Skip to main content

Prediction of Time to Tumor Recurrence in Ovarian Cancer: Comparison of Three Sparse Regression Methods

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10330))

Included in the following conference series:

Abstract

Ovarian cancer is the most fatal gynecological malignancy among women. Making a reliable prediction of time to tumor recurrence would be a valuable contribution to post-surgery follow-up care. In this paper we study three well-known data sets, known as TCGA, Tothill and Yoshihara, and compare three sparse regression methods, two of which (LASSO and EN) are well-known and the third (CLOT) is from our laboratory. It is established that the three data sets are very different from each other. Therefore a two-stage predictor is built, whereby each test sample is first assigned to the most likely data set and then the corresponding predictor is used. The weighted concordance of each regression method is computed to compare the methods and select the best one. CLOT uses a biomarker panel of 103 genes and achieves a concordance index of 0.7829, which is higher than that achieved by the other two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    International Federation of Gynecology and Obstetrics.

References

  1. Aziz, A.B., Najmi, N.: Is risk malignancy index a useful tool for predicting malignant ovarian masses in developing countries? J. Obstet. Gynecol. Int. (2015). doi:10.1155/2015/951256

  2. Hennessey, B.T., Coleman, R.L., Markman, M.: Ovarian cancer. J. Lancet 374, 1371–1382 (2009). doi:10.1016/S0140-6736(09)61338-6

    Article  Google Scholar 

  3. Clark, T.G., Stewart, M.E., Altman, D.G., Gabra, H., Smyth, J.F.: A prognostic model for ovarian cancer. Br. J. Cancer 85, 944–952 (2001). doi:10.1038/sj.bjc.6692030

    Article  Google Scholar 

  4. Teramukai, S., Ochuau, K., Tada, H., Fukushima, M.: PIEPOC: a new prognostic index for advanced epithelial ovarian cancer? Japan Multinational Trial Organization OC01-01. J. Clin. Oncol. 25, 3302–3306 (2007). doi:10.1200/JCO.2007.11.0114

    Article  Google Scholar 

  5. Misganaw, B., Ahsen, E., Singh, N., Baggerly, K.A., Unruh, A., White, M.A., Vidyasagar, M.: Optimized prediction of extreme treatment outcomes in ovarian cancer. J. Cancer Inform. 14, 45–55 (2016). doi:10.4137/CIN.S30803

    Google Scholar 

  6. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. 58, 267–288 (1996). doi:10.1111/j.1467-9868.2011.00771.x

    MathSciNet  MATH  Google Scholar 

  7. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. 67(2), 301–320 (2005). doi:10.1111/j.1467-9868.2005.00503.x

    Article  MathSciNet  MATH  Google Scholar 

  8. Ahsen, M.E., Challapalli, N., Vidyasagar, M.: Two new approaches to compressed sensing exhibiting both robust sparse recovery and the grouping effect. arXiv. 1410.8229 (2016)

  9. Waldron, L., Kains, B.H., Culhane, A.C., Riester, M., Ding, J., Wang, X.V., Ahmadifar, M., Tyekucheva, S., Bernau, C., Risch, T., Ganzfried, B.F., Huttenhower, C., Birrer, M., Parmigiani, G.: Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. J. Natl. Cancer Inst. 106(5) (2014). doi:10.1093/jnci/dju049

  10. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo

  11. The Cancer Genome Atlas. https://gdc-portal.nci.nih.gov

  12. Greene, F.L., Page, D.L., Fleming, I.D., Fritz, A.G., Balch, C.M., Haller, D.G., Morrow, M.: AJCC Cancer Staging Manual. Springer, New York (2010)

    Google Scholar 

  13. Natarajan, B.K.: Sparse approximate solutions to linear system. SIAM J. Comput. 24, 227–234 (1995). doi:10.1137/S0097539792240406

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

    Article  Google Scholar 

  15. The Human Gene Database. https://genecards.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Lotfi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lotfi, M., Misganaw, B., Vidyasagar, M. (2017). Prediction of Time to Tumor Recurrence in Ovarian Cancer: Comparison of Three Sparse Regression Methods. In: Cai, Z., Daescu, O., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2017. Lecture Notes in Computer Science(), vol 10330. Springer, Cham. https://doi.org/10.1007/978-3-319-59575-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59575-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59574-0

  • Online ISBN: 978-3-319-59575-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics