Skip to main content

Estimating Distributed Representations of Compound Words Using Recurrent Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10260))

Abstract

Distributed representations of words play a crucial role in many natural language processing tasks. However, to learn the distributed representations of words, each word in the text corpus is treated as an individual token. Therefore, the distributed representations of compound words could not be directly represented. In this paper, we introduce a recurrent neural network (RNN)-based approach for estimating distributed representations of compound words. The experimental results show that the RNN-based approach can estimate the distributed representations of compound words better than the average representation approach, which simply uses the average of individual word representations as an estimated representation of a compound word. Furthermore, the characteristic of estimated representations of compound words are closely similar to the actual representations of compound words.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/idio/wiki2vec.

  2. 2.

    https://radimrehurek.com/gensim/models/word2vec.html.

  3. 3.

    https://www.tensorflow.org/.

References

  1. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

    MATH  Google Scholar 

  2. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994)

    Article  Google Scholar 

  3. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS Workshop (2014)

    Google Scholar 

  4. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  5. Dima, C., Hinrichs, E.: Automatic noun compound interpretation using deep neural networks and word embeddings. In: IWCS, p. 173 (2015)

    Google Scholar 

  6. Elman, J.L.: Finding structure in time. Cogn. Sci. 14, 179–211 (1990)

    Article  Google Scholar 

  7. Garten, J., Sagae, K., Ustun, V., Dehghani, M.: Combining distributed vector representations for words. In: NAACL-HLT, pp. 95–101 (2015)

    Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  9. Kertkeidkachorn, N., Ichise, R.: T2KG: an end-to-end system for creating knowledge graph from unstructured text. In: AAAI Technical Report. AAAI Press (2017)

    Google Scholar 

  10. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  11. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. ICML 14, 1188–1196 (2014)

    Google Scholar 

  12. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 19, 2579–2605 (2008)

    MATH  Google Scholar 

  13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR (2013)

    Google Scholar 

  14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  15. Mikolov, T., Yih, W.-T., Zweig, G.: Linguistic regularities in continuous space word representations. NAACL-HLT 13, 746–751 (2013)

    Google Scholar 

  16. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. EMNLP 14, 1532–1543 (2014)

    Google Scholar 

  17. Shimaoka, S., Stenetorp, P., Inui, K., Riedel, S.: An attentive neural architecture for fine-grained entity type classification. In: AKBC (2016)

    Google Scholar 

  18. Socher, R., Bauer, J., Manning, C.D., Ng, A.Y.: Parsing with compositional vector grammars. In: ACL, pp. 455–465 (2013)

    Google Scholar 

  19. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP, vol. 1631, p. 1642 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natthawut Kertkeidkachorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kertkeidkachorn, N., Ichise, R. (2017). Estimating Distributed Representations of Compound Words Using Recurrent Neural Networks. In: Frasincar, F., Ittoo, A., Nguyen, L., Métais, E. (eds) Natural Language Processing and Information Systems. NLDB 2017. Lecture Notes in Computer Science(), vol 10260. Springer, Cham. https://doi.org/10.1007/978-3-319-59569-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59569-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59568-9

  • Online ISBN: 978-3-319-59569-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics