Skip to main content

Random Forest Based Left Ventricle Segmentation in LGE-MRI

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10263))

Abstract

The leading cause of death worldwide is ischaemic heart disease. Late gadolinium enhanced magnetic resonance imaging (LGE-MRI) is the clinical gold standard to visualize regions of myocardial scarring. However, the challenge arises in the segmentation of the myocardial border, as the transition of scar tissue and blood pool can be very smooth, because the contrast agent accumulates in the damaged tissue and leads to various enhancements. In this work, a random forest based boundary detection approach is combined with a scar exclusion criterion. The final endocardial and epicardial border is found with the help of dynamic programming, which finds the distance weighted minimum through the boundary cost array. The segmentation method is evaluated using a 5-fold cross validation on 100 clinical LGE-MRI data sets. The Dice coefficient resulted in an overlap of 0.83 for the endocardium as well as for the epicardium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mendis, S.: Global Status Report on Noncommunicable Diseases 2014. World Health Organization, Geneva (2014)

    Google Scholar 

  2. Petitjean, C., Dacher, J.N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)

    Article  Google Scholar 

  3. Suinesiaputra, A., Cowan, B.R., Al-Agamy, A.O., Elattar, M.A., Ayache, N., Fahmy, A.S., et al.: A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images. Med. Image Anal. 18(1), 50–62 (2014)

    Article  Google Scholar 

  4. Rashid, S., Rapacchi, S., Shivkumar, K., Plotnik, A., Finn, P., Hu, P.: Modified wideband 3D late gadolinium enhancement (LGE) MRI for patients with implantable cardiac devices. J. Cardiovasc. Magn. Reson. 17(Suppl 1), Q26 (2015)

    Article  Google Scholar 

  5. Kellman, P., Arai, A.: Cardiac imaging techniques for physicians: late enhancement. J. Magn. Reson. Imaging 36(3), 529–542 (2012)

    Article  Google Scholar 

  6. Ciofolo, C., Fradkin, M., Mory, B., Hautvast, G., Breeuwer, M.: Automatic myocardium segmentation in late-enhancement MRI. In: 2008 Proceedings of the 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2008, pp. 225–228. IEEE (2008)

    Google Scholar 

  7. Dikici, E., O’Donnell, T., Setser, R., White, R.D.: Quantification of delayed enhancement MR images. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 250–257. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30135-6_31

    Chapter  Google Scholar 

  8. Wei, D., Sun, Y., Chai, P., Low, A., Ong, S.H.: Myocardial segmentation of late gadolinium enhanced MR images by propagation of contours from cine MR images. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 428–435. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23626-6_53

    Chapter  Google Scholar 

  9. Tao, Q., Piers, S., Lamb, H., van der Geest, R.: Automated left ventricle segmentation in late gadolinium-enhanced MRI for objective myocardial scar assessment. J. Magn. Reson. Imaging 42(2), 390–399 (2015)

    Article  Google Scholar 

  10. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  11. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  MATH  Google Scholar 

  12. Lang, R.M., Bierig, M., Devereux, R.B., Flachskampf, F.A., Foster, E., Pellikka, P.A., et al.: Recommendations for chamber quantification. Eur. Heart J. Cardiovasc. Imaging 7(2), 79–108 (2006)

    Google Scholar 

  13. Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1979)

    Google Scholar 

  14. Marquez-Neila, P., Baumela, L., Alvarez, L.: A morphological approach to curvature-based evolution of curves and surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 2–17 (2014)

    Article  Google Scholar 

  15. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Med. Imaging 27(11), 1668–1681 (2008)

    Article  Google Scholar 

  16. Qian, X., Lin, Y., Zhao, Y., Wang, J., Liu, J., Zhuang, X.: Segmentation of myocardium from cardiac MR images using a novel dynamic programming based segmentation method. Med. Phys. 42(3), 1424–1435 (2015)

    Article  Google Scholar 

  17. Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3D surface construction algorithm. In: ACM Siggraph Computer Graphics, vol. 21, pp. 163–169. ACM (1987)

    Google Scholar 

  19. Wolf, I., Vetter, M., Wegner, I., Böttger, T., Nolden, M., Schöbinger, M., et al.: The medical imaging interaction toolkit. Med. Image Anal. 9(6), 594–604 (2005)

    Article  Google Scholar 

  20. Albà, X., i Ventura, F., Rosa, M., Lekadir, K., Tobon-Gomez, C., Hoogendoorn, C., et al.: Automatic cardiac LV segmentation in MRI using modified graph cuts with smoothness and interslice constraints. Magn. Reson. Med. 72(6), 1775–1784 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Kurzendorfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kurzendorfer, T., Forman, C., Brost, A., Maier, A. (2017). Random Forest Based Left Ventricle Segmentation in LGE-MRI. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics