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Abstract. It is well known that remote sensed scenes could be affected
by many factors and, for optimum change detection, these unwanted
effects must be removed. In this study a new algorithm is proposed
for PIF (Pseudo Invariant Features) extraction and relative radiomet-
ric normalization. The new algorithm can be labeled as a supervised one
and combines three methods for the detection of PIFs: Moment distance
index (MDI), Normalized Difference Vegetation Index (NDVI) masks
morphological erosion and dilate operators. In order to prove its effec-
tiveness, the algorithm was tested by using Landsat 8 scenes of the “Mar
de Plstico” landscape of the Andalusian Almeŕıa. Many tests were per-
formed in order to provide a set of valid input parameters for the chosen
environments. Lastly, the results were statistically assessed with para-
metric and non-parametric tests showing very good and stable results in
the four different study areas.

Keywords: Relative radiometric normalization · PIF · Multispectral
imagery · Landsat 8 · Change detection

1 Introduction

In the last decades, satellite image analysis has provided invaluable data for
environment monitoring and change detection (CD) analysis [1–3]. However,
remote sensing observations are instantaneous and affected by many factors (e.g.
such as atmospheric conditions) [4]. These unwanted effects must be removed for
radiometric consistency among temporal images. To detect measurable landscape
changes, it is necessary to carry out a radiometric correction. Two approaches
to radiometric correction are possible: absolute and relative radiometric normal-
ization (RRN) [5]. In absolute radiometric correction, atmospheric radiative-
transfer codes (e.g. 6Sv, MODTRAN) are used to obtain the reflectance at the
Earth’s surface from the measured spectral radiances. These techniques depend
on in situ data and sensor. Consequently, for most historically remote scenes,
absolute surface reflectance retrieval may not always be practical [4].
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An alternative to absolute radiometric correction is relative correction, which
is commonly used in one of two ways; adjusting bands of data within a single
image and normalizing bands in images of multiple dates relative to a Reference
(R) image [6]. Relative methods are applied at least on two scenes, the reference
and one or more target (T) (e.g. the Dark-object subtraction (DOS) [7] and the
histogram matching (HM) [8]). Many researchers opt for a linear radiometric
normalization method for multi temporal analysis (e.g. [9]). The common form
for linear radiometric image normalization is Eq. 1

Y N
k = gk × Xk + ok (1)

Here Xk is the reflectance from the kth band of the target scene X, Y N
k is

the normalized reflectance of the kth band of the reference scene Y , gk and ok

are respectively the evaluated gain and offset implemented for the kth band of
the target scene. Several methods have been proposed for the radiometric nor-
malization with linear regression of multitemporal images (e.g. [9,10]). The first
attempts were based on simple regression considering all pixels of multitemporal
images [6,11]. Subsequently, normalization was performed considering landscape
elements with reflectance values that are nearly constant over time. These areas
belong to the so called pseudo-invariant features (PIF) [12,13].

This paper shows a new PIF selecting algorithm combining Moment Dis-
tance Index (MDI) [14,15] thresholding, Normalized Difference Vegetation Index
(NDVI) masks and morphological erosion and dilation operators. The pro-
posed method was called Threshold Relative Radiometric Correction Algorithm
(TRRCA) and was designed in a Python 2.7 environment. The algorithm was
tested in the Mar de Plástico landscape of Almeŕıa (Spain) in which were defined
a set of optimal input parameters to statistically assess the TRRCA results. To
the author’s knowledge this is the first method that takes into account both
the MDI and morphological operators (typically implemented in image filtering
problems, e.g. [16,17]).

2 Study Area and Data

The test area falls in the so-called “Sea of Plastic” (Mar de Plástico in Span-
ish), in the province of Almeŕıa (Southern Spain Fig. 1). The main economic
activity is agriculture under plastic covered greenhouses [15] that implements
different typologies of plastic materials to cover greenhouse structures. The cli-
mate is semi-arid and plastic covered greenhouses are coupled with the use of
groundwater [18] as often happens in other semi-arid Mediterranean regions

Table 1. Reference (R) and Target (T) scenes used in this study.

Acquisition date Scene ID Subset

13 July 2014 LC82000342014194LGN00 R-S

30 June 2016 LC82000342015181LGN00 T-S
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(e.g. [19,20]). The “Sea of Plastic” test area was chosen to test the TRRCA
with homogenous artificial areas (high number of common artificial reflectors)
with two Landsat 8 scenes (Table 1).

Fig. 1. Reference-Spanish (R-S) and Target-Spanish (T-S) scenes used in this study.
Coordinate System UTM WGS 84 zone 30N.

Landsat 8 satellite takes images covering the entire Earth every 16 days and
carries a two-sensor payload, the Operational Land Imager (OLI) and the Ther-
mal Infrared Sensor (TIRS). The OLI and TIRS spectral bands remain broadly
comparable to the Landsat 7 Enhanced Thematic Mapper plus (ETM+) bands.
Further details on OLI and TIRS band specification (e.g. data format, level of
processing, etc.) can be found in [21]. The OLI digital numbers of the eight
Landsat 8 images were linearly converted to sensor Top of Atmosphere (TOA)
reflectance and then corrected for the sun angle using gains, offsets and local
sun elevation values stored in each scene metadata (as defined in the Landsat
8 (L8) Data User Handbook). The integrity of the subsets extracted from the
two scenes was checked through the Landsat 8 Quality Assessment (QA) Band
and the L-LDOPE Toolbelt, a no-cost tool available from the USGS Landsat-8
website [22].

3 Method

The PIF selection algorithm combines the extraction of dark (local minimum)
and bright (local maximum) targets through morphological operators (Mmorph),
NDVI masks (MNDV I) and MDI measures (MMDI). Only the pixels positive to
all the imposed conditions are selected as PIF (Eq. 2). The method was not
designed to deal with the panchromatic, the cirrus and the two TIRS bands.

PIF = Mmorph ∩ MNDV I ∩ MMDI (2)
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According to [23], if the selected scenes own common local maximum and
minimum values within specific bands, then the considered locations can be
considered as candidate PIF. In this paper, the blue band was used to locate local
minimum (often corresponding to water bodies) while bare soil or man-made
objects were located through the red band. They were respectively found by
using the morphological erosion and dilation. The erosion (dilation) of a digital
greyscale image A by a flat structuring element S (at any location) is defined as
the minimum (maximum) value of the image within the region coincident with
S [8,24]. In the subsequent equations, S is defined by a square n × n matrix
with all elements equal to 1. The influence of the structuring element size over
the achieved PIF extraction was tested considering seven n in the closed interval
[3; 15] with n ∈ 2N + 1. Bright and dark PIF were found by means of Eqs. 3
and 4, considering the morphological dilation (⊕ for Mmax) and erosion (� for
Mmin) common outputs for the considered bands.

Mmax = [(BandR
4 ⊕ S) ∩ BandR

4 ] ∩ [(BandT
4 ⊕ S) ∩ BandT

4 ] (3)

Mmin = [(BandR
2 � S) ∩ BandR

2 ] ∩ [(BandT
2 � S) ∩ BandT

2 ] (4)

Mmorph = Mmax ∪ Mmin (5)

Pixels selected through Eqs. 3 and 4 were used to create the Mmorph mask
(Eq. 5). PIF selected through Eq. 5 could fall within vegetated areas. Moreover,
they could not be invariant pixel for other bands. To increase the quality of
the selected PIF, the TRRCA introduces a vegetation mask derived from the
very well-known NDVI [25] computed from both R and T scenes. The selec-
tion of these areas was achieved fixing three NDVI thresholds (NDV Imax >
NDV Imid > NDV Imin) by creating a further NDVI mask with Eq. 6.

MNDV I = {[(NDV IR < NDV Imax) ∩ (NDV IT < NDV Imax)] ∩
[(NDV IR > NDV Imid) ∩ (NDV IT > NDV Imid)]} ∪

[(NDV IR < NDV Imin) ∩ (NDV IT < NDV Imin)]
(6)

To test the influence of these thresholds the following interval of values were
tested with a step of 0.05: 0.00 ≤ NDV Imax < 0.26; −0.10 ≤ NDV Imid < 0.16;
−0.60 ≤ NDV Imin < −0.096.

In addition to the aforementioned masks, the TRRCA takes advantage of the
MDI. To the best knowledge of the authors, it is the first time that MDI is tested
in RRN problems. The MDI is designed to describe the distribution of reflectance
values associated with a pixel by calculating the moment distances among the
bands (further details can be found in [14]): for this reason, its contribution was
added in the proposed algorithm. Computationally, the MDI is calculated, for
each pixel of the reference and target subset, from the difference (Eq. 7) of the
moment distance (MD) between a right and a left pivot (λRP and λLP expressed
in μm).
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A New Threshold Relative Radiometric Correction Algorithm 5

MDI =
λRP∑

i=λLP

√
[ρ2 + (i − λLP )2] −

λLP∑

i=λRP

√
[ρ2 + (λLP − i)2] (7)

Where ρ is the reflectance for the band centred on the ith wavelength. Only
the pixels in which the absolute value of the difference between the two MDI
(Eq. 8) is less than a specific threshold (l) were considered as potentials PIF.

MMDI = |MDIR − MDIT | < l → MDIdiff < l (8)

Several values of l within the semi-opened interval [0.01; 0.31[, with a step
of 0.03, were tested. Considering the implemented values, a MDIdiff = 0.30
corresponds to 9 − 12% of difference between MDIR and MDIT .

Lastly, the radiometric normalization coefficients were evaluated for each
band by means of the Orthogonal Distance Regression (ODR) algorithm imple-
mented in the ODRPACK library (further details on the solution implemented
can be found in [26]). The ODR algorithm outputs are the gains and the off-
sets for each band (as shown in Eq. 1), the root mean square error (RMSE),
the correlation coefficient (r) and the coefficient of determination (R2) between
PIF belonging to the R and the T scenes. Almost twenty thousand combinations
were performed considering the selected parameter S, l, NDV Imax, NDV Immid,
NDV Imin. Only tests characterized by an elevated number of retrieved PIF,
with high R-T band by band ODR R2 and low ODR RMSE were selected as
potentials High Quality PIF (HQ-PIF) extractions. Particularly, the above PIF
extractions were considered HQ-PIF only if the two-sample t test (for equal sam-
ple means), the two-sample F test (for equal sample variances) and two-sample
Wilcoxon rank sum test (for equal sample medinas) between reference PIF and
corrected target PIF were contemporary satisfied at 5% confidence level.

4 Results and Discussion

Table 2 summarizes the results for the tested parameters related to HQ-PIF
extractions. The computations executed for the study area showed 1503 HQ-PIF
extraction with a mean number of PIF equal to 984 pixels. This result shows
the sensitivity of the proposed algorithm to the abundance of natural/artificial
reflectors.

All the tested NDV Imid and NDV Imin values are present in HQ-PIF extrac-
tions. NDV Imid and l are the parameters that exhibit the major variability.
Probably, this occurs since the test area is less sensitive to these parameters.
Indeed, the effect on NDVI is masked by the presence of plastic coverings above
the vegetation. For the NDV Imax the peak of frequency is equivalent to the
maximum value tested. This shows that the MNDV I performs as a coarse PIF
filter for a subsequent and improved PIF selection through MMDI and Mmorph.
The same occurs for the l parameter which great variability depicts the spectral
difference form the R and the T scenes. Lastly, the tests demonstrated that lower
Kernels sizes (S) are coupled with a greater number of extracted PIF (Fig. 2).
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Table 2. Statistical parameters of the of the implemented TRRCA parameters and of
the number of HQ-PIF extractions..

S l NDV Imax NDV Imid NDV Imin Npif

Min 3 0.01 0.10 −0.10 −0.60 491

Max 13 0.28 0.25 0.15 −0.10 4203

Mode 5 0.04 0.25 0.10 −0.60 599

Median 7 0.10 0.20 0.10 −0.35 774

Dev. stand 3 0.08 0.04 0.07 0.16 532

Mean 7 0.11 0.21 0.08 −0.35 984

Fig. 2. Scatter plot Kernel - number of PIF.

This was also an expected result since morphological operators consider the
local minimum and local maximum over the Kernel area. Because of this, the
probability to find a corresponding singular value over the same Kernel areas is
higher in smaller areas than in greater ones.

Since the proposed algorithm is dependent from user driven parameters the
results showed in Table 2 have been used to select one single test combination.
The combination was randomically extracted from the test parameters charac-
terized by a high frequency of occurrence and removing the restriction adopted
during the test phase to save computation time (i.e. the step). Table 3 shows the
selected parameters and the related number of PIF.

Table 3. Implemented thresholds and kernel size.

S l NDV Imax NDV Imid NDV Imin Npif

7 0.03 0.221 0.100 −0.503 893
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Figure 3 compares the RGB visualizations of a magnified area of R and cor-
rected T with overlapped TRRCA HQ-PIF. In the test area, the major part
of the PIF falls within artificial pools, bare soil, built-up areas and highways.
Although the large amount of plastic covered greenhouses, PIF do not fall within
them. Indeed, greenhouses are generally covered by plastic sheets characterized
by different spectral signatures over time. This is mainly due to their different
spectral properties, thickness and local agricultural practices [27,28].

Fig. 3. Comparison of RGB visualizations of Reference (R) image (on the left) and
corrected Target (T) image (on the right) with overlapped PIF: Coordinate System
UTM WGS 84 zone 30N

Table 4 compares the achieved gains, offsets, correlation coefficient (r),
RMSE, two-sample t test, two-sample F test and two-sample Wilcoxon rank
sum test results achieved for the selected parameters before (Pre) and after
(Post) the correction. The table shows that the TRRCA was able to find PIF
with a strong linear agreement in each test area. For each computed gains the
significance of the linear relationship was tested against the null hypothesis of
absence of slope. All tests strongly rejected the null hypothesis. It is thus possible
to conclude that the method produces a feasible linear regression model.

Considering the evaluated r and RMSE, Table 4 always shows high quality
and stable results (small variance). After the application of the correction all the
performed tests failed to reject the null hypothesis. Moreover, p-values indicate
that all the null hypothesis would be accepted by using a level of confidence
far beyond the default one. Considering each typology of test, this respectively
indicates a strong statistical similarity between the variance, the means and
medians of the reflectance values of test PIF extracted from the reference and
corresponding normalized reflectance values of PIF extracted from the target.
This was an expected result since the definition of HQ-PIF imposes the respect
of all statistical tests. The effects of the corrections were bigger on the median
of the distributions of the selected PIF. This is demonstrated by the pre/post
Wilcoxon rank sum test.
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Table 4. Evaluated band-by-band gain, offset, correlation r and RMSE; F p-value, t
p-value, W p-value are p-values for the two sample F test, two sample t test and the
Wilcoxon rank sum test. The result h = 1 indicates a rejection of the null hypothesis,
and h = 0 indicates a failure to reject the null hypothe-sis at the 5% significance level.

Band gain offset r RMSE F p F h t p t h W p W h

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

1 1.076 −0.006 0.96 0.01 0.0 0.9 1 0 0.0 1.0 1 0 0.0 0.8 1 0

2 1.063 −0.006 0.97 0.01 0.1 1.0 0 0 0.0 1.0 1 0 0.0 0.7 1 0

3 1.081 −0.013 0.96 0.01 0.0 0.9 1 0 0.7 1.0 0 0 0.0 0.3 1 0

4 1.116 −0.023 0.96 0.01 0.0 0.9 1 0 0.8 1.0 0 0 0.0 0.4 1 0

5 1.190 −0.051 0.95 0.02 0.0 0.8 1 0 0.7 1.0 0 0 0.7 0.5 0 0

6 1.272 −0.066 0.96 0.02 0.0 0.8 1 0 0.0 1.0 1 0 0.0 0.7 1 0

7 1.255 −0.045 0.96 0.02 0.0 0.8 1 0 0.0 1.0 1 0 0.0 0.5 1 0

5 Conclusions

This paper shows a new PIF selecting algorithm combining spectral momentum
measures, NDVI masks and extraction of local maximum and minimum through
morphological operators. The method was tested with Landsat-8 images but its
design is suitable for other passive sensors with a similar spectral resolution (e.g.
Sentinel-2). Due to its dependence by user driven thresholds, many combinations
were tested in the selected test area characterized by the presence of an extreme
anthropic impact. All the tests performed were driven to obtain the distribution
of thresholds able to perform a good relative radiometric normalization. To show
the capabilities of the method was randomically selected a set of parameters. In
this case, the proposed algorithm recognized a great number of PIF and per-
formed a correction on the selected PIF able to eliminate statistical differences
between reference PIF and corrected target PIF. The results confirm the effec-
tiveness of the method as new relative radiometric normalization technique and
as a valid alternative to established methods from scientific literature. Future
development will be focused on the improvement of the quality of selected PIF,
on the analysis of a greater spectral range and in an improved reduction of user
driven parameter.
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Geoinformation 52, 403–411 (2016)

28. Novelli, A., Tarantino, E.: Combining ad hoc spectral indices based on LANDSAT-8
OLI/TIRS sensor data for the detection of plastic cover vineyard. Remote Sens.
Lett. 6(12), 933–941 (2015)

A
u

th
o

r 
P

ro
o

f


