Skip to main content

Hand-Designed Local Image Descriptors vs. Off-the-Shelf CNN-Based Features for Texture Classification: An Experimental Comparison

  • Conference paper
  • First Online:

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 76))

Abstract

Convolutional Neural Networks have proved extremely successful in object classification applications; however, their suitability for texture analysis largely remains to be established. We investigate the use of pre-trained CNNs as texture descriptors by tapping the output of the last fully connected layer, an approach that has proved its effectiveness in other domains. Comparison with classical descriptors based on signal processing or statistics over a range of standard databases suggests that CNNs may be more effective where the intra-class variability is large. Conversely, classical approaches may be preferable where classes are well defined and homogeneous.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Source: Scopus®; visited on Januray 18, 2017.

References

  1. Andrearczyk, V., Whelan, P.F.: Using filter banks in convolutional neural networks for texture classification. Pattern Recogn. Lett. 84, 63–69 (2016)

    Article  Google Scholar 

  2. Bianconi, F., Bello, R., Fernández, A., González, E.: On comparing colour spaces from a performance perspective: application to automated classification of polished natural stones. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) New Trends in Image Analysis and Processing, ICIAP 2015 Workshops, Genoa, Italy. LNCS, vol. 9281, pp. 71–78. Springer (2015)

    Google Scholar 

  3. Bianconi, F., Fernández, A.: Evaluation of the effects of Gabor filter parameters on texture classification. Pattern Recogn. 40(12), 3325–3335 (2007)

    Article  MATH  Google Scholar 

  4. Bianconi, F., Fernández, A.: Rotation invariant co-occurrence features based on digital circles and discrete Fourier transform. Pattern Recogn. Lett. 48, 34–41 (2014)

    Article  Google Scholar 

  5. Bianconi, F., Fernández, A.: A unifying framework for LBP and related methods. In: Brahnam, S., Jain, L.C., Nanni, L., Lumini, A. (eds.) Local Binary Patterns: New Variants and Applications. Studies in computational intelligence, vol. 506, pp. 17–46. Springer (2014)

    Google Scholar 

  6. Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. II, pp. 1597–1604 (2005)

    Google Scholar 

  7. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: Proceedings of the British Machine Vision Conference 2014, Nottingham, United Kingdom, September 2014

    Google Scholar 

  8. Cimpoi, M., Maji, S., Vedaldi, A.: Deep filter banks for texture recognition and segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, USA, pp. 3828–3836, June 2015

    Google Scholar 

  9. Clarke, A.D.F., Halley, F., Newell, A.J., Griffin, L.D., Chantler, M.J.: Perceptual similarity: a texture challenge. In: Proceedings of the British Machine Vision Conference 2011, Dundee, UK, August–September 2011

    Google Scholar 

  10. Cusano, C., Napoletano, P., Schettini, R.: Combining multiple features for color texture classification. J. Electron. Imaging 25(6) (2016)

    Google Scholar 

  11. Cusano, C., Napoletano, P., Schettini, R.: Evaluating color texture descriptors under large variations of controlled lighting conditions. J. Opt. Soc. Am. A 33(1), 17–30 (2016)

    Article  Google Scholar 

  12. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  13. Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the significance of real-world conditions for material classification. In: Proceedings of the 8th European Conference on Computer Vision (ECCV 2004), Prague, Czech Republic. LNCS, vol. 3024, pp. 253–266. Springer, May 2004

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe, USA, vol. 2, pp. 1097–1105 (2012)

    Google Scholar 

  15. The KTH-TIPS and KTH-TIPS2 image databases (2004). http://www.nada.kth.se/cvap/databases/kth-tips/. Last Accessed 17 Oct 2016

  16. Kylberg, G.: The Kylberg texture dataset v. 1.0. External report (Blue series) 35, Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, Uppsala, Sweden, September 2011

    Google Scholar 

  17. Kylberg, G., Sintorn, I.-M.: On the influence of interpolation method on rotation invariance in texture recognition. EURASIP J. Image Video Process. 2016(1) (2016)

    Google Scholar 

  18. Kylberg Sintorn Rotation dataset (2013). http://www.cb.uu.se/~gustaf/KylbergSintornRotation/. Last Accessed 17 Oct 2016

  19. Liu, L., Fieguth, P., Wang, X., Pietikäinen, M., Hu, D.: Evaluation of LBP and Deep Texture Descriptors with a New Robustness Benchmark. In: Proceedings of the 14th European Conference on Computer Vision (ECCV 2016). LNCS, Amsterdam, The Netherlands, vol. 9907, pp. 69–86. Springer (2016)

    Google Scholar 

  20. MatConvNet: CNNs for MATLAB (2016). http://www.vlfeat.org/matconvnet/. Last Accessed 25 Oct 2016

  21. MondialMarmi: A collection of images of polished natural stones for colour and texture analysis. version 2.0 (2015). http://dismac.dii.unipg.it/mm. Last Accessed 17 Oct 2016

  22. Ojala, T., Pietikäinen, M., Mäenpää, T., Viertola, J., Kyllönen, J., Huovinen, S.: Outex - new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR 2002), Quebec, Canada, vol. 1, pp. 701–706. IEEE Computer Society (2002)

    Google Scholar 

  23. Parkhi, O.M., Vedaldi, A., Zissermann, A.: Deep face recognition. In: Proceedings of the British Machine Vision Conference 2015, Swansea, United Kingdom, September 2015

    Google Scholar 

  24. Pertex database (2011). http://www.macs.hw.ac.uk/texturelab/resources/databases/pertex/. Last Accessed 17 Oct 2016

  25. RawFooT, D.B.: Raw food texture database (2015). http://projects.ivl.disco.unimib.it/rawfoot/. Last Accessed 17 Oct 2016

  26. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Columbus, USA, pp. 512–519, June 2014

    Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)

    Google Scholar 

  28. Vedaldi, A., Lenc, K.: MatConvNet: convolutional neural networks for MATLAB. In: MM 2015 - Proceedings of the 2015 ACM Multimedia Conference, Brisbane, Australia, pp. 689–692, October 2015

    Google Scholar 

  29. Xie, X., Mirmehdi, M.: A galaxy of texture features. In: Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of Texture Analysis, pp. 375–406. Imperial College Press (2008)

    Google Scholar 

  30. Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. Int. J. Comput. Vision 73(2), 213–238 (2007)

    Article  Google Scholar 

  31. Zhong, Y., Sullivan, J., Li, H.: Face attribute prediction using off-the-shelf CNN features. In Proocedings of the 2016 International Conference on Biometrics, ICB 2016, Halmstad, Sweden, 6 2016

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Department of Engineering at the Università degli Studi di Perugia, Italy, under project BioMeTron – Fundamental research grant D.D. 20/2015 and by the Spanish Government under project AGL2014-56017-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Bello-Cerezo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bello-Cerezo, R., Bianconi, F., Cascianelli, S., Fravolini, M.L., di Maria, F., Smeraldi, F. (2018). Hand-Designed Local Image Descriptors vs. Off-the-Shelf CNN-Based Features for Texture Classification: An Experimental Comparison. In: De Pietro, G., Gallo, L., Howlett, R., Jain, L. (eds) Intelligent Interactive Multimedia Systems and Services 2017. KES-IIMSS-18 2018. Smart Innovation, Systems and Technologies, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-59480-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59480-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59479-8

  • Online ISBN: 978-3-319-59480-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics