Skip to main content

NemoLib: A Java Library for Efficient Network Motif Detection

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10330))

Abstract

A network motif is defined as an overabundant subgraph pattern in a network and has been applied in various biological and medical problems. Various network motif detection algorithms and tools are currently available. However, most existing software programs are outdated, incompatible with modern operating systems, or do not provide sufficient operation instructions. Furthermore, most tools provide limited information regarding network motifs, which necessitates post-processing program to apply to real problems. Consequently, the lack of usability brings a certain amount of skepticism about the relevance of network motifs in investigating real biological problems. Therefore, this paper introduces NemoLib (network motif library) as a general purpose tool for detection and analysis of network motifs. NemoLib is highly programmable Java library which provides for extensibility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albert, I., Albert, R.: Conserved network motifs allow protein-protein interaction prediction. Bioinformatics 20(18), 3346–3352 (2004)

    Article  Google Scholar 

  2. Callebaut, W.: Scientific perspectivism: a philosopher of science’s response to the challenge of big data biology. Stud. Hist. Philos. Biol. Biomed. Sci. 43(1), 69–80 (2012)

    Article  Google Scholar 

  3. Chen, J., Hsu, W., Lee, M., Ng, S.: NeMoFinder: dissecting genome-wide protein-protein interactions with meso-scale network motifs. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, pp. 106–115 (2006)

    Google Scholar 

  4. Chen, J., Hsu, W., Lee, M.L., Ng, S.K.: Labeling network motifs in protein interactomes for protein function prediction. In: International Conference on Data Engineering, pp. 546–555 (2007). Biological networks like PPI (protein-protein interaction) contain small networks with higher occurrences than those expected by chance. Small network design can help uncover the design of the complex network

    Google Scholar 

  5. Dobrin, R., Beg, Q.K., Barabasi, A.L., Oltvai, Z.N.: Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinform. 5, 10 (2004). The authors presents that the two motif types of feed-forward and bi-fan are aggregate into homologous motif clusters in the transcriptional regulatory network of the bacterium, Escherichia coli

    Article  Google Scholar 

  6. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol. 4453, pp. 92–106. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71681-5_7

    Chapter  Google Scholar 

  7. Junker, B.H., Schreiber, F.: Analysis of Biological Networks. Wiley, Hoboken (2008)

    Book  Google Scholar 

  8. Kashani, Z., Ahrabian, H., Elahi, E., Nowzari-Dalini, A., Ansari, E., Asadi, S., Mohammadi, S., Schreiber, F., Masoudi-Nejad, A.: Kavosh: a new algorithm for finding network motifs. BMC Bioinform. 10(1), 318 (2009). 19799800

    Article  Google Scholar 

  9. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating sub-graph concentrations and detecting network motifs. Bioinformatics 20, 1746–1758 (2004). 15001476

    Article  Google Scholar 

  10. Kim, W., Diko, M., Rawson, K.: Network motif detection: algorithms, parallel and cloud computing, and related tools. Tsinghua Sci. Technol. 18(5), 469–489 (2013)

    Article  Google Scholar 

  11. Kim, W., Li, M., Wang, J., Pan, Y.: Essential protein discovery based on network motif and gene ontology. In: Proceedings of IEEE Bioinformatics and Biomedicine, pp. 470–475 (2011). This paper is an application of biological network motifs to detect essential proteins in a PPI network

    Google Scholar 

  12. Lee, W.P., Jeng, B.C., Pai, T.W., Tsai, C.P., Yu, C.Y., Tzou, W.S.: Differential evolutionary conservation of motif modes in the yeast protein interaction network. BMC Genomics 7(1), 89 (2006). 16638125

    Article  Google Scholar 

  13. McKay, B.: Practical graph isomorphism. Congr. Numer. 30, 45–87 (1981)

    MathSciNet  MATH  Google Scholar 

  14. Omidi, S., Schreiber, F., Masoudi-Nejad, A.: Moda: an efficient algorithm for network motif discovery in biological networks. Genes Genet. Syst. 84(5), 385–395 (2009). This paper, while not explicitly stating it, seems to discuss how to find network motifs in parrallel. This incorporates their algorithm, MODA, which utilizes recognition of pattern growth to expand beyond their 8 node target limit. Well, it is not a parallel algorithm. (added by wkim)

    Article  Google Scholar 

  15. Przulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20(18), 3508–3515 (2004)

    Article  Google Scholar 

  16. Ribeiro, P., Silva, F., Kaiser, M.: Strategies for network motifs discovery. In: Fifth IEEE International Conference on e-Science, e-Science 2009, pp. 80–87 (2009). iD: 1

    Google Scholar 

  17. Schreiber, F., Schwobbermeyer, H.: MAVisto: a tool for the exploration of network motifs. Bioinformatics 21, 3572–3574 (2005). 16020473 Serial Algorithm (added 1/23/2013)

    Article  Google Scholar 

  18. Wernicke, S., Rasche, F.: FANMOD: a tool for fast network motif detection. Bioinformatics 22, 1152–1153 (2006). 16455747

    Article  Google Scholar 

  19. Wuchty, S., Oltvai, Z.N., Barabasi, A.L.: Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat. Genet. 35(2), 176–179 (2003). http://dx.doi.org/10.1038/ng1242

    Article  Google Scholar 

  20. Xie, Z.R., Hwang, M.J.: An interaction-motif-based scoring function for protein-ligand docking. BMC Bioinform. 11(1), 298 (2010)

    Article  Google Scholar 

  21. Zhang, L., King, O., Wong, S., Goldberg, D., Tong, A., Lesage, G., Andrews, B., Bussey, H., Boone, C., Roth, F.: Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol. 4(2), 6 (2005). 15982408

    Article  Google Scholar 

  22. Zhang, Y., Xuan, J., de los Reyes, B.G., Clarke, R., Ressom, H.W.: Network motif-based identification of breast cancer susceptibility genes. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5696–5699. IEEE, August 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew Andersen or Wooyoung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Andersen, A., Kim, W. (2017). NemoLib: A Java Library for Efficient Network Motif Detection. In: Cai, Z., Daescu, O., Li, M. (eds) Bioinformatics Research and Applications. ISBRA 2017. Lecture Notes in Computer Science(), vol 10330. Springer, Cham. https://doi.org/10.1007/978-3-319-59575-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59575-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59574-0

  • Online ISBN: 978-3-319-59575-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics