such issues as power failure, robot component failures, communication disruptions and failures, sudden forces applied to the robot externally as well as internally generated exceed torques etc. As progress in a humanoid robotics continues, robots attain more autonomy and enter realistic human environments, they will inevitably encounter such factors more frequently. Undesirable fall might cause serious physical damage to a human user, to a robot and to surrounding environment. In this paper, we present a brief review of strategies that include algorithms for fall prediction, avoidance, and damage control of small-size and human-size humanoids, which will be further implemented for Russian humanoid robot AR-601.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goswami, A., Yun, S.K., Nagarajan, U., Lee, S.H., Yin, K., Kalyanakrishnan, S.: Direction-changing fall control of humanoid robots: theory and experiments. Auton. Robots 36(3), 199–223 (2014)

    Article  Google Scholar 

  2. Fujiwara, K., Kanehiro, F., Saito, H., Kajita, S., Harada, K., Hirukawa, H.: Falling motion control of a humanoid robot trained by virtual supplementary tests. In: IEEE International Conference on Robotics and Automation Proceedings, ICRA 2004, vol. 2, pp. 1077–1082, April 2004

    Google Scholar 

  3. Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M., Kanehiro, F., Hirukawa, H.: Towards an optimal falling motion for a humanoid robot. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 524–529, February 2007

    Google Scholar 

  4. Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M., Kanehiro, F., Hirukawa, H:. An optimal planning of falling motions of a humanoid robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 456–462, October 2007

    Google Scholar 

  5. Chia, P.C., Lee, C.H., Chen, T.S., Kuo, C.H., Lee, M.Y., Chen, C.M.S.: Correlations of falling signals between biped robots and humans with 3-axis accelerometers. In: International Conference on System Science and Engineering (ICSSE), pp. 509–514, June 2011

    Google Scholar 

  6. Forner Cordero, A.: Human Gait, Stumble and… fall? Mechanical limitations of the recovery from a stumble. Universiteit Twente (2003)

    Google Scholar 

  7. Cordero, A.F., Koopman, H.F.J.M., Van der Helm, F.C.T.: Multiple-step strategies to recover from stumbling perturbations. Gait Posture 18(1), 47–59 (2003)

    Article  Google Scholar 

  8. Cordero, A.F., Koopman, H.J.F.M., van der Helm, F.C.: Mechanical model of the recovery from stumbling. Biol. Cybern. 91(4), 212–220 (2004)

    Article  MATH  Google Scholar 

  9. Renner, R., Behnke, S.: Instability detection and fall avoidance for a humanoid using attitude sensors and reflexes. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2967–2973, October 2006

    Google Scholar 

  10. Ogata, K., Terada, K., Kuniyoshi, Y.: Real-time selection and generation of fall damage reduction actions for humanoid robots. In: 8th IEEE-RAS International Conference on Humanoid Robots, Humanoids, pp. 233–238, December 2008

    Google Scholar 

  11. Ogata, K., Terada, K., Kuniyoshi, Y.: Falling motion control for humanoid robots while walking. In: 7th IEEE-RAS International Conference on Humanoid Robots, pp. 306–311, November 2007

    Google Scholar 

  12. Karssen, J.D., Wisse, M.: Fall detection in walking robots by multi-way principal component analysis. Robotica 27(02), 249–257 (2009)

    Article  Google Scholar 

  13. Hobbelen, D.G., Wisse, M.: A disturbance rejection measure for limit cycle walkers: the gait sensitivity norm. IEEE Trans. Robotics 23(6), 1213–1224 (2007)

    Article  Google Scholar 

  14. Kanoi, R., Hartland, C.: Fall detections in humanoid walk patterns using reservoir computing based control architecture. In: 5th National Conference on Control Architecture of Robots, May 2010

    Google Scholar 

  15. Höhn, O., Gerth, W.: Probabilistic balance monitoring for bipedal robots. Int. J. Robotics Res. 28(2), 245–256 (2009)

    Article  Google Scholar 

  16. Wilken, T., Missura, M., Behnke, S.: Designing falling motions for a humanoid soccer goalie. In: International Conference on Humanoid Robots Proceedings of the 4th Workshop on Humanoid Soccer Robots (2009)

    Google Scholar 

  17. Ruiz-del-Solar, J., Moya, J., Parra-Tsunekawa, I.: Fall detection and management in biped humanoid robots. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3323–3328, May 2010

    Google Scholar 

  18. Ruiz-del-Solar, J., Palma-Amestoy, R., Marchant, R., Parra-Tsunekawa, I., Zegers, P.: Learning to fall: designing low damage fall sequences for humanoid soccer robots. Robotics Auton. Syst. 57(8), 796–807 (2009)

    Article  Google Scholar 

  19. Nagarajan, U., Goswami, A.: Generalized direction changing fall control of humanoid robots among multiple objects. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3316–3322, May 2010

    Google Scholar 

  20. Kalyanakrishnan, S., Goswami, A.: Learning to predict humanoid fall. Int. J. Humanoid Robotics 8(02), 245–273 (2011)

    Article  Google Scholar 

  21. Hofmann, M., Schwarz, I., Urbann, O., Ziegler, F.: A Fall Prediction System for Humanoid Robots Using a Multi-Layer Perceptron

    Google Scholar 

  22. Kim, J.J., Choi, T.Y., Lee, J.J.: Falling avoidance of biped robot using state classification. In: IEEE International Conference on Mechatronics and Automation, ICMA 2008, pp. 72–76, August 2008

    Google Scholar 

  23. Yun, S.K., Goswami, A.: Tripod fall: concept and experiments of a novel approach to humanoid robot fall damage reduction. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2799–2805, May 2014

    Google Scholar 

  24. Samy, V., Kheddar, A.: Falls control using posture reshaping and active compliance. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 908–913, November 2015

    Google Scholar 

  25. Ha, S., Liu, C.K.: Multiple contact planning for minimizing damage of humanoid falls. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2761–2767, September 2015

    Google Scholar 

  26. Khusainov, R., Afanasyev, I., Sabirova, L., Magid, E.: Bipedal robot locomotion modelling with virtual height inverted pendulum and preview control approaches in Simulink environment. J. Robotics Netw. Artif. Life 3(3), 182–187 (2016)

    Article  Google Scholar 

  27. Wright, J., Jordanov, I.: Intelligent approaches in locomotion. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, June 2012

    Google Scholar 

  28. Hurmuzlu, Y., Génot, F., Brogliato, B.: Modeling, stability and control of biped robots—a general framework. Automatica 40(10), 1647–1664 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Asano, F., Luo, Z.W.: Energy-efficient and high-speed dynamic biped locomotion based on principle of parametric excitation. IEEE Trans. Robotics 24(6), 1289–1301 (2008)

    Article  Google Scholar 

  30. Park, G.-M., Baek, S.-H., Kim, J.-H.: Falling prevention system from external disturbances for humanoid robots. In: Kim, J.-H., Yang, W., Jo, J., Sincak, P., Myung, H. (eds.) Robot Intelligence Technology and Applications 3. AISC, vol. 345, pp. 97–105. Springer, Cham (2015). doi:10.1007/978-3-319-16841-8_10

    Google Scholar 

  31. Khusainov, R., Shimchik, I., Afanasyev, I., Magid, E.: 3D modelling of biped robot locomotion with walking primitives approach in Simulink environment. In: Filipe, J., Madani, K., Gusikhin, O., Sasiadek, J. (eds.) Informatics in Control, Automation and Robotics 12th International Conference, ICINCO 2015 Colmar, France, July 21-23, 2015 Revised Selected Papers. LNEE, vol. 383, pp. 287–304. Springer, Cham (2016). doi:10.1007/978-3-319-31898-1_16

    Google Scholar 

Download references

Acknowledgments

Part of the work was performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Sagitov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Magid, E., Sagitov, A. (2018). Towards Robot Fall Detection and Management for Russian Humanoid AR-601. In: Jezic, G., Kusek, M., Chen-Burger, YH., Howlett, R., Jain, L. (eds) Agent and Multi-Agent Systems: Technology and Applications. KES-AMSTA 2017. Smart Innovation, Systems and Technologies, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-59394-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59394-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59393-7

  • Online ISBN: 978-3-319-59394-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics