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ABSTRACT

The classification of reads from a metagenomic sample using a reference taxonomy is usually
based on first mapping the reads to the reference sequences and then classifying each read at a
node under the lowest common ancestor of the candidate sequences in the reference taxonomy
with the least classification error. However, this taxonomic annotation can be biased by an
imbalanced taxonomy and also by the presence of multiple nodes in the taxonomy with the
least classification error for a given read. In this article, we show that the Rand index is a better
indicator of classification error than the often used area under the receiver operating char-
acteristic (ROC) curve and F-measure for both balanced and imbalanced reference taxo-
nomies, and we also address the second source of bias by reducing the taxonomic annotation
problem for a whole metagenomic sample to a set cover problem, for which a logarithmic
approximation can be obtained in linear time and an exact solution can be obtained by integer
linear programming. Experimental results with a proof-of-concept implementation of the set
cover approach to taxonomic annotation in a next release of the TANGO software show that
the set cover approach further reduces ambiguity in the taxonomic annotation obtained with
TANGO without distorting the relative abundance profile of the metagenomic sample.
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1. INTRODUCTION

Next-generation sequencing technologies have moved forward the development of metagenomics,

a new field of science devoted to the study of microbial communities by the analysis of their genomic

content, directly sequenced from the environment (Kunin et al., 2008; Wooley et al., 2010; Thomas et al.,

2012). A sequenced metagenomic sample consists of a large number of relatively short DNA or RNA

fragments, called reads, and one of the first steps in the computational analysis of a metagenomic sample is

the identification of the organisms present in the sequenced environment and their relative abundance, that is,

the classification of the metagenomic sample.

1Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, Bari, Italy.
2Department of Mathematics and Computer Science, Balearic Islands Health Research Institute (IdISBa), University

of the Balearic Islands, Palma de Mallorca, Spain.
3Algorithms, Bioinformatics, Complexity and Formal Methods Research Group, Technical University of Catalonia,

Barcelona, Spain.

# Bruno Fosso, et al., 2018. Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the
terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reporduction in any medium, provided the original work is properly credited.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 25, Number 3, 2018

Mary Ann Liebert, Inc.

Pp. 348–360

DOI: 10.1089/cmb.2017.0144

348



In this article, we focus on the taxonomic annotation problem, that is, the classification of the reads from

a metagenomic sample using a reference taxonomy, for which we adapt some basic notions from statistical

classification in machine learning. We abstract away from the computational problem of mapping reads to

reference sequences, and assume that a set of candidate sequences in a reference taxonomy is given for each

read in the metagenomic sample to be classified. These candidate sequences are usually obtained either by

sequence composition methods (those reference sequences with oligonucleotide frequencies within a given

distance threshold to the oligonucleotide frequencies of the read) or by sequence similarity methods (those

reference sequences that the read can be aligned to within a given threshold of sequence similarity, or those

reference sequences that the read can be mapped to with at most a given number of mismatches).

In a statistical binary classification problem, the confusion matrix (Table 1) shows the number of

correctly and incorrectly classified instances of each class. True positives (TP) are the correctly classified

positive instances, true negatives (TN) are the correctly classified negative instances, false positives (FP)

are the misclassified negative instances, and false negatives (FN) are the misclassified positive instances.

The TP rate, sensitivity, or recall R of a classification is the ratio TPR = TP=(TP + FN) of TP to the total

number of positive instances, the FP rate is the ratio FPR = FP=(FP + TN) of FP to the total number of

negative instances, the TN rate or specificity is the ratio TNR = TN=(FP + TN) of TN to the total number of

negative instances, and the FN rate is the ratio FNR = FN=(TP + FN) of FN to the total number of positive

instances. Furthermore, the precision of a classification is the ratio P = TP=(TP + FP) of TP to the total

number of positive predictions. They are usually combined into a single indicator of classification error

as either the area under the receiver operating characteristic (ROC) curve AUC = (TPR - FPR + 1)=2 or the

F-measure, which is the harmonic mean F = 2=(1=P + 1=R) of precision and recall (Powers, 2011).

In a metagenomic classification problem, the annotation of a read as coming from a particular sequence in a

reference taxonomy often involves solving the ambiguity of multiple candidate sequences, caused among

other factors by reads being not long enough to ensure a unique identification of the reference sequences they

come from. Reference taxonomies are rooted trees, with the leaves labeled by sequences at the taxonomic

rank of species or strain, and these ambiguities are solved by annotating reads as coming from internal nodes,

at higher taxonomic ranks in the reference taxonomy. When classifying a read as coming from an internal

node in a reference taxonomy (Fig. 1), the leaves under the internal node are TP if they are labeled by

candidate sequences, otherwise they are FP, and the remaining leaves under the lowest common ancestor

(LCA) of the candidate sequences are FN if they are labeled by candidate sequences; otherwise, they are TN.

Annotating a read as coming from the LCA of the candidate sequences in a reference taxonomy (Huson and

Weber, 2013) maximizes precision, as in that case there are no TN and no FN, but at the expense of

specificity, because the number of FP in a reference taxonomy can be very large. Annotating a read as coming

from an internal node with the largest F-measure value (Clemente et al., 2011; Alonso et al., 2013; Fosso

et al., 2015, 2017) minimizes the classification error as a combination of precision and sensitivity.

However, there are at least two sources of bias in the taxonomic annotation of a metagenomic sample.

One the one hand, reference taxonomies are imbalanced, that is, the instances of one class significantly

outnumber the instances of the other classes, and this can be observed at any taxonomic rank. For example,

the NCBI Taxonomy (Federhen, 2012, 2015), which is the most comprehensive taxonomic reference to

date, includes as of March 13, 2017, an imbalanced number of sequences for Bacteria (1,412,065), Eu-

karyota (685,380), and Archaea (27,322). Within the Bacteria, for example, there is also an imbalanced

number of sequences for the Actinobacteria (593,837), Proteobacteria (440,315), Firmicutes (245,632),

Bacteroidetes (77,866), Planctomycetes (8899), Fusobacteria (7789), and others (37,727).

In a statistical binary classification problem, imbalanced data sets result in a good coverage of the positive

instances and a frequent misclassification of the negative instances, since most of the standard machine

learning algorithms consider a balanced training set (López et al., 2013). In a metagenomic classification

problem, an imbalanced reference taxonomy may also yield an imbalance between the positive and negative

Table 1. Confusion Matrix for a Binary Classification Problem

Positive prediction Negative prediction

Positive class TP FN

Negative class FP TN

FN, false negative; FP, false positive; TN, true negative; TP, true positive.
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classes, because the larger the clade of the LCA in a reference taxonomy of the candidate sequences for a

read, the larger the negative class for the classification of the read. In this article, we show that this is in

general not the case, and we also show that the Rand index is a better indicator of classification error than the

often used area under the ROC curve and F-measure, when the reference taxonomy is imbalanced and also

for balanced reference taxonomies.

Another source of bias in the taxonomic annotation of a metagenomic sample lies in the existence of

multiple candidate nodes in a reference taxonomy with the least classification error for a given read, one of

which is usually chosen arbitrarily for the taxonomic annotation of the read (Clemente et al., 2011; Alonso

et al., 2013). Instead of breaking ties independently for each read in a metagenomic sample, we show in this

article that the shift from a one-sequence-read-at-a-time view to a whole-set-of-sequence-reads view yields

a better resolution of any remaining ambiguities in the taxonomic annotation of a metagenomic sample.

2. TAXONOMIC ANNOTATION USING IMBALANCED REFERENCE TAXONOMIES

Recall that in a metagenomic classification problem, an imbalanced reference taxonomy yields an

imbalance between the positive and negative classes. Let us define the balance ratio of a classification

problem as the ratio of the size of the positive class to the size of the negative class.

Definition 1. Let TP, TN, FP, and FN be the number of TP, FP, TN, and FN in a binary classification

problem. The balance ratio of the classification problem is (TP + FN)=(FP + TN).

Recall also that the reference taxonomies used in metagenomic classification are highly imbalanced. It

turns out that balanced and imbalanced reference taxonomies yield exactly the same metagenomic clas-

sification problems, as long as they have the same number of internal nodes. Some evidence supporting this

observation follows.

The topology of the most possible balanced binary reference taxonomy is a complete binary tree, as

every internal node (and also the root) has two descendant clades of exactly the same size. On the other

hand, the topology of the least possible balanced binary reference taxonomy is a rooted caterpillar, as every

internal node (and also the root) has one big descendant clade and one small (with only one node)

descendant clade. Borrowing the notion of total cophenetic index for phylogenetic trees (Mir et al., 2013)

to measure the balance of reference taxonomies, complete binary trees have indeed the minimum value

while rooted caterpillars have the maximum value. Notice, however, that the total cophenetic index of the

NCBI Taxonomy (Federhen, 2012, 2015) restricted to the standard taxonomic ranks (Kingdom, Phylum,

Class, Order, Family, Genus, and Species) is 206,110,330,551, which represents only 0.00032060% of the

interval between the minimum value (727,931) and the maximum value (64,288,827,123,576,010) for the

number of taxa in the restricted NCBI Taxonomy.

FIG. 1. Classifying a read using a reference taxonomy. The grayed leaves are the candidate sequences for the

classification of the read, and node i is their lowest common ancestor in the reference taxonomy. The taxonomic

annotation of the read at node i implies the absence of TN and FN. With a taxonomic annotation of the read at node j,

however, the grayed leaves under node j are the true positives, the remaining grayed leaves are the FN, the remaining

leaves under node j are the false positives, and the still remaining leaves under node i are the TN of the metagenomic

classification problem. FN, false negatives; FP, false positives; TN, true negatives; TP, true positives
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Now, in a metagenomic classification problem, any subset of the leaves of a reference taxonomy may be

labeled by the candidate sequences for the classification of a given read. For a given subset of the leaves of

a reference taxonomy, each candidate internal node (at or under the LCA of the subset of the leaves) for the

taxonomic annotation of the read yields a certain number of TP, FP, TN, and FN. For example, for the

reference taxonomy in Figure 1, the subset of grayed leaves yields, for the candidate internal node j, a

metagenomic classification problem with TP = 3, FP = 1, TN = 3, FN = 1, and thus, balance ratio

(3 + 1)=(1 + 3) = 1. Table 2 shows the distribution of the number of TP, FP, TN, and FN for all subsets of the

leaves of a reference taxonomy and for every candidate internal node for the taxonomic annotation of a read

having as candidate sequences the subset of the leaves, for both a complete binary tree and a rooted

caterpillar with 8 leaves.

The resulting distribution of TP + FN values (Table 2, right) is exactly the same in both cases, and thus, a

complete binary tree and a rooted caterpillar with the same number of leaves have the same balance ratio.

In fact, any two reference taxonomies for the same taxa have the same balance ratio as long as they have the

same number of internal nodes, because they yield a metagenomic classification problem for any subset of

the leaves and for any candidate internal node, and TP + FN equals the number of leaves in the subset.

Let us assume that the reads in a metagenomic sample to be classified come from known sequences in a

reference taxonomy, as it is usually the case in the taxonomic annotation of metagenomic samples, whereas

reads coming from novel sequences are annotated by using clustering methods instead. Given a read and a

set of candidate sequences in a reference taxonomy, the taxonomic annotation of the read at a certain node

in the clade of the LCA in the reference taxonomy of the set of candidate sequences can then be taken to be

correct if, and only if, the candidate sequence that the read comes from lies in the clade of the node at which

it is annotated.

Based on this observation, we have studied the performance of some of the most often used indicators of

classification error: the Yule / (Yule, 1912), also known as Matthews correlation coefficient (Matthews,

1975), the area under the ROC curve, the Youden J (Youden, 1950), the F-measure (Powers, 2011), the

Jaccard similarity coefficient ( Jaccard, 1901), and the Rand index (Rand, 1971), in the taxonomic anno-

tation of metagenomic samples.

Definition 2. Let TP, TN, FP, and FN be the number of TP, FP, TN, and FN in a binary classification

problem.

� The Yule / is given by

/ =
TP TN - FP FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p

� The Youden J is given by

J =
TP TN - FP FN

(TP + FN)(FP + TN)

Table 2. Distribution of TP, FP, TN, FN Values (Left) and Distribution

of TP + FN Values (Right) in Metagenomic Classification Problems

for Different Taxonomic Reference Topologies: Complete Binary Tree (B)

and Rooted Caterpillar (C) with Eight Leaves

TP FP TN FN B C TP + FN Count

0 2 0 6 4 1 1 56

0 2 1 5 24 6 2 196

0 2 2 4 60 15 3 392

0 2 3 3 80 20 4 490

� � � � � � � � � � � � � � � � � � 5 392

7 0 1 0 0 1 6 196

7 1 0 0 8 8 7 56

8 0 0 0 1 1 8 7
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� The area under the ROC curve is given by

AUC =
1

2

TP

TP + FN
+

TN

FP + TN

� �

� The F-measure is given by

F =
2 TP

2 TP + FP + FN

� The Jaccard similarity coefficient is given by

C =
TP

TP + FP + FN

� The Rand index is given by

R =
TP + TN

TP + FP + TN + FN

If the denominator in any of these formulas is zero, the value of the indicator is arbitrarily set to zero.

We have computed the value of all these indicators of classification error for each possible set of

candidate sequences in a reference taxonomy and for each possible candidate node for the taxonomic

annotation of a read coming from each of the candidate sequences, for different taxonomic reference

topologies: complete binary trees that have the largest possible balance but yield the least balanced

metagenomic classification problems, and rooted caterpillars that have the smallest possible balance but

yield the most balanced metagenomic classification problems. For these classification problems, we have

counted the number of times the taxonomic annotation is correct, that is, the number of times the candidate

sequence that the read comes from lies in the clade of the node in the reference taxonomy at which it is

annotated.

The results (Table 3) show that the worst indicator of classification error is the Yule /, followed by AUC

and the Youden J (which are equivalent, as J = 2AUC - 1), the F-measure and the Jaccard similarity

Table 3. Total Number of Correct Taxonomic Annotations Under the Yule (/), the Area Under

the Receiver Operating Characteristic (ROC) Curve (A) or the Youden J, the F-Measure (F)

or the Jaccard Similarity Coefficient, and the Rand Index (R) for Reads Coming

from Known Sequences, for Different Taxonomic Reference Topologies

(Complete Binary Tree and Rooted Caterpillar) with n Leaves

Complete binary tree

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

/ 4 14 40 70 262 306 824 1450 4318 6156 17,064 28,158 63,378 118,292 270,448

A 4 14 40 70 262 306 920 1530 4726 6316 22,056 29,528 79,322 138,477 352,496

F 4 12 32 78 220 407 984 2234 5188 10,251 24,844 49,019 112,812 235,322 493,856

R 4 12 48 90 344 485 1544 2742 8308 11,845 37,764 54,757 154,012 239,147 672,416

Rooted caterpillar

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

/ 4 14 38 80 203 388 945 1961 4344 8592 20,152 39,474 88,063 183,603 398,700

A 4 14 38 80 211 384 973 1952 4628 8346 22,230 38,088 94,962 188,986 421,697

F 4 12 32 79 195 441 1024 2270 5104 10,994 24,491 51,959 113,305 241,277 518,937

R 4 12 36 89 222 512 1191 2652 5949 12,971 28,459 61,189 132,263 281,547 602,076
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coefficient C (which are also equivalent, as C = F=(2 - F)), and that the Rand index R is the best indicator of

classification error for the taxonomic annotation of metagenomic samples. This can be explained by the fact

that in a metagenomic classification problem, we focus on the correct classification of a correct taxonomic

annotation while in a statistical classification problem in machine learning, where both positive and

negative instances are taken into account, correlation measures such as the Yule / (which is equivalent to

the Pearson correlation coefficient for binary classification problems) often are the best indicators of

classification error.

Now, the taxonomic annotation of a metagenomic sample involves obtaining the candidate nodes in

a reference taxonomy with the least classification error (for a given indicator) for each of the reads in the

metagenomic sample. We have proved in Clemente et al. (2011) that, when the F-measure is taken as

indicator, it suffices to consider candidate nodes that are either candidate sequences themselves, or the

LCA of two or more candidate sequences in the reference taxonomy. That is, it suffices to consider as

candidate nodes the LCA skeleton tree (Fischer and Huson, 2010) of the set of candidate sequences for a

given read.

We prove below that it also suffices to consider the LCA skeleton tree when the Yule /, the Youden J,

the area under the ROC curve, the Jaccard similarity coefficient, or the Rand index is taken as indicator of

classification error.

Let T be a reference taxonomy, let Mi be the set of candidate sequences for the classification of read i,

and let Ti be the subtree of T rooted at the LCA of Mi. See Figure 1 for a schematic view.

Definition 3. A node j in Ti is called relevant if it is equal to a candidate sequence in Mi or equal to the

LCA of two or more candidate sequences in Mi.

Also, for every node j in Ti, let Ti‚ j be the subtree of Ti rooted at j, let Li be the set of all candidate

sequences in Ti, and let Ni be the set of all candidate sequences in Ti that do not belong to Mi (hence,

Li = Mi [ Ni). Similarly, let Mi‚ j be the set of all candidate sequences in Ti‚ j that belong to Mi, let Ni‚ j be the

set of all candidate sequences in Ti‚ j that do not belong to Mi‚ j, and let Li‚ j = Mi‚ j [ Ni‚ j. Using this notation,

for the taxonomic annotation at node j of a read i with candidate sequences Mi (Fig. 1), the TP are

TPi‚ j = Mi‚ j, the FP are FPi‚ j = Ni‚ j, the TN are TNi‚ j = NinNi‚ j, and the FN are FNi‚ j = MinMi‚ j. Let Ci‚ j be

the Jaccard correlation coefficient for node j in Ti, that is, Ci‚ j = TPi‚ j=(TPi‚ j + FPi‚ j + FNi‚ j). Similarly, let

Yi‚ j, Ji‚ j, Ai‚ j, and Ri‚ j be the Yule /, the Youden J, the area under the ROC curve, and the Rand index for

node j in Ti, respectively. We have:

Theorem 1. For each node j in Ti, there exists a relevant node j0 such that Yi‚ j0 � Yi‚ j, Ji‚ j0 � Ji‚ j,

Ai‚ j0 � Ai‚ j,Ci‚ j0 � Ci‚ j, and Ri‚ j0 � Ri‚ j.

Proof. Suppose that j is a node in Ti that is not relevant. In particular, j is not the root of Ti. Let j0 be the

LCA of the candidate sequences in Mi‚ j. Clearly, j0 is relevant and it is a strict descendant of j, and

therefore, since Ti‚ j0 is a strict subtree of Ti‚ j, jMi‚ jj = jMi‚ j0 j while jNi‚ jj > jNi‚ j0 j. -

Let TP = jMi‚ jj, FP = jNi‚ jj, FN = jMij - jMi‚ jj, TN = jNij - jNi‚ jj and, similarly, let TP0 = jMi‚ j0 j,
FP0 = jNi‚ j0 j, FN 0 = jMij - jMi‚ j0 j, TN 0 = jNij - jNi‚ j0 j. We have that TP0 = TP, FP0 � FP, FN 0 = FN, TN 0 � TN,

and TN 0 + FP0 = TN + FP.

� Yule /: It has to be proved that

TP0 TN 0 - FP0 FN 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TP0 + FP0)(TP0 + FN 0)(TN 0 + FP0)(TN 0 + FN 0)
p � TP TN - FP FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p

Since TN 0 + FP0 = TN + FP, TP0 + FN 0 = TP + FN, TP0 = TP, and FN 0 = FN, it suffices to prove that

TP TN 0 - FP0 FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TN 0 + FN)(TP0 + FP0)
p >

TP TN - FP FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TN + FN)(TP + FP)
p (1)

where TN 0 > TN and FP0 < FP.

We shall rewrite the numerators. It is straightforward to check that if we denote TP + FN = P0,

FP + TN = FP0 + TN 0 = N0, P0 + N0 = M, TP + FP = P, and TP + FP0 = P0, then
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TP TN 0 - FP0 FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TN 0 + FN)(TP0 + FP0)
p =

M TP - P0 P0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0(M - P0)
p TP TN - FP FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TN + FN)(TP + FP)
p =

M TP - P0 Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P(M - P)
p

and, therefore, Equation (1) becomes

M � TP - P0 Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P(M - P)
p <

M � TP - P0 P0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0(M - P0)
p (2)

where 0 < TP < P0 < P < M. Moreover, notice that TP < P0 because j is not the root of Ti.

Consider the function

u(x) =
M � TP - P0xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x(M - x)
p

Equation (2) says that u(P) < u(P0) if 0 < P0 < P < M. So, to complete the proof of the statement, it is

enough to prove that the function u(x) is decreasing on 0 < x < M. Its first derivative is

u0(x) =
M(2TP - P0)x - M2 � TPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x(M - x))3
p

Then

u0(x) < 05(2TP - P0)x - M � TP < 0

Now, if 2TP � P0, then u0(x) < 0 for every x, while if 2TP > P0, then

u0(x) < 05x <
M � TP

2TP - P0

and in this case

M <
M � TP

2TP - P0

because

M <
M � TP

2TP - P0

52M � TP - MP0 < M � TP5M(TP - P0) < 0

and the latter inequality holds because TP < P0. This implies that, also in this case, if x < M, then

u0(x) < 0.

� Area under the ROC curve: It has to be proved that

TP0(FP0 + TN 0) + TN 0(TP0 + FN 0)

(TP0 + FN 0)(FP0 + TN 0)
� TP(FP + TN) + TN(TP + FN)

(TP + FN)(FP + TN)

We have that (TP0 + FN 0)(FP0 + TN 0) = (TP + FN)(FP + TN) and TP0(FP0 + TN 0) = TP(FP + TN). Then, it

suffices to prove that TN 0(TP0 + FN 0) � TN(TP + FN). However, TP0 = TP, FN 0 = FN, TN 0 � TN and thus,

the inequality follows.

� Rand index: It has to be proved that

TP0 + TN 0

TP0 + FP0 + TN 0 + FN 0
� TP + TN

TP + FP + TN + FN

We have that TP0 = TP, FN 0 = FN, TN 0 � TN, FP0 + TN 0 = FP + TN and thus, the inequality follows.

Corollary 1. The Yule Yi‚ j, the Youden Ji‚ j, the area under the ROC curve Ai‚ j, the Jaccard corre-

lation coefficient Ci‚ j, and the Rand index Ri‚ j only need to be computed for nodes j in Ti that are

relevant.
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3. A SET COVER APPROACH TO TAXONOMIC ANNOTATION

Let us recall from Garey and Johnson (1979) that an instance of the set cover problem is a collection C of

subsets of a finite set X whose union is X, and a solution to the set cover problem is a smallest subset

C0 � C such that every element in X belongs to at least one member of C0. The set cover problem is non-

deterministic polynomial time complete (NP-complete), but a logarithmic approximation can be computed

in linear time ( Johnson, 1974; Bar-Yehuda and Even, 1981) and an exact solution can be obtained by

integer linear programming.

Recall also that in a metagenomic classification problem, there are often multiple candidate nodes in a

reference taxonomy with the least classification error for a given read. As a set cover problem, the set of

elements X is the set of candidate nodes in a reference taxonomy with the least classification error for the

reads in a metagenomic sample, and the collection C of subsets of X is the collection of sets of candidate

nodes in the reference taxonomy with the least classification error for each read.

The following example is adapted from Cormen et al. (2009, x35.3); see Figure 2.

Example 1. Consider a metagenomic sample with reads x1‚ . . . ‚ x12 and candidate nodes in a reference

taxonomy with the least classification error as follows: fy1‚ y3g for x1, fy1‚ y4g for x2, fy1‚ y5g for x3,

fy1‚ y3g for x4, fy1‚ y2‚ y4g for x5, fy1‚ y2‚ y5g for x6, fy3‚ y4g for x7, fy2‚ y4g for x8, fy2‚ y5g for x9, fy3‚ y6g
for x10, fy4‚ y6g for x11, and fy5g for x12: Then, as an instance of the set cover problem, X = fx1‚ . . . ‚ x12g
and C = fy1 . . . ‚ y6g, where y1 = fx1‚ x2‚ x3‚ x4‚ x5‚ x6g, y2 = fx5‚ x6‚ x8‚ x9g, y3 = fx1‚ x4‚ x7‚ x10g, y4 =
fx2‚ x5‚ x7‚ x8‚ x11g, y5 = fx3‚ x6‚ x9‚ x12g, and y6 = fx10‚ x11g.

In a solution C0 to a metagenomic classification problem viewed as a set cover problem (X‚ C), each read

in X is annotated to a node in C0 � C. Such a taxonomic annotation is not necessarily unique, and there may

still be ambiguities in the classification of the metagenomic sample. For the problem instance from

Example 1, the smallest solution is fy3‚ y4‚ y5g, which implies the taxonomic annotation of reads x1, x4, and

x10 to node y3, reads x2, x5, x8, and x11 to node y4, reads x3, x6, x9, and x12 to node y5, and read x7 to either

node y3 or node y4 in the reference taxonomy. The greedy algorithm of Johnson (1974) yields the ap-

proximate solutions fy1‚ y4‚ y5‚ y3g and fy1‚ y4‚ y5‚ y6g.
The taxonomic annotation of a metagenomic sample can thus be seen as the reduction, and ideally the

removal, of ambiguity in the identification of the reads in the metagenomic sample, where a read is

ambiguous if it is annotated to more than one node in a reference taxonomy. Viewing the metagenomic

classification problem as a set cover problem, an element of X is ambiguous if it belongs to more than one

subset of the collection C0 � C. The subsets of a set cover overlap on ambiguous elements.

Definition 4. Let X be a finite set and let C be a collection of subsets of X whose union is X. The

overlap of a set cover C0 � C is the total size of the subsets minus the size of X.

FIG. 2. Left: A metagenomic classification problem viewed as a set cover problem. X is the set of reads from a

metagenomic sample, and C is the collection of candidate nodes in the reference taxonomy with the least classification

error for some reads from the metagenomic sample. Right: The smallest solution to the set cover problem instance.
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Let the size of a set cover be the number of subsets of X that it contains, and let the total size of a set

cover be the total size of the subsets of X that it contains. This corresponds to set cover problems I and II in

Johnson (1974). It turns out that a set cover of smallest size does not necessarily have the least overlap,

while a set cover of smallest total size always has the least overlap.

Proposition 1. A set cover with the least number of subsets does not necessarily have the least

overlap.

Proof. Let X = f1‚ . . . ‚ ng and assume, without loss of generality, that n = 2k for k � 3. Let S be the

following collection of subsets of X:

f1‚ 2g‚ f3‚ 4g‚ . . . ‚ fn - 1‚ ng‚ f1‚ . . . ‚ n - 1g‚ f2‚ . . . ‚ ng

The set cover f1‚ . . . ‚ n - 1g‚ f2‚ . . . ‚ ng has size 2, which is the smallest possible for S and X, and

overlap n. The set cover f1‚ . . . ‚ n - 1g‚ fn - 1‚ ng also has size 2, but it has overlap 1. Same for the set

cover f1‚ 2g‚ f2‚ . . . ‚ ng, and S and X have no other set cover of size 2. However, the set cover

f1‚ 2g‚ f3‚ 4g‚ . . . ‚ fn - 1‚ ng has size n=2 and overlap 0, which is the least possible overlap. -
The following result follows directly from Definition 4.

Corollary 2. A set cover with the least total size of subsets has the least overlap.

Based on the solution of a set cover problem with the least total size of subsets, the abundance profile of a

metagenomic sample is given by the proportion of reads mapped to each node in the set cover, adjusted by a

uniform distribution of any still ambiguous reads among all the nodes in the set cover that they are mapped to.

Example 2. The relative abundance profile of the solution to the set cover view of the metagenomic

classification problem of Example 1 is as follows:

� y3 has a relative abundance of (1 + 1 + 0:5 + 1)=12 = 29:17%
� y4 has a relative abundance of (1 + 1 + 0:5 + 1 + 1)=12 = 37:50%
� y5 has a relative abundance of (1 + 1 + 1 + 1)=12 = 33:33%

4. EXPERIMENTAL RESULTS

We have implemented the set cover approach to taxonomic annotation in a next release of the TANGO

software (Clemente et al., 2011; Alonso et al., 2013), which belongs in the BioMaS (Fosso et al., 2015) and

MetaShot (Fosso et al., 2017) pipelines. The new implementation of TANGO consists of the following:

� a first Python script for extracting the candidates matches for each read from the BLAST output,
� a second Python script for taxonomic annotation using the NCBI Taxonomy (Federhen, 2012, 2015),

based on the ETE Toolkit (Huerta-Cepas et al., 2016),
� a third Python script for taxonomic annotation using the Greengenes taxonomy (McDonald et al.,

2012),
� fourth Python script for resolving any remaining ambiguities by finding an exact solution to a set cover

problem with the least total size of subsets, based on Gurobi Optimizer (Gurobi Optimization, Inc., 2017), and
� a fifth Python script for obtaining the relative abundance profile of the metagenomic sample.

While the second and third scripts process the input metagenomic sample one-sequence-read-at-a-time,

the fourth script processes the output of the second or third script for the whole set of reads.

When using BLAST to map the reads to target sequences in the chosen reference taxonomy, the

candidate matches for a read are those with the same E-value as the top hit. Notice that TANGO can be

used with any read mapping tool alternative to BLAST [see Li and Homer (2010); Schbath et al. (2012) for

a survey] by adapting the first script to the output format of the particular tool. Notice also that TANGO can

be used for the taxonomic annotation of both amplicon reads (Tringe and Hugenholtz, 2008), with an

amplicon reference taxonomy such as RDP (Cole et al., 2014), Greengenes (McDonald et al., 2012), or

SILVA (Quast et al., 2013), and shotgun reads (Metzker, 2010), with a whole-genome reference taxonomy

such as the NCBI Reference Sequence database (O’Leary et al., 2016).
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To assess the reduction in ambiguity of the set cover approach as opposed to the TANGO approach to

taxonomic annotation, we have classified a representative subset of 302,581 reads from the human microbiome

metagenomic data set of Caporaso et al. (2011) (available from ftp://ftp.microbio.me/qiime/tutorial_files/mov-

ing_ pictures_tutorial-1.9.0.tgz) using the plain TANGO approach, the plain set cover approach, and the com-

bined TANGO plus set cover approach. As illustrated in Figure 3, when mapping the 302,581 reads from the

human microbiome metagenomic data set to the 99,322 microbial sequences in release 13.5 of the Greengenes

taxonomy clustered at 97% identity and classifying them with TANGO, there are no reads with more than three

candidate annotations and, when refining the TANGO output with the set cover approach, the number of

unambiguous reads raises from 300,907 to 301,101, the number of reads with two candidate annotations

drops from 200 to only 9, and the number of reads with three candidate annotations drops from 3 to 0.

Furthermore, to also assess the influence of the reference taxonomy in the taxonomic annotation of the

metagenomic data set, we have mapped these 302,581 reads using release 2.2.31 of BLAST (Altschul et al.,

1990) to the microbial sequences in release 13.5 of the Greengenes taxonomy (McDonald et al., 2012)

clustered at various identity percent values, ranging from 61% to 100% (Table 4). The reduction in

ambiguity follows a similar pattern: at 99% identity, the number of unambiguous reads raises from 300,916

to 301,111, the number of reads with two candidate annotations drops from 193 to only 1, and the number

of reads with three candidate annotations drops from 3 to 0, and, at 100% identity, the number of un-

ambiguous reads raises from 300,941 to 301,109, the number of reads with two candidate annotations drops

from 171 to only 6, and the number of reads with three candidate annotations drops again from 3 to 0.

Finally, we have computed the relative abundance profiles at the phylum rank of the BLAST matches, the

TANGO taxonomic annotations, the nontaxonomic annotations with the set cover approach, the TANGO

taxonomic annotations refined with the set cover approach and, for reference, the QIIME taxonomy assignment

using open-reference OTU picking (Navas-Molina et al., 2013; Rideout et al., 2014), for the 302,581 reads from

the human microbiome metagenomic data set and the 99,322 microbial sequences of the Greengenes taxonomy

clustered at 97% identity. As can be seen in Table 5, the four relative abundance profiles are consistent, with

only minor differences between them and the QIIME relative abundance profile.
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FIG. 3. Histogram of BLAST matches, TANGO taxonomic annotations, nontaxonomic annotations with the set cover

approach, and TANGO taxonomic annotations refined with the set cover approach, for the 302,581 reads from the

human microbiome metagenomic data set and the 99,322 target sequences of the Greengenes taxonomy clustered at

97% identity. The rightmost bars correspond to 16 or more candidate annotations.
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Table 4. Average Ambiguity of BLAST Matches, TANGO Taxonomic Annotations, Nontaxonomic

Annotations with the Set Cover Approach, and TANGO Taxonomic Annotations Refined

with the Set Cover Approach, for the 302,581 Reads from the Human Microbiome Metagenomic

Data Set and the Greengenes Taxonomy Clustered at Various Identity Percent Values

% Identity

Target

sequences

Ambiguity

Matches BLAST TANGO Set cover TANGO+

61 22 24,094 1.00012 1.00000 1.00012 1.00000

64 33 76,859 1.00007 1.00000 1.00007 1.00000

67 53 166,183 1.00028 1.00000 1.00028 1.00000

70 125 191,686 1.00388 1.00000 1.00388 1.00000

73 267 268,298 1.00806 1.00000 1.00803 1.00000

76 554 292,793 1.03580 1.00012 1.03575 1.00001

79 1165 297,070 1.04455 1.00015 1.04441 1.00000

82 2496 300,709 1.07380 1.00017 1.05724 1.00000

85 5088 300,998 1.08585 1.00057 1.07031 1.00000

88 10,544 301,067 1.21320 1.00038 1.07313 1.00000

91 22,090 301,096 1.76339 1.00026 1.15928 1.00000

94 46,256 301,109 3.91215 1.00082 1.34226 1.00000

97 99,322 301,110 16.97940 1.00068 1.24180 1.00003

99 203,452 301,112 64.43890 1.00066 1.40596 1.00000

100 1,262,986 301,115 161.81900 1.00059 1.47213 1.00002

The number of target sequences and the number of BLAST matches are also shown.

Table 5. Relative Abundance Profile of BLAST Matches, TANGO Taxonomic Annotations,

Nontaxonomic Annotations with the Set Cover Approach, TANGO Taxonomic

Annotations Refined with the Set Cover Approach, and QIIME (Open-Reference OTU Picking)

for the 302,581 Reads from the Human Microbiome Metagenomic Data Set

and the Greengenes Taxonomy Clustered at 97% Identity

Taxonomic rank BLAST TANGO Set cover TANGO+ QIIME

Archaea 0.013284 0.013284 0.013284 0.013284 0.015510

Crenarchaeota 0.013284 0.013284 0.013284 0.013284 0.015510

Bacteria 99.986716 99.986716 99.986716 99.986716 99.957297

Acidobacteria 0.074225 0.074391 0.074391 0.074391 0.036466

Actinobacteria 10.982357 10.982365 10.982365 10.982365 8.929160

Armatimonadetes 0.006642 0.006642 0.006642 0.006642 0.002070

Bacteroidetes 26.141444 26.141609 26.141443 26.141609 27.918210

Chloroflexi 0.091996 0.091993 0.091993 0.091993 0.018201

Cyanobacteria 2.564576 2.564843 2.564511 2.564843 1.989813

Deferribacteres 0.001328 0.001328 0.001328 0.001328 0.001742

Firmicutes 32.500312 32.463552 32.539437 32.463552 29.932524

Fusobacteria 3.802929 3.802929 3.802929 3.802929 4.529422

Gemmatimonadetes 0.029723 0.029889 0.029557 0.029889 0.001994

Planctomycetes 0.034207 0.034207 0.034207 0.034207 0.008272

Proteobacteria 21.029588 21.025871 21.028528 21.025871 25.774641

Spirochaetes 0.064096 0.064096 0.064096 0.064096 0.048609

Synergistetes 0.082141 0.119558 0.044834 0.119558 0.035557

Tenericutes 0.052810 0.052805 0.052805 0.052805 0.047571

Verrucomicrobia 2.395138 2.395138 2.395138 2.395138 0.601991

[Thermi] 0.085683 0.085683 0.085683 0.085683 0.054147

Other 0.047521 0.049817 0.046829 0.049817 0.026906

Unassigned 0.000000 0.000000 0.000000 0.000000 0.027193

Other 0.000000 0.000000 0.000000 0.000000 0.027193

All numbers are percentages.
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5. CONCLUSION

We have addressed two potential sources of bias in the taxonomic annotation of metagenomic samples,

which is usually done by first mapping the reads to the reference sequences and then classifying each read

at a node in the clade of the LCA of the candidate sequences in the reference taxonomy with the least

classification error. On the one hand, we have shown that the reference taxonomy being balanced or

imbalanced does not affect the balance of the metagenomic classification problem, and we also shown that

the Rand index is a better indicator of classification error for metagenomic classification problems than the

often used area under the ROC curve and F-measure. On the other hand, we have reduced the taxonomic

annotation problem for a whole metagenomic sample to a set cover problem, for which a logarithmic

approximation can be obtained in linear time and an exact solution can be obtained by integer linear

programming, and we have shown that a solution to the set cover problem with the least total size of subsets

minimizes the ambiguity in the taxonomic annotation of the reads in a metagenomic sample.

We have also developed a proof-of-concept implementation of the set cover approach to taxonomic

annotation in a next release of the TANGO software, as a series of Python scripts. Experimental results on a

human microbiome metagenomic data set using BLAST and the latest release of the Greengenes taxonomy

show that the set cover approach further reduces ambiguity in the taxonomic annotation obtained with

TANGO without distorting the relative abundance profile of the metagenomic sample.

Future work includes extending the computation of balance ratio and total number of correct taxonomic

annotations to the NCBI Taxonomy, taking ancestry relationships among the nodes in the reference

taxonomy into account in the set cover formulation of the taxonomic annotation problem and last, but not

least, extending the set cover problem formulation of the taxonomic annotation problem to a nontaxonomic

metagenomic classification problem, with reference sequences but without a reference taxonomy.
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