
Aligning Modeled and Observed Behavior:
A Compromise Between Complexity and Quality

Boudewijn van Dongen1, Josep Carmona2, Thomas Chatain3, and Farbod Taymouri2

1 Eindhoven University of Technology, The Netherlands
b.f.v.dongen@tue.nl

2 Universitat Politècnica de Catalunya, Barcelona (Spain)
{jcarmona,taymouri}@cs.upc.edu

3 LSV, ENS Cachan, CNRS, INRIA, Université Paris-Saclay, Cachan (France)
chatain@lsv.ens-cachan.fr

Abstract. Certifying that a process model is aligned with the real process execu-
tions is perhaps the most desired feature a process model may have: aligned pro-
cess models are crucial for organizations, since strategic decisions can be made
easier on models instead of on plain data. In spite of its importance, the current
algorithmic support for computing alignments is limited: either techniques that
explicitly explore the model behavior (which may be worst-case exponential with
respect to the model size), or heuristic approaches that cannot guarantee a solu-
tion, are the only alternatives. In this paper we propose a solution that sits right
in the middle in the complexity spectrum of alignment techniques; it can always
guarantee a solution, whose quality depends on the exploration depth used and
local decisions taken at each step. We use linear algebraic techniques in combina-
tion with an iterative search which focuses on progressing towards a solution. The
experiments show a clear reduction in the time required for reaching a solution,
without sacrificing significantly the quality of the alignment obtained.

1 Introduction

The current trend to store all kinds of digital data has made organizations to become
more than ever data-oriented, thus dependent on the available techniques to extract
value from the data. Process mining is an emerging field which focuses on analyzing
the data corresponding to process executions, with the purpose of extracting, analyzing
and enhancing evidence-based process models [1]. The application of process mining
techniques is magnified in the field of Business Process Management, where in the last
couple of years we have seen important vendors incorporating process mining capabil-
ities to their products4.

One of the current challenges for process mining techniques is the computation of an
alignment of a process model with respect to observed behavior [2]. Intuitively, given
a trace representing a real process execution, an optimal alignment provides the best
trace the process model can provide to mimic the observed behavior. Then observed and

4 http://go.sap.com/product/technology-platform/process-mining.
html
http://www.signavio.com/news/launch-process-mining-solution/

Dongen, B. [et al.]. Aligning modeled and observed behavior: A compromise between computation complexity and quality. A:
International Conference on Advanced Information Systems Engineering. "Advanced Information Systems Engineering, 29th
International Conference, CAiSE 2017: Essen, Germany, June 12-16, 2017: proceedings". Berlín: Springer, 2017, p. 94-109.
The final authenticated version is available online at https://doi.org/10.1007/978-3-319-59536-8_7

model traces are rendered in a two-row matrix denoting the synchronous/asynchronous
moves between individual activities of model and log, respectively. Alignments are ex-
tremely important in the context of process mining, since they open the door to evaluate
the metrics that asses the quality of a process model to represent observed behavior: fit-
ness and generalization [2] and precision [3]. Additionally, alignments are a necessary
step to enhance the information provided in a process model [1].

The current algorithmic support to compute alignments is either too complex [2] or
heuristic [4]. The former is defined as a search for a minimal path on the product of
the state space of the process model and the observed behavior, an object that is worst-
case exponential with respect to the size of the model. This hampers the application of
the techniques from [2] in case of medium/large instances. In contrast, the techniques
in [4] are very efficient both in time and memory requirements, but cannot guarantee a
solution always.

This paper presents an algorithm for computing alignments whose nature is in be-
tween the two aforementioned techniques. As in [4], we ground the technique on the
resolution of Integer Linear Programming (ILP) models that guide the search for solu-
tions while constructing the derived alignment. However, the techniques of this paper
ensure the derivation of an alignment by requiring the feasibility of individual steps
computed, in contrast to the recursive approach applied in [4]. As in [2], the algorithm is
defined on the synchronous product between the observed trace and the process model,
and we use part of the ILP model (the tail of the solutions obtained at each step) as
an underestimate of the cost to reach a solution. The approach is implemented in the
open-source platform ProM, and experiments are provided which witness the distinc-
tive capabilities of the proposed approach with respect to the state-of-the-art technique
to compute alignments.

1.1 Related Work

The seminal work in [2] proposed the notion of alignment, and developed a technique
to compute optimal alignments for a particular class of process models. For each trace σ
in the log, the approach consists on exploring the synchronous product of model’s state
space and σ. In the exploration, the shortest path is computed using the A∗ algorithm,
once costs for model and log moves are defined. The approach is implemented in ProM,
and can be considered as the state-of-the-art technique for computing alignments. Sev-
eral optimizations have been proposed to the basic approach: for instance, the use of
ILP techniques on each visited state to prune the search space [2]. In contrast to [2], the
technique presented in [4] fully resorts in the resolution of ILP models together with a
recursive partitioning of the input trace. This technique computes approximate align-
ments, a novel class of alignments where deviations can be explained between sets of
transitions, instead of singletons as in [2]. The techniques in [4] can be a good alterna-
tive when a precise information is not required and instead an approximation suffices.

Decompositional techniques have been presented [5,6] that instead of computing
alignments, they focus on the decisional problem of whereas a given trace fits or not
a process model. The underlying idea is to split the model into a particular set of
transition-bordered fragments which satisfy certain conditions, and local alignments
can be computed for each one of the fragments, thus providing a upper bound on the

cost of an alignment. In contrast, the technique presented in this paper does not split the
model, hence enabling the computation of alignments at a global (model) level.

2 Preliminaries

2.1 Petri nets

A Petri Net [7] is a 3-tuple N = 〈P, T,F〉, where P is the set of places, T is the set
of transitions, P ∩ T = ∅, F : (P × T) ∪ (T × P)→ {0, 1} is the flow relation. A
marking is an assignment of non-negative integers to places. If k is assigned to place p
by markingm (denotedm(p) = k), we say that p is marked with k tokens. Given a node
x ∈ P ∪T , its pre-set and post-set (in graph adjacency terms) are denoted by •x and x•

respectively. A transition t is enabled in a marking m when all places in •t are marked.
When a transition t is enabled, it can fire by removing a token from each place in •t
and putting a token to each place in t•. A marking m′ is reachable from m if there is a
sequence of firings t1t2 . . . tn that transforms m into m′, denoted by m[t1t2 . . . tn〉m′.
A sequence of transitions t1t2 . . . tn is a feasible sequence if it is firable from the initial
marking m0.

Workflow processes can be represented in a simple way by using Workflow Nets
(WF-nets). A WF-net is a Petri net where there is a place start (denoting the initial
state of the system) with no incoming arcs and a place end (denoting the final state of
the system) with no outgoing arcs, and every other node is within a path between start
and end. The transitions in a WF-net are labeled with tasks or are used for routing
purposes (so-called silent transitions or τ transitions). For the sake of simplicity, the
techniques of this paper assume models are specified with sound labeled WF-nets, i.e.
models without lifelocks and with only a single deadlock indicating that the model’s
execution has terminated.

Definition 1 (Net System, Full Firing Sequences). A net system is a tuple SN =
(N,mstart,mend), where N is a Petri net and the two last elements define the ini-
tial and final marking of the net, respectively. The set {σ | (N,mstart)[σ〉(N,mend)}
denotes all the full firing sequences of SN .

Note that in this paper, we assume that the set of all full firing sequences is not
empty, i.e. the final marking is reachable from the initial marking.

2.2 Petri nets and Linear Algebra

Let N = 〈P, T,F〉 be a Petri net with initial marking m0. Given a feasible sequence
m0

σ→ m, the number of tokens for a place p in m is equal to the tokens of p in m0

plus the tokens added by the input transitions of p in σ minus the tokens removed by
the output transitions of p in σ:

m(p) = m0(p) +
∑
t∈•p
|σ|t F(t, p)−

∑
t∈ p•
|σ|t F(p, t)

The marking equations for all the places in the net can be written in the following
matrix form: m = m0 − N− · σ̂ + N+ · σ̂, where N = N+ −N− ∈ ZP×T is the

incidence matrix of the net: N−(p, t) = F(p, t) corresponds to the consumption of
tokens and N+(p, t) = F(t, p) corresponds to production of tokens. If a marking m is
reachable fromm0, then there exists a sequence σ such thatm0

σ→ m, and the following
system of equations has at least the solution ~x = σ̂

#»m = # »m0 −N− · ~x+N+ · ~x (1)

If (1) is infeasible, then m is not reachable from m0. The inverse does not hold in
general: there are markings satisfying (1) which are not reachable. Those markings (and
the corresponding Parikh vectors) are said to be spurious [8].

For well-structured Petri nets classes equation (1) characterizes reachability. It goes
beyond the scope of this paper to elaborate on the exact classes of models for which
this is the case. However, in this paper, we assume that the models we consider belong
to this class.

2.3 Foundations of Alignments

Definition 2 (Trace, Event Log, Parikh vector). Given an alphabet of events T =
{t1, . . . , tn}, a trace is a word σ ∈ T ∗ that represents a finite sequence of events. An
event log L ∈ B(T ∗) is a multiset of traces5. |σ|a represents the number of occurrences
of a in σ. The Parikh vector of a sequence of events σ is a function̂: T ∗ → Nn defined
as σ̂ = (|σ|t1 , . . . , |σ|tn). For simplicity, we will also represent |σ|ti as σ̂(ti).

The main metric in this paper to asses the adequacy of a model in describing a log
is fitness [1], which is based on the reproducibility of a trace in a model:

Definition 3 (Fitting Trace). A trace σ ∈ T ∗ fits SN = (N,mstart,mend) if σ coin-
cides with a full firing sequence of SN , i.e.,(N,mstart)[σ〉(N,mend).

Hence an optimal alignment may be fitting or not, depending on whether the model
can mimic exactly or not the behavior observed. Computing alignments is a complex
task. In [2] the foundational work was presented to construct alignments by depth-first
search using an A∗ algorithm. The algorithm presented there relies on two fundamental
concepts:

– A synchronous product Petri net, which is a combination of the original model
being aligned and a Petri net representation of the (partially ordered) trace in the
log, and

– The marking equation of that synchronous product.

The core alignment question is formalized as follows: Given a synchronous product
with a penalty function assigning a non-negative penalty to each transition firing, find
a firing sequence from the initial marking to the final marking with the lowest total
penalties.

Consider the example model in Figure 1. This model is a simple parallelism be-
tween transitions B and C after A and before D. Now, consider the trace < C,D >

5 B(A) denotes the set of all multisets of the set A.

Fig. 1. Example model.

Fig. 2. Example trace net.

Fig. 3. Example Synchronous Product.

Fig. 4. An optimal alignment.

translated into a trace net as shown in Figure 2. Obviously, this trace does not fit the
model, as transitions A and B are missing from it. Conceptually, the alignment prob-
lem first constructs a so-called synchronous product which is shown in Figure 3. Here,
the two black transitions are synchronous combinations of equally labeled transitions
in the model and the trace, i.e. they have the same input and output places in both the
model and the trace net. The alignment algorithm then finds the shortest execution se-
quence from the initial state to the final state, where the firing of each transition has
an associated cost. Typically, the black transitions, called synchronous moves have the
lowest cost, while the model transitions, called model moves and the trace net transi-
tions, called log moves, have higher costs. For this example, the cheapest firing sequence
would be < A,C,B,D > as depicted in the upper row (model trace) of the alignment
of Figure 4. For this alignment, the white transitions A and B have been fired as model
moves, and the black transitions C and D have fired as synchronous moves.

The marking equation used for the example synchronous product model in Figure 3
is shown below. Here, the columns corresponding to each transition in the incidence
matrix are labeled with m, s, or l for (m)odel, (s)ynchronous, or (log) move.

mi
p0 1
p1 0
p2 0
p3 0
p4 0
p5 0
p6 1
p7 0
p8 0

−

Am Bm Cm Dm Cs Ds Cl Dl
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0

· ~x +

Am Bm Cm Dm Cs Ds Cl Dl
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

· ~x =

mf
0
0
0
0
0
1
0
0
1

In the remainder of the paper, we consider the synchronous product model as the
starting point and we use the partitioning of the transitions into synchronous moves, log
moves and model moves.

Definition 4 (Alignments, Optimal Alignments). LetN = 〈P, T,F〉 be a synchronous
product Petri net where T = T s ∪ T l ∪ Tm can be partitioned into sets of transi-
tions corresponding to synchronous moves, log moves and model moves respectively
and let (N,m⊥,m>) a corresponding net system. Furthermore let c : T → R+ a
cost function. An alignment is a full firing sequence σa ∈ {σ | (N,m⊥)[σ〉(N,m>)}
of this system. An optimal alignment is an alignment σa such that for all σ ∈ {σ |
(N,m⊥)[σ〉(N,m>)} holds that c(σa) ≤ c(σ).

Traditional algorithms search for alignments using a depth-first search method over
a search graph in which each node represents a partial firing sequence of the system and
each edge the firing of a transition.

Definition 5 (Search space). Let N = 〈P, T,F〉 be a synchronous product Petri net
where T = T s ∪ T l ∪ Tm can be partitioned into sets of transitions corresponding to
synchronous moves, log moves and model moves respectively and let (N,m⊥,m>) a
corresponding net system. Furthermore let c : T → R+ a cost function. The alignment
search space is defined as S = (V,E, c), with V = {m | (N,m⊥)[σ〉(N,m)} and
E ⊆ V × T × V such that (m, t,m′) ∈ E if and only if (N,m)[t〉(N,m′). The root of
the search space is m⊥ ∈ V the initial marking. The target node in the search space is
the final marking m> ∈ V . Note that m> ∈ V since the final marking of a system net
is assumed to be reachable.

Note that, in the general case, the search space is not bounded. There may be in-
finitely many markings reachable from the initial marking and hence in the search space.
Finding an optimal alignment is translated as finding a shortest path from m⊥ to m> in
the search space, where c represents the length of the edges6.

In order to find the shortest path7 in the search space, traditional alignment ap-
proaches use the A∗ algorithm. This algorithm relies on a estimate function that un-
derestimates the remaining costs from the current node to one of the target nodes. The
cost between nodes m and m′ in V can be underestimated by the marking equation (cf.
Section 2.2) in the following way:

Definition 6 (Underestimating the costs). Let S = (V,E, c) be a search space and
mc ∈ V the current marking reached in the graph. We know that if there exists a σ′

such that (N,mc)[σ
′〉(N,m>) then mc +N · σ̂′ = m>.

Therefore, the solution to the linear problem minimize c(ς) such that # »mc +N · ς̂ =
»

m> provides an underestimate for the cost of σ′, i.e. c(ς) ≤ c(σ′).
If no solution exists, the final marking cannot be reached, which implies that part

of the search space is not relevant or in other words a correct underestimate for the
remaining distance is infinite.

6 Since the cost function c does not allow for 0-length, there are no loops of length 0 in the graph.
In the available implementations of the alignment problem, this is hidden from the end-user
when instantiating the cost function, but an ε > 0 is used in the core computation.

7 Note that there may be more than one shortest path. Where we talk about the shortest path, we
mean any shortest path.

This approach to finding alignments has been implemented in ProM and has been
extensively used in many applications. However, there are two problems with this ap-
proach. Firstly, the search space can be very large (although only a finite part needs to
be considered). Typically, the search space size is exponential in the size of the syn-
chronous product model which is the product of the original model and the trace to be
aligned. Secondly, computing estimates is computationally expensive. This can be done
both using Linear Programming and Integer Linear Programming, where the latter pro-
vides more accurate estimates. In practice however, both techniques are equally fast as
the increase in precision when doing Integer computations allows the A∗ algorithm to
visit fewer nodes.

3 ILP Techinques to Compute Alignments

3.1 Computing Optimal Alignments using ILP

In this paper, we take a fundamentally different approach as we incrementally construct
(possibly suboptimal) alignments. We do so, by “jumping” trough the synchronous
product model in a depth-first manner until we reach the final marking. Once the fi-
nal marking is reached, we terminate the search. Effectively, from a given marking, we
fire a total of x transitions such that these x firings are locally optimal with respect to the
cost function c and we reach the next node in the search space, from where we continue
our search. However, before discussing our algorithm, we first consider a method for
computing optimal alignments of a given maximal length using the marking equation.

The marking equation allows us to formalize x transition executions at once by
taking the consumption matrix for each step and the marking equation for all preceding
steps in the following way:

Property 1 (Marking equation for executing x transitions). Let N = 〈P, T,F〉 be a
Petri net, m0,mf two reachable markings of the net and let σ = 〈t0, . . . , tx−1〉 be a
trace such that (N,m0)[σ〉(N,mf). Furthermore, for 0 < i ≤ x, let mi be such that
(N,m0)[〈t0, . . . , ti〉〉(N,mi). Using the marking equation and general properties of
transition firing, we know the following properties hold:

– # »mf = # »m0 −N− · σ̂ +N+ · σ̂ as the sequence σ is executable,

– for 0 < i ≤ x holds that # »mi =
»mi−1−N− · 〈̂ti−1〉+N+ · 〈̂ti−1〉, i.e. the marking

equation holds for each individual transition in the sequence,
– for 0 ≤ i < x holds that # »mi −N− · σ̂0..i +N+ · σ̂0..i−1 ≥ 0, i.e. before firing of

each transition there are sufficient tokens to fire that transition.

The properties above are fundamental properties of Petri nets and the marking equa-
tion. They give rise to a new algorithm to find alignments of a given length.

Definition 7 (Up To Length x Alignment as ILP problem). Let N = 〈P, T,F〉 be a
synchronous product Petri net and let (N,m⊥,m>) a corresponding net system. Fur-
thermore let c : T → R+ a cost function. Let

#»

θ0, . . . ,
»

θx−1 be a set of x vectors of
dimension |T | as the optimal solution to the following {0, 1} ILP problem:

minimize∑ ∑
0≤i<x

c(
#»

θi) (2)

subject to # »m⊥ +
∑

0≤j<x

N · #»

θj =
»

m> (3)

∀0≤i<x
#»

θi ·
#»
1 T ≤ 1 (4)

»m⊥ +
∑

0≤j<i

N · #»

θj −N− · #»

θi ≥ 0 (5)

∀0<i<x
»

θi−1 ·
#»
1 T ≥ #»

θi ·
#»
1 T (6)

An optimal solution to the problem above constitutes a full firing sequence σ of
length l =

∑
0≤i<x

#»

θi ·
#»
1 T of the net N in the following way: for each 0 ≤ i < l holds

that σi = t ≡ #»

θ (t) = 1, i.e. the sequence σ is made up of those transitions which
correspond to the variables taking value 1 in this system. Note that for l ≤ i < x holds
that

#»

θi ·
#»
1 T = 0.

The target function shown as equation 2 above sums the costs of firing transitions
in the net. Equation 4 ensures that each vector corresponds to at most one firing of a
transition and Equation 5 ensures that firing all transitions tj preceding transition ti
from the initial marking produces sufficient tokens in every place to enable transition
ti. Equation 6 ensures that in any solution the vectors

#»

θ =
#»
0 are grouped together

and finally, Equation 3 ensures that the final marking is reached after firing at most k
transitions.

Before showing how the ILP definition above can be extended to find alignments
up to length k, we first show that any optimal alignment σ indeed corresponds to an
optimal solution to this ILP for k = |σ|.

Theorem 1. LetN = 〈P, T,F〉 be a synchronous product Petri net and let (N,m⊥,m>)
a corresponding net system. Furthermore let c : T → R+ a cost function and σ an op-
timal alignment of N . We show that there is an optimal solution to the k-alignment
ILP for k ≥ |σ| corresponding to σ, i.e. the ILP-alignment problem provided us with
optimal alignments.

Proof. The proof consists of two parts. First, we show that σ translates into a solution
of the ILP. Then, we show that there cannot be a more optimal solution as this would
imply there is a more optimal alignment.

Let Θ = { #»

θ0, . . . ,
»

θ|σ|−1} be a set of vectors, such that for all 0 ≤ i < |σ| holds
that

#»

θi(t) = 1 if and only if σi = t, otherwise
#»

θi(t) = 0. We show that this is a solution
to the ILP of Definition 7 by enumerating the constraints:

(4) For all 0 ≤ i < |σa| it trivially holds that
#»

θi ·
#»
1 T = 1,

(5) Since σ is a full firing sequence, we know that for each 0 ≤ i < |σ| holds that
(N,m⊥)[σ0..i−1〉(N,m) for some marking m in which transition σi is enabled.
Furthermore, the marking equation states that # »m⊥+N · σ̂0..i−1 = #»m and #»m−N− ·
〈̂σi〉 ≥ 0.

The definition
#»

θi leads to the fact that
∑

0≤j<i
#»

θj = σ̂0..i−1, hence we conclude
that # »m⊥ + N ·

∑
0≤j<i

#»

θj = #»m and #»m − N− · θi ≥ 0. Combining this yields
»m⊥ +

∑
0≤j<iN ·

#»

θj −N− · θi ≥ 0 for all 0 ≤ i < |σ| ,

(6) Since all vectors
#»

θi contain one element equal to 1 this is trivially true,
(3) Similar to the proof for Equation 5, this equation is satisfied.

The set of vectors Θ indeed is a solution to the ILP corresponding to the full firing
sequence σ. Now we prove that no better solution to the ILP exists by contradiction.
Assume there is a solution Θ′ = {

#»

θ′0, . . . ,
»

θ′|σ|−1} which is a solution to the ILP with a
lower target function than Θ. We know we can construct a σ′ = 〈t0, . . . , tl−1〉 for Θ′

with length l ≤ |σ| (Definition 7). Furthermore, we know σ′ is a full firing sequence.
Since

∑
0≤i<|σ′|c(

#»

θ′i)
<

∑
0≤i<|σ|c(#»

θi)
and the relation between σ and Θ, we know that

c(σ′) < c(σ). However, this violates the definition of σ being an optimal alignment.
ut

The ILP formulation above allows us to compute an optimal alignment if we know
an upper bound k for the length of such an alignment. Unfortunately, such an upper
bound cannot be given in advance as this would require knowledge of the alignment
sought. Furthermore, the large number of variables in this ILP (the number of transitions
in the synchronous product model times the length of the alignment) makes this ILP
intractable in any real life setting.

3.2 Computing Alignments Without Optimality Guarantees

To overcome the limitations of not knowing the length of the alignment and the in-
tractability of the ILP computation, we introduce an algorithm for incrementally com-
puting alignments. The core idea of this algorithm, which again relies heavily on the
marking equation, is the following. We use an ILP problem that constructs an exact
prefix of an alignment of relatively short length (for example x = 10 transitions) and
estimates the remainder of the alignment in the same way the A∗ techniques do. Then,
we execute the exact prefix of relatively small length x, compute the resulting marking
and repeat the computation until we reach the target marking.

Definition 8 (k of x prefix Alignment as ILP problem). Let N = 〈P, T,F〉 be a
synchronous product Petri net where T = T s ∪ T l ∪ Tm are the partitions of T and
let (N,m⊥,m>) a corresponding net system. Furthermore let c : T → R+ a cost
function. We assume k ≤ |T l|.

Let Θ = { #»

θ0, . . . ,
#»

θx} be a set of x + 1 vectors of dimension |T | as the optimal
solution to the following ILP problem:

minimize∑ ∑
0≤i≤x

c(
#»

θi) (7)

subject to # »m⊥ +
∑

0≤j≤x

N · #»

θj =
»

m> (8)

∑
t∈T s∪T l

∑
0≤i<x

θi(t) ≥ k (9)

∀0≤i<x
#»

θi ·
#»
1 T ≤ 1 (10)

»m⊥ +
∑

0≤j<i

N · #»

θj −N− · #»

θi ≥ 0 (11)

∀0<i<x
»

θi−1 ·
#»
1 T ≥ #»

θi ·
#»
1 T (12)

C · # »

θx−1 ·
#»
1 T ≥ #»

θx ·
#»
1 T (13)

An optimal solution to the problem above constitutes a firing sequence σ of length
l =

∑
0≤i<x

#»

θi ·
#»
1 T of the net N identical to Definition 7. Note that the constant C in

Equation 13 is a sufficiently large constant, for example C = |T |2. A specific value for
C can be identified, but this is beyond the scope of the paper.

The difference between Definition 7 and Definition 8 is relatively small, but signif-
icant. The added vector

#»

θx in the solution does not represent a single transition execu-
tion. Instead, it represents the “tail” of the alignment, i.e. the resulting firing sequence
σ is no longer a full firing sequence as it is not guaranteed to reach the target marking.
Instead, it reaches some intermediate marking m and

#»

θx is a vector underestimating
the cost for reaching the final marking from m identical to the underestimate function
in A∗ as defined in Definition 6. Once the optimal solution to the ILP is found, the
marking m reached after executing σ is taken as a new final marking and the problem
is reinstantiated with that marking as initial marking.

The second important difference is the k used solely in Equation 9. This equation
ensures that σ contains at least k transitions from the set of synchronous moves or log
moves, i.e. it guarantees progress as it is a property of a synchronous product that there
are no loops in the log move and synchronous move possible.

Using the k of x ILP we present the sequential alignment algorithm as Algorithm 1
and using the algorithm outlined in Algorithm 1 we define an (k, x) sequential align-
ment.

Definition 9 ((k, x) - Sequential Alignment). Let N = 〈P, T,F〉 be a synchronous
product Petri net where T = T s∪T l∪Tm are the partitions of T and let (N,m⊥,m>) a
corresponding net system. σ = Align(N,m⊥,m

>, inf, |T l|, x, k) is an (k, x) sequen-
tial alignment, where k ≤ |T l| and k ≤ x.

The sequential alignment algorithm is a recursive algorithm. It starts by solving a k
of x ILP problem which for which a solution is assumed to exist. After solving the ILP,
the solution is compared to the previous estimate (the cost of

#»

θx). If the new optimal

Algorithm 1: Sequential Alignment
1 function Align (N,mc,m

>, e, l, x, k);
Input : A net N , the current marking mc, the target marking m>, the last estimate for

the remaining cost e, the number of events to be explained l and two parameters
x and k with k ≤ x and k ≤ e

Output: A firing sequence σ
2 if m = m> then
3 return 〈〉
4 else
5 Solve Θ = { #»

θ0, . . . ,
#»

θx} as the optimal solution to the k of x ILP of Definition 8 and
let σ be the firing sequence derived from

#»

θ0 . . .
»

θx−1

6 c′ =
∑

0≤i<x c(
#»

θi)

7 e′ = c(
#»

θx)

8 if
#»

θx 6=
#»
0 ∧ c′ + e′ ≥ 2 · e then

9 return Align(N,mc,m
>, e, l, x+ 1,min(k + 1, l))

10 else
11 #»m = # »mc +

∑
0≤i<x N ·

#»

θi

12 k′ =
∑

t∈Ts∪T l

∑
0≤i<x θi(t)

13 return (σ ◦Align(N,m,m>, e′, l − k′, x,min(k, l)))
14 end
15 end

solution deviates too much from the expected solution e′ + c′ ≥ 2 · e and the
#»

θx is non
zero, i.e. the final marking is not reached, then we go into a backtracking phase. We try
again, with increased value of x (and k if applicable). If the initial ILP cannot be solved,
i.e. no solution exist, backtracking can also be used. However, we typically assume our
process models to be sound workflow models.

It is easy to see that the algorithm terminates, i.e. either the final marking m> is
reached, or the value of x is increased until it equals the length of the shortest path from
the current marking to the final marking in which case the solution of the k of x ILP
becomes optimal and

#»

θx =
#»
0 .

3.3 Quality of Alignments

The sequential alignment algorithm presented in Algorithm 1 is guaranteed to terminate
and to return an alignment. However, it is not guaranteed to return an optimal alignment.
This is due to the fact that the marking equation used for the ~θx vector does not corre-
spond to an actual realizable sequence. Instead, as in the originalA∗ approach, is merely
underestimates the optimal costs to reach the final marking. As such, sub-optimal de-
cisions may be made in each prefix. In particular, this is the case if the model contains
many so-called “transition invariants”, the simplest case of which are structured loops
of activities.

Even if a trace perfectly fits the model, extreme cases can be devised where the
sequential algorithm may construct sub-optimal alignments (although this requires the

introduction of duplicate labels), while at the same time, for some classes of model
and log combinations, optimality can be guaranteed. Hence, overall, it is impossible
to say anything about the quality of the delivered alignment in advance. However, as
the experiments in the next section show, in practical cases, the alignments are of high
quality and the reduced time complexity is well worth the trade-off.

In our experiments, which we present in the next section, we considered the relative
error of the costs as a measure for the quality. This relative error is defined as the cost
of the sequential alignment exceeding the cost of the optimal alignment as a fraction of
the cost of the optimal alignment.

4 Evaluation

In order to assess the quality of the proposed technique, we conducted various exper-
iments. In this section, we show one of these experiments on a real-life dataset and
model. The dataset used deals with the treatment of sepsis patients in a hospital [9].
There are 1050 cases with in total 15214 events over 16 activities. There are 74 unique
sequences of activities in the log and the model used contains 19 labeled transitions and
30 unlabeled routing transitions. The model is free-choice and contains both loops and
parallel constructs, i.e. it belongs to the class of models considered in this paper.

The experiments were conducted on a Core i7-4700MQ CPU with 16GB of mem-
ory, of which at most 8GB of memory were allocated to the Java virtual machine. In the
interest of fairness, all algorithms were executed in single-threaded mode8.

Figure 5 shows the analysis time of aligning this log on the given model using three
techniques, namely (1) the baseline traditional A∗, (2) our approach using Gurobi [10]
as a backend ILP solver and (3) our approach using LpSolve [11] as a backend solver.
The x-axis shows the fitness of the trace (based on the baseline which guarantees op-
timal alignments) and for each trace, both computation time and relative error in total
costs for the alignment returned are plotted. The time is plotted on the left-hand, loga-
rithmic axis and the error on the right-hand axis.

As shown in Figure 5, the computation time of alignments using our approach is
orders of magnitude lower than when using A∗. However, in some cases, suboptimal
solutions may be returned which are up to 84% off in terms of the total costs. The overall
error on the entire log is 7, 87% for Gurobi and 7, 05% for LpSolve. The differences
between the two solvers are explained by their local decisions for optimal solutions
which may lead to different choices in the alignments. For two other models in the
same collection, the results are even better, with at most an 6.7% cost overestimation.

Figure 5 suggests that, when cases become more fitting, the computation becomes
more expensive. However, this result is misleading as the numbers are not corrected
for the length of traces, i.e. the traces that are better fitting in this dataset are typically
longer. Therefore, in Figure 6 we show the relation between the trace length and the
computation time for both A∗ and for our approach using Gurobi.

8 The classical A∗ approach can be executed in multi-threaded mode, in which case multiple
traces are aligned at once. Furthermore, the Gurobi solver can also be used in multi-threaded
mode, which only affects the branch-and-bound phase of the solving.

Fig. 5. Comparison of computation time and error of A∗ with 1-of-4 alignments.

Figure 6 clearly shows that our approach scales linearly in the length of the trace.
This is due to the fact that for longer traces, more ILPs need to be solved. However,
these ILPs are all of equal size. In the A∗ case, we see that there is a considerably
larger influence of the trace length to the time do compute alignments. This is due to
parallelism in the model, as longer traces introduce more and more states that need to
be considered by the A∗ approach.

To emphasize the importance of our work even further, we show results on a well-
known, artificial benchmark example in Figure 7. This example was taken from [12]
where a model is presented with 239 uniquely labeled transitions and massive paral-
lelism. Here, we clearly see that our approach, both using LpSolve or Gurobi, can be
used to find alignments for all traces within a couple of seconds. TheA∗ approach how-
ever, can only find alignments in some cases, before running out of time (the limit per
trace was set at 200000 states, roughly corresponding to 15 minutes of computation
time). Furthermore, in those cases where the A∗ completes, our sequential algorithms
returns optimal alignments.

In all experiments above, the cost function used was chosen in such a way that the
penalties for labeling an event as a so-called log move or a transition as a so-called
model move were equal to 1 and all figures were made using 1-of-4 prefix alignments.
We tested various other values for both k and x and the results were comparable as long
as k is significantly smaller than x. The full code is available in the anti-alignment pack-
age in ProM and is fully integrated in the conformance checking framework therein.

Fig. 6. Time to compute alignments vs. length of the original trace.

Fig. 7. Comparison of computation time and error of A∗ with 1-of-4 alignments.

5 Conclusions

Alignments are a well-known basis for further analysis when comparing process models
to event logs, but traditional alignment techniques suffer from computational complex-

ity and the unpredictable nature of the computation time. In this paper, we presented an
incremental approach to compute alignments for a given log and model using ILP.

Our approach is heuristic in nature, i.e. the result is not guaranteed to be optimal,
but the computation time is shown to be linear in the length of the input trace (around
8 ms per event in our experiments on a high-end laptop computer) and the error in the
final results, while depending on the parameters, is shown to be reasonable.

In the paper, we introduce the theoretical foundations of our work, we present the
algorithm with proof of termination and we show experimental results on real-life cases.
We compare our implementation using both a freely available ILP solver as well as an
industrial ILP solver with the state-of-the-art in alignment computation.

All datasets and implementations used in this paper are freely available for down-
load and the software is integrated in the process mining tool ProM.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of
Business Processes. Springer (2011)

2. Adriansyah, A.: Aligning observed and modeled behavior. PhD thesis, Technische Univer-
siteit Eindhoven (2014)

3. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.:
Measuring precision of modeled behavior. Inf. Syst. E-Business Management 13(1) (2015)
37–67

4. Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior of large
structured process models. In: Business Process Management - 14th International Con-
ference, BPM 2016, Rio de Janeiro, Brazil, September 18-22, 2016. Proceedings. (2016)
197–214

5. van der Aalst, W.M.P.: Decomposing Petri nets for process mining: A generic approach.
Distributed and Parallel Databases 31(4) (2013) 471–507

6. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit decomposed
conformance checking. Inf. Syst. 46 (2014) 102–122

7. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4)
(April 1989) 541–574

8. Silva, M., Teruel, E., Colom, J.M.: Linear algebraic and linear programming techniques for
the analysis of place/transition net systems. In Reisig, W., Rozenberg, G., eds.: Lecture Notes
in Computer Science: Lectures on Petri Nets I: Basic Models. Volume 1491. Springer-Verlag
(1998) 309–373

9. Mannhardt, F.: Sepsis dataset (to appear) (2016)
10. Gurobi Optimization, I.: Gurobi optimizer reference manual (2016)
11. Berkelaar, M., Eikland, K., Notebaert, P.: lpsolve : Open source (Mixed-Integer) Linear

Programming system
12. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Conformance checking in the large:

Partitioning and topology. In Daniel, F., Wang, J., Weber, B., eds.: Business Process Man-
agement - 11th International Conference, BPM 2013, Beijing, China, August 26-30, 2013.
Proceedings. Volume 8094 of Lecture Notes in Computer Science., Springer (2013) 130–145

