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Abstract. New threats to networks are constantly arising. This justi-
fies protecting network assets and mitigating the risk associated with
attacks. In a distributed environment, researchers aim, in particular, at
eliminating faulty network entities. More specifically, much research has
been conducted on locating a single static black hole, which is defined
as a network site whose existence is known a priori and that disposes of
any incoming data without leaving any trace of this occurrence. However,
the prevalence of faulty nodes requires an algorithm able to a) identify
faulty nodes that can be repaired without human intervention and b)
locate black holes, which are taken to be faulty nodes whose repair does
require human intervention. In this paper, we consider a specific attack
model that involves multiple faulty nodes that can be repaired by mobile
software agents, as well as a virus v that can infect a previously repaired
faulty node and turn it into a black hole. We refer to the task of repair-
ing multiple faulty nodes and pointing out the location of the black hole
as the Faulty Node Repair and Dynamically Spawned Black Hole Search.
We first analyze the attack model we put forth. We then explain a) how
to identify whether a node is either 1) a safe node or 2) a repairable
faulty node or 3) the black hole that has been infected by virus v during
the search/repair process and, b) how to perform the correct relevant
actions. These two steps constitute a complex task, which, we explain,
significantly differs from the traditional Black Hole Search. We continue
by proposing an algorithm to solve this problem in an asynchronous
ring network with only one whiteboard (which resides in a node called
the homebase). We prove the correctness of our solution and analyze its
complexity by both theoretical analysis and experiment evaluation. We
conclude that, using our proposed algorithm, b + 4 agents can repair all
faulty nodes and locate the black hole infected by a virus v within finite
time, when the black hole appears in the network before the last faulty
node is repaired. Our algorithm works even when b, the number of faulty
nodes, is unknown a priori.
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1 Introduction

Over the past few years, as cloud-based services have become prevalent, so has
the need for effective diagnosis of all-too-frequent network anomalies and faults.
As cloud servers involving multiple data centers are usually geographically dis-
persed (thus not physically coupled), locating a network fault physically may be
expensive and difficult, if not impossible. Using software agents to locate and/or
repair network faults becomes a reasonable solution and thus has attracted the
attention of researchers, especially in distributed computing [31]. Many types
of faults exist in a network, such as black holes (e.g., [9, 15, 19] ), repairable
black holes (e.g., [8, 12]), faulty agents (e.g., [5, 23]), etc. Among these, a black
hole is a severe and pervasive problem. A black hole models a computer that
is accidentally off-line or a network site in which a resident process (e.g., an
unknowingly-installed virus) deletes any visiting agents or incoming data upon
their arrival without leaving any observable trace [16].

In practice, many computer faults/virus cannot be completely removed by
anti-virus software: After a repair, a previously infected node may still be more
vulnerable than the ones that have never been infected, and can be easily re-
infected. For instance, a hacker injects into a computer host a virus that can
delete any incoming data and that may later be removed by an anti-virus agent.
However, after repair, an unknown vulnerability remains on that host and it en-
ables the hacker’s next attack. Indeed, with fast spreading worms mentioned in
[33] (such as W32/CodeRed, Linux/Slapper, W32/Blaster or Solaris/Sadmind),
a host can be exploited only if the system has a vulnerability known a priori.
Such virus behaviour is commonly referred to as vulnerability dependency. More
generally, in cloud computing, the term vulnerability refers to the flaws in a sys-
tem that allow an attack to be successful [25]. The vulnerability security issue
has been widely discussed in research works such as [1, 6, 24].

Cooper et al. [8] first introduced a type of weaker black hole, which he called
a hole, that eliminates any incoming data but can be repaired by the first en-
countering agent. Assuming vulnerability dependency, the hacker can then inject
an even more powerful virus and turn this repaired host into a genuine (i.e., un-
repairable without human intervention) black hole at some point in the future.
Our work originates in that attack model. A black hole is still taken to be a node
that is not repairable without human intervention. But to avoid any ambiguity
around the term “hole”, we will refer to a node with abnormalities that can be
repaired by a software agent as a faulty node (rather than a hole). In this pa-
per, we introduce the Faulty Node Repair and Dynamically Spawned Black Hole
Search problem (repair and search problem for brevity).

In our new attack model, there are multiple faulty nodes. Each such node
eliminates any incoming data and can be repaired upon being visited by an
antivirus agent who, in effect, “dies” at the end of this repair. That is, following
Cooper [8], we assume there is a cost for repairing a fault, namely, the repairing
agent is unable to continue exploring the network. Furthermore, we assume that
when multiple antivirus agents simultaneously enter a faulty node, they all die
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at the end of the repair.4. We assume this worst case scenario for the design of
our solution to the proposed repair and search problem. Obviously, fewer agents
are required in less damaging cases.

In our attack model, a faulty node, once repaired, behaves like a safe one but
remains vulnerable and can be infected again after attacked by what we call a
gray virus. A gray virus (GV for brevity) is a piece of malicious software that
can infect a repaired node (due to the latter’s vulnerability) by residing in it and
turning it into a black hole. In this paper, we consider what we call a one-stop
GV , that is, a virus that permanently resides in the node it infects and thus
cannot harm other nodes. (More generally, a multi-stop gray virus can infect
multiple repaired nodes.) A GV is taken to have no destructive power on a safe
node or link. Here, we consider a single one-stop GV that infects a single faulty
node. That is, we consider searching for a single black hole. (More generally,
there could be multiple black holes resulting from one or more multi-stop GV s.)
Furthermore, in this paper, we specifically study the search and repair problem
in an asynchronous ring network.

The solution we propose for this version of the repair and search problem uses
a team of mobile agents to repair all faulty nodes and locate the single black
hole (by marking the edges leading to it). These agents have limited computing
capabilities and bounded storage. They all obey an identical set of behavioural
rules (referred to as the “protocol”), and can move from a node to a neighbouring
node. Also, these agents are anonymous (i.e., do not have distinct identifiers) and
autonomous (i.e., each has its own computing and bounded memory capabilities).
Such characteristics are systematically adopted for the traditional black hole
location problem in computer networks.

Contrary to the traditional black hole search [32], in which all agents start
in a network knowing a priori that there is one and only one back hole, in our
proposed new attack model, a repaired faulty node can be infected again and
turned into a black hole at any point in time (regardless of the agents traversing
the network and trying to repair faulty nodes). That is, at what time a node
becomes the black hole is unpredictable. Additionally, this unpredictable black
hole may coexist with multiple faulty nodes. This drastically changes the nature
of the black hole search problem in asynchronous networks. That is, the possible
scenarios we must consider are significantly more complex than those associated
with traditional black hole search. Let us briefly elaborate. To locate a black hole
in traditional black hole search in an asynchronous network, there is a commonly-
used technique called cautious walk : a first agent has to leave a “mark” indicating
a potential danger (e.g., a token or a whiteboard message) in its current node
before it moves along a link potentially leading to the black hole. When a second
agent sees this mark, it does not go to visit the same potentially dangerous
node. This technique is used to minimize the loss of mobile agents. The cautious
walk technique points to the fact that the only mechanism used to terminate a
traditional black hole search algorithm is to let at least one agent survive and

4 This is the worst case scenario, which we use to calculate, later in the paper, the
theoretical maximum number of agents sacrificed to solve the problem.
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successfully traverse the entire network except one node. This only unexplored
node (i.e., which has never been visited by any agent) is then declared to be the
black hole. But when there are multiple faulty nodes in the network, even when
more sophisticated communications between agents are available, none of the
existing black hole search algorithms solve the repair and search problem. This
is because, in these algorithms, there is no mechanism to distinguish a black hole
from a faulty node. Consequently, given a faulty node would be treated the same
way as the black hole, no agent is able to successfully explore (n− 1) nodes and
survive.

2 Related Work

The problem of finding the most efficient solution (with respect to time and
minimum number of agents required) for the black hole search is studied in
an edge-labeled undirected synchronous network using 2 co-located agents us-
ing the face-to-face communication model in [9–11, 26, 27]. Czyzowicz et al. [10]
show any efficient solution is NP-hard, and propose a 9.3-approximation algo-
rithm for it. Klasing et al. [27] prove that this problem is not a polynomial-time
approximation within any constant factor less than 389

388 (unless P=NP), and give
a 6-approximation algorithm. Czyzowicz et al. present a 5

3 -approximation algo-
rithm in an arbitrary tree without a map in [9]. Furthermore, Klasing et al. [26]
provide a 3 3

8 -approximation algorithm for an arbitrary network with the help of
a network map.

The black hole search problem in an asynchronous network is much more
complex and more significant in practice. Dobrev et al. [20] introduce an algo-
rithm to locate the black hole in an un-oriented ring network with dispersed
agents in O(kn + n log n) moves. For some other common interconnection net-
works, Dobrev et al. [13] present a general strategy to locate the black hole in
O(n) moves by using 2 co-located agents. Shi et al. [32] prove that 2 co-located
agents, each with O(1) tokens, can locate the black hole in Θ(n) moves for hyper-
cube, torus and complete networks. Moreover, for an arbitrary unknown network
graph with known n, Dobrev et al. [14] present an algorithm using ∆+1 agents,
one token per agent and O(∆2M2n7) moves to locate the black hole. Here, M
is the total number of edges of the graph. In an arbitrary network, Dobrev et
al. [17] prove that in the whiteboard model, the black hole search problem can
be solved with ∆+ 1 agents in Θ(n2) moves without network maps. Balamohan
et al. [3] prove that in an unknown graph with a constant number of agents, at
least ∆+2 agents and at least 3 tokens are necessary in total to locate the black
hole, where ∆ is the maximum node degree.

Multiple black hole search (MBHS for brevity) problem has been studied by
Cooper et al. [7] in synchronous networks. Later, the same authors [8] present
solutions to the multiple repairable black holes (faulty nodes) problem. D’Emidio
et al. [12] study the same problem under the same condition as [8] with a change
of one assumption: if more than one agent enters the same faulty node at the
same time, all agents die. Flocchini et al. tackle the MBHS problem via a subway
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model in [21]. The authors use carriers (the subway trains) to transport agents
(the passengers) from node to node (subway stops), and the black holes no longer
affect the carriers and can only eliminate the agents. After assuming that the
graph is strongly connected after all black holes have been removed, Kosowski
et al. [28] study a synchronous network with arbitrary size, while Flocchini et
al. [22] study the MBHS problem with asynchronous dispersed agents.

Cai et al. [5] study a network decontamination problem with a black virus,
which is related to both black hole search and intruder capture problems. The
authors define a black virus as a dangerous process that is initially resident in
the network. A black virus behaves like a moving black hole that can destroy
any arriving agent and can move from node to node. However, unlike a black
hole that cannot be repaired or destroyed, a black virus can be eliminated when
it enters into a node with an anti-viral agent. Luccio et al. [30] consider a mobile
agents rendezvous problem in spite of a malicious agent, which is similar to [18],
which rendezvouses agents in a ring in spite of a black hole. While a malicious
agent in [30] can only block other agents from visiting its resident node and
can move in the network at arbitrary speed, a black hole in [30] can delete
all visiting agents but it cannot move. Královič et al. [29] research a periodic
data retrieval problem using a whiteboard in asynchronous ring networks with
a malicious host. The malicious host can manipulate the agent by storing and
copying it and releasing the replica later to confuse other agents, or by killing an
agent. Bampas et al. [4] improve this result by showing that at least 4 agents are
required when the malicious host is a gray hole, which can choose to behave as
a black hole or as a safe node, and 5 agents are necessary when the whiteboard
on the malicious host is unreliable.

3 Premises

In this section, we present our assumptions for the solution we propose for the
Faulty Node Repair and Dynamically Spawned Black Hole Search problem in an
asynchronous ring network.

Let G = (E, V ) denote an edge-labeled undirected ring network, where E
is the set of edges, V is the set of network nodes and n (n = |V |) denotes
the number of nodes in G. (u, v) ∈ E represents the link from u to v, where
u ∈ V and v ∈ V and u to v are neighbouring nodes. The links and nodes in
the network enforce a FIFO rule, that is, mobile agents cannot overtake each
other when traveling in the same direction over the same link or node. Without
this assumption, systematic termination of a repair and search algorithm with
minimal number of agents cannot be guaranteed.

Let A denote a group of k (k ≥ 2) identical mobile agents initially waking up
in the same node referred to as their homebase (hb). This homebase is assumed
to be safe in the ring network: it is neither faulty nor a black hole. These agents
have limited computing capabilities and bounded storage5, obey the same set

5 That is, minimal storage just sufficient to keep track of the number of moves an
agent has performed during each exploration of a new node.
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of behavioural rules (the “protocol”), and can move from node to node via
neighbouring nodes. We make no assumptions on the amount of time required
by an agent’s actions (e.g., computation or movement, etc.) except that it is
finite. Thus, the agents are asynchronous. Also, these agents are anonymous
(i.e., have no ID) and know the topology of the network in which they reside.
Most importantly, these agents have no knowledge of the number of faulty nodes.
We let Vf ⊆ V denote the set of b (b < n) faulty nodes (the homebase being,
by design, free of fault). Most importantly, in this paper we postulate Vf is not
dynamic: contrary to the black hole, faulty nodes are not dynamically spawned
but all already exist at the start of the algorithm. Once a faulty node has been
repaired, it is referred to as a repaired node. We emphasize that, unlike a safe
node, a repaired node can be infected by a GV and turn into a black hole.

We postulate that a whiteboard [16] (i.e., shared memory) in the hb offers
the only means of communication between agents. This whiteboard in hb can be
accessed by agents in fair mutual exclusion [2].

We assume the network is an un-oriented ring, that is, there is no agree-
ment on a common sense of direction among the agents [16]. However, using
the whiteboard in hb, all agents shall be able to agree on what corresponds to
the clockwise direction (also referred to as the left direction) and the counter-
clockwise direction (also referred to as the right direction) of the ring. In order
to ease the understanding of our algorithm’s description, N0, N1, ... Nn−1 are
used to label the nodes of the ring sequentially using the left direction starting
from the hb. Such labelling is only used to improve the understandability of our
explanations and proof; it is not required by our algorithm per se.

Observation 1 When a repaired node gets reinfected by a GV only after all
faulty nodes have been repaired, the Repair and Search problem becomes a faulty
node repair problem followed by a dynamic single black hole search problem for
which all the possible locations of the black hole are known a priori since only
repaired nodes can be reinfected.

In the rest of this paper, we are first and foremost interested in studying
the more complex scenario in which a one-stop GV may infect a repaired node
before the last faulty node is repaired. It is the coexistence in the network of
a black hole with at least one faulty node that makes the Repair and Search
problem complex. We will provide a solution for this challenging scenario, present
a theoretical proof of correctness and complexity analysis for it, as well as discuss
its simulation. The simpler scenario in which the black hole appears only after
all faulty nodes are repaired is specifically discussed in Section 7.

4 Algorithm and Solutions

4.1 General Description

We postulate that the status of each node in a network can be either “un-
explored” or “faulty” or “repaired” or “black hole” or “safe” or “unknown”.
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Furthermore, we define the general goal of each agent to consist in exploring
a new node (which we also call an unexplored node) and updating the white-
board upon returning to the hb. During this exploration, an agent may die after
repairing a faulty node, or in a black hole or survive and successfully return
to the hb and restart the procedure of exploring a new node. This “new ex-
ploration/update whiteboard” task gets repeated until the status of each node
is entered (or equivalently, marked) as either a repaired node, or a black hole
or a safe node. In order to prevent multiple agents dying in the same faulty
node or black hole, we develop a status marking process as part of the protocol
agents execute. The following paragraphs, as well as Tables 1 and 2, explain this
process:

When a first agent A wakes up at hb, it initializes the whiteboard as shown
in Table 1. All nodes are initially unknown nodes. Agent A then puts a leaving
mark (?) in the cell of First Agent for node N1, and goes to visit node N1 going
left, which is recorded as (l) after its ? mark. After visiting node N1, agent A
immediately attempts to return to hb. If and when A returns to hb, agent A
changes its leaving mark to a returned mark (

√
) (Table 2 shows examples).

Table 1. Homebase Whiteboard Initial State

Node List First Agent Second Agent Third Agent Fourth Agent Repaired Node List

N1

...

Ni−1

Ni

...

Nn−j

Nn−j+1

...

Nn−1

Table 2. An example of how agents indicate their status.

Node List First Agent Second Agent

N1
√

(l)

N2 ×
√

(l)

...

Ni ?(l) ?(l)

...

Nn−2 ?(r)

Nn−1
√

(r) ?(r)

By repeating this process, agent A explores nodes N2, N3, ..., Ni. Other
agents, such as B, may wake up any time during A’s explorations. B then
searches the whiteboard starting at the top row. When B sees a leaving mark
for node Ni, agent B attempts to go to node Ni to confirm the status of that
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node. B puts a leaving mark in the Second Agent column for node Ni. After
visiting node Ni, agent B immediately attempts to return to hb and, if suc-
cessful, changes its leaving mark into a returned mark. By the time agent B
returns, agent A may have returned (i.e., A’s mark has changed from leaving
to returned), which entails node Ni is not a faulty node. Otherwise, because of
the FIFO rule, agent B concludes that agent A has died after repairing faulty
node Ni. (If B made it back to hb, then neither A or B encountered the black
hole.) In this situation, B will change the leaving mark (?) of A into a died mark
(×) and mark Ni as a repaired node under the Repaired Node List column (see
Scenario S5 in Table 3).

Table 3. Scenarios for agents leaving and returning to the homebase, as marked on
the whiteboard.

Scenarios First Agent Second Agent Targeted node is No. of agents of status unknown

S1 ? (l/r) Unknown 1

S2
√

(l/r) Safe 0

S3 ? (l/r) ? (l/r) Unknown 2

S4
√

(l/r) ? (l/r) Safe 1

S5 ×
√

(l/r) Repaired node 0 (1 died)

S6
√

(l/r)
√

(l/r) Safe 0

?: an agent of status unknown, that left to explore a node.
×: an agent that died either in a black hole or after repairing a faulty node.√

: an agent that has returned to hb.
(l/r): left or right; each agent actually using only one of these 2 directions at any point
in time.

While agents A and B are out exploring in the left direction, agents C and D
may wake up. C and D immediately start exploring the ring in the right direction
(?(r)) to visit nodes Nn−1, Nn−2, ..., Nn−j . This mechanism is designed to avoid
unnecessary loss of agents (i.e., if the black hole has just appeared, sending more
agents in the same direction as A and B will lead to agent loss). That is, if 2
agents are already exploring in one direction, a newly awake agent will start
exploring the ring in the opposite direction. Furthermore, as long as the ring
still has at least one unknown node and 4 agents are currently exploring such
nodes, a newly awake up agent will just wait at hb until at least 1 of these 4
agents returns. This mechanism is used to minimize the total agent moves, that
is, to minimize the network traffic. The details are described in Procedure New
Node Exploration (subsection 4.2).

When an agent notices that there is only one unknown node left in the
network, it starts executing Procedure Find the Meeting Node. Eventually 2
agents enter the last unknown node from the left direction and 2 agents from
the right one. If one of these 4 agents dies in the black hole (that would have
just appeared) on its way to check the last unknown node, this last unknown
node is not a black hole. Hence, at least 1 out of the 4 agents left to explore



9

the last unknown node can return to the hb successfully. If the last unexplored
node is the black hole, we need a mechanism to make sure at least one agent is
able to safely return to the hb and somehow conclude that the last unexplored
node is indeed the black hole. This mechanism is described in Procedure Find
the Meeting Node (subsection 4.3) and Procedure Double Check (algorithm 3).

4.2 Procedure New Node Exploration

Whenever an agent returns to the hb, it looks though the node list of the white-
board from the top to the bottom. The agent may find a node to be: unexplored,
that is, a node that has never been visited by any agent, in which case there is
no mark on the whiteboard (i.e., the row of the node in Table 1 is empty); or
repaired, that is, a node that has a

√
under the Second Agent column and a

× mark under the First Agent column (i.e., the Second Agent returned but the
first one did not. See Scenario S5 in Table 3); or safe, that is, a non-faulty node
that has a

√
under the First Agent column (i.e., the First Agent has returned;

see Scenarios S2, S4 and S6 in Table 3); or unknown, that is, a node that has a
? under the First Agent column or both First and Second Agent columns (i.e.,
both agents have left but no agent ever returned. See Scenarios S1 and S3 in
Table 3). The status of a node is considered to be known if it is either safe or
repaired.

While going through the nodes list, if there is any unexplored node, then an
agent A counts pdl, the number of ?(l). It determines its next step accordingly:
If A cannot find an unexplored node, A will finish searching the whole list and
execute Procedure Find The Meeting Node. When at most one agent has left
in the left direction (pdl < 2), agent A leaves in the left direction to visit an
unexplored node or confirm the status of that node. When pdl = 2, the agent
counts pdr, that is, the number of ?(r). If pdr < 2, agent A leaves in the right
direction. When 2 agents are out in each direction, agent A waits at hb until
at least one agent returns. When node Ni is the last unexplored node in the
network, it becomes a meeting node.

4.3 Procedure Find the Meeting Node

Agent A executes Procedure Double Check (see next subsection) if there are no
more unknown nodes left in the network. Otherwise, A counts pd, the number of
agents of status unknown, (or equivalently, status unknown agents) in the entire
list and executes the following accordingly:

1. When pd > 4, A waits at hb.
2. When pd = 4 and the 4 status unknown agents are not exploring the same

node (i.e. all 4 left ? mark on the same node), A waits at hb.
3. When pd = 4 and the 4 status unknown agents have marks for the same

node, A starts Procedure Double Check immediately.
4. When pd < 4 and there are no nodes in Scenario S1: a. If all status unknown

agents are not on the same node, A waits at hb; b. If all status unknown agents
are on the same node, A goes to that node.



10

Algorithm 1 New Node Exploration

1: initialize the whiteboard to Table 1
2: loop
3: if an unexplored node Ni is found then
4: count the number pdl of status unknown agents out in the left direction ?(l)
5: else if no unexplored node is found then
6: execute FIND THE MEETING NODE
7: end if
8: if pdl = 0 then
9: go to node Ni

10: else if pdl = 1 and node Ni−1 is in Scenario S1 of Table 3 then
11: go to node Ni−1

12: else if pdl = 1 and node Ni−1 is in Scenario S4 of Table 3 then
13: go to node Ni

14: else if pd = 2 then
15: count the number pdr of ?(r)
16: leave in the right direction when pdr < 2, otherwise wait at hb
17: end if
18: upon arriving to target node, return to hb immediately, then if successful change

own ?(l/r) into
√

(l/r)
19: if the current agent is the Second Agent and the First Agent is ? then
20: change the ? of the First Agent to ×
21: end if
22: end loop

5. When pd < 4 and there are one or two nodes in Scenario S1, and there is
an unexplored node X between hb and these nodes on either direction, A goes
to X. Otherwise, A waits at hb until one returns.

Upon return to the hb from a node with 4 status unknown agents, A changes
the mark left in third agent column into ×.

4.4 Procedure Double Check

As detailed in Procedure Find the Meeting Node, an agent A will only start
executing Procedure Double Check when A sees that either all nodes’ statuses
are known (either safe or repaired) or all but one nodes’ statuses are known (i.e.,
4?s are on that last node).

Agent A first mark all repaired nodes in Table 1. Then it decides its next
action to take based on the following situations (according to the current marks
in the Third Agent column):

1. If there are already 2 status unknown agents performing Double Check (2
?s in this column), A waits at hb until one of these two agents returns;

2. If there is only 1 status unknown agent currently performing Double Check
(only 1? in this column), A searches this Third Agent column from top to
bottom until it finds an empty cell. If the empty cell is above the status
unknown agent, A checks that node from the left direction (i.e., puts a ?(l)
in the cell, then goes to that node). Otherwise A checks the first repaired
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Algorithm 2 Find the Meeting Node

1: loop
2: count the number of status unknown agents pd
3: if every node is known to be safe or repaired then
4: execute Double Check
5: end if
6: if pd > 4 or pd = 4 and the 4 ? are not on the same node then
7: wait at hb
8: else if pd = 4 and the 4 status unknown agents are on the same node then
9: execute Double Check

10: else if pd < 4 and no node is in Scenario S1 then
11: if all status unknown agents are not on the same node then
12: wait at hb
13: else if all status unknown agents are on the same node then
14: go to this node, from the direction in which there is less than 2 agents
15: end if
16: else if pd < 4 and one/more than one node is in Scenario S1 then
17: go to a reachable node in Scenario S1, otherwise wait at hb
18: end if
19: upon arriving, return to hb
20: if hb is reached and the cell of the Third Agent for the same node is ? then
21: change the third ?(l/r) into ×
22: end if
23: end loop

node on the right side of hb (leaves in the right direction after putting down
a ?(r)). A returns to hb immediately after visiting this target node. Upon
returning to hb, it changes the ? to a

√
.

3. If there is only 1 status unknown agent (only 1? in this column) and all but
one repaired nodes have been checked (all but one cell in the Third Agent
column are marked with

√
), the node marked by that status unknown agent

is the black hole.

5 Theoretical Correctness and Complexity Analysis

Lemma 1. There can be no more than 4 status unknown agents co-existing in
the network as long as at least one node has not been marked on the whiteboard
by any agent. At least 1 of these 4 agents will return to hb.

Proof. In the homebase hb, as long as an agent A can find an unexplored node
in the node list, it always needs to explore a new node (by executing Procedure
New Node Exploration) before it executes any other procedure.

An agent A always searches the node list starting from the top first if at
most one agent has left in the left direction, in which case A will also leave in
the left direction. Otherwise it searches the node list starting from the bottom.
Hence, there will never be more than 2 status unknown agents leaving in the
left direction. Similarly, when A searches from bottom to top of the node list, A
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Algorithm 3 Double Check

1: search the repaired node list
2: if the list is blank then
3: mark all repaired nodes in the list
4: end if
5: while the black hole has not been located do
6: search the Third Agent column
7: if there are 2 ? in this column then
8: wait at hb until an agent returns
9: else if there is 1 ? in this column then

10: search this column from top to bottom until an empty cell of a repaired
node is found

11: if the empty cell is above the ? then
12: go left to that node, upon arriving, return to the hb immediately
13: else if the empty cell is below the ? then
14: search this column from bottom to top until an empty cell of a repaired

node is found, go right to that node, upon arriving, return to the hb
immediately

15: else if an empty cell cannot be found then
16: the black hole is determined to be the node with ? mark
17: ALGORITHM TERMINATES
18: end if
19: else if there is no ? in this column then
20: search this column from top to bottom until an empty cell of a repaired

node is found, go left to that node, upon arriving, return to the hb
immediately

21: end if
22: upon arriving at hb, change its ? into a

√

23: end while

leaves in the right direction if at most one agent has left in the right direction.
If A finds 2 agents have left in both left and right directions, A will wait at hb
until Table 1 is changed by a returned agent (see Line 16 in Procedure New Node
Exploration). Consequently, there will never be an occasion in which any agent
will leave hb when there are two ?s on each side of it. Hence, there cannot be
more than 4 status unknown agents as long as at least one node is unexplored.

We now prove that at least 1 of these 4 agents will return to hb eventually.
It is trivial to observe that all the explored nodes are in one or two consecutive
sections in a ring: when there is no unexplored node remaining in the ring, all
explored nodes are in one consecutive section; otherwise, the two sections of
explored nodes are separated at each end by the hb and a consecutive section
of unexplored nodes. We call these two sections the left part and the right part.
When there are 4 status unknown agents in the network, it can only be the case
that 2 are in the left part and 2 in the right part. According to our assumptions,
we know that once the black hole appears, it can only exist either in the left
part, or in the right part.
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Clearly if the black hole has not appeared yet, the two second-agents (1
on each side) in both parts will return to hb traversing through the section of
the ring with consecutive explored nodes while the two first-agents (1 on each
side) may die if the Last unexplored node happens to be a faulty node. If the
black hole appears in the left part, the second-agent in the right part will return
successfully and the two agents in the left part die in the black hole. Similarly,
if the black hole is in the right part, the second-agent in the left part will return
while the other three die. In summary, no matter when the black hole appears
and no matter where the black hole is, in the process of exploring the Last an
unexplored node, at least 1 of the 4 status unknown agents will return to the hb.

Lemma 2. At most 5 status unknown agents coexist during the time that the
last node in the network is being explored. At least 1 of these 5 status unknown
agents will return to hb.

Proof. When the last unexplored node is being explored, according to Procedure
New Node Exploration line 16, only when there are fewer than 4 status unknown
agents coexisting in the network, a newly waking up agent will decide accordingly
to go to the last unexplored node. Furthermore, according to Procedure Find
The Meeting Node lines 4 and 7, Procedure Double Check can be executed
when either all nodes’ statuses are known or when 4 status unknown agents are
exploring the same node (i.e., the last one in the network). This latter case is
where the fifth agent is needed in the network. Since it is possible, this last node
is a black hole, in which all 4 agents die. In all other cases, a newly waking up
agent waits at hb.

If this last node is the black hole, none of the 4 agents can return. According
to Procedure Double Check a new agent (the 5th) enters the network. As the fifth
status unknown agent in the network it goes to check all but the last node. It
concludes that the last node is the black hole according to Line 10 in Procedure
Double Check. If this last node is not a black hole, the fifth Agent may die
stepping into a black hole that just appeared. However, according to Lemma 1,
at least one of these other 4 agents can successfully explore the last unexplored
node and return to the hb successfully. Eventually one of the two will die in the
black hole while the last one of these 4 survives. Therefore, at least 1 of these 5
status unknown agents will return to hb.

Lemma 3. All faulty nodes will be repaired within finite time.

Proof. If a faulty node Nx has not been repaired, its status shown in the white-
board in hb must be either unexplored or unknown, that is, the exploring agent
either died after repairing a faulty node or in a back hole or has not returned
to hb yet. If Nx is unexplored, according to Lines 4, 9 and 11 in Procedure New
Node Exploration, an agent will explore Nx and any other unexplored node be-
fore it executes the procedure that can lead to the termination of the algorithm.

If Nx is a status unknown node, it can be either in Scenario S1 or S3. When
Nx is in Scenario S1, according to Lines 11 and 13 in Procedure New Node
Exploration, it is either the case that the First Agent returns to hb after exploring
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Nx and marks this node safe on the whiteboard; or a Second Agent will explore
Nx and consequently change the marking on the whiteboard into Scenario S3.

When Nx is in Scenario S3, it may become S4-safe, S5-repaired, S6-safe, or
stay S3-unknown. As proven in Lemma 1, at most 2 nodes may be in Scenario
S3. When 2 nodes are in Scenario S3, at least one agent will return to hb, since
there is only one black hole. This returning agent will change one of the two
Scenario S3 nodes. Consequently, at most 1 node remains in Scenario S3.

For this last unknown node, a third and a fourth agent will go to this node
according to Line 14 in Procedure Find the Meeting Node. As proven in Lemma
2, as long as this node is not a black hole, one of the 4 agents will return to hb.
If this node is the black hole, it must have been a repaired node first. Therefore,
we conclude that all faulty nodes will be repaired within finite time.

Lemma 4. Procedure Double Check locates the black hole correctly.

Proof. Procedure Double Check gets executed in only two situations: 1) all nodes
have known status, 2) only one node is unknown and it has 4 status unknown
agents exploring it. In the former case, according to our initial assumption, the
black hole has already appeared. According to Line 20 in Procedure Double
Check, each new agent or a newly returned (to hb) agent simply leaves to check
each node one by one, and the last repaired node that has no agent returned is
the black hole. In the latter case, a Fifth Agent is needed to continue the Double
Check. As previously proven in Lemma 2, at least 1 of these 5 status unknown
agents will return to hb. If the returning agent is this Fifth Agent, it will continue
checking another node until it returns to hb and notices that there is only one
repaired node with no agent that has returned. If the returning agent is one of
the 4 agents that were marked on the last status unknown node, according to
Line 21 in Procedure Find the Meeting Node, the status of this unknown node
becomes known. Consequently, this latter case becomes the first case. Therefore
the black hole is located.

Lemma 5. b + 4 agents suffice to repair all faulty nodes and locate the black
hole in a ring network using only one whiteboard in the homebase.

Proof. To repair b− 1 faulty nodes, b− 1 agents are necessary and sufficient. In
the worst case, the last unknown node is the black hole and all 4 status unknown
agents die in it, and one more agent is needed to perform the Procedure Double
Check. All other cases are proven in Lemma 2: at least 1 of these 5 agents will
return to hb and locate the black hole. Therefore, b+ 4 agents suffice.

Lemma 6. All faulty nodes can be repaired and the black hole can be located
within O(n2) moves.

Proof. In the worst case, the b faulty nodes are the nodes from Nn−1 to Nn−b

and each node in the ring has been visited by 2 agents in Procedure New Node
Exploration. Therefore, it costs 2∗2∗(1+2+3+4+· · ·+(n−1)) = 2(n−1)(n−2)
moves. The last unknown node may be explored by 4 agents in Procedure Find
the Meeting Node. Hence, at most 4∗2(n−1) moves are performed. In Procedure
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Double Check, each node needs to be visited again, which costs 2(n− 1)(n− 2)
moves. In total, 4 ∗ (n− 1)(n− 2) + 4 ∗ 2(n− 1) = O(n2) moves are needed.

Theorem 1. Algorithm Dynamically Spawned Black Hole Search can repair all
faulty nodes and locate the black hole with b+4 co-located agents in O(n2) moves
using only one whiteboard in the homebase when the black hole appears in the
network before the last faulty node is repaired.

6 Verifying Correctness and Complexity using Simulation

In this section, we present the experimental results obtained from a series of
Java simulations of the proposed algorithm. The experiment is done in a ring
network with only one whiteboard in the homebase node, which can only be
accessed when the agents are in the homebase. All agents start from this home-
base and execute the same protocol as described in the previous sections. We
use the variable faulty posb to capture the percentage of faulty nodes in the
experimental network. Its value ranges from 20% to 40%. Furthermore, in order
to simulate a black hole dynamically-spawned by the GV , each repaired node is
assigned a probability of becoming this black hole.

At the beginning of the exploration, the agents do not know the number of
faulty nodes or their locations.

To make the simulation more realistic, the distance of each link between two
neighbouring nodes are randomly assigned to simulate an asynchronous network;
that is, the time an agent spends on a link is unpredictable but finite. Further-
more, the implementation has a task scheduler that will wake up a sleeping agent
after a random amount of time. This is used to simulate the behaviour of agents
that sleep an unpredictable amount of time in an asynchronous network.
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Our simulation is executed in networks varying from 20 to 100 nodes. The
execution of a simulation is considered to be successful if the location of the
black hole and faulty nodes are correctly marked on the homebase whiteboard.
Otherwise, the simulation is counted as a failure. For each successful simula-
tion, we count the total number of moves that are used to repair all faulty
nodes and locate the black hole. For faulty posb = 20%, 30%, 40% and n =
20, 30, 40, ..., 90, 100, we provide 100 independent successful runs, for a total of
2700 runs. We report that 100 executions were required in order to obtain 100
independent successful runs. In other words, no failures were observed for any of
the settings we tried. The results show that b + 4 agents are sufficient to finish
the repair and search task. Additionally, the test results show that in 14.8% of
the runs the task can be finished using only b+ 3 agents or fewer.

Figure 1 reports on our results for the average number of moves, and displays
the lower and upper bound for the total number of moves for each setting. These
results confirm that O(n2) moves suffice to repair all faulty nodes and locate the
black hole in all simulations. Clearly, (as confirmed in Figure 1) the larger the
network, the more moves are necessary for the task to complete.

We further analyze whether the number of faulty nodes affects the number
of moves. Figures 2 and 3 show that as the number of faulty nodes increases,
the total number of moves also has a slight increase. However, this increase is
not regular. Thus, we conclude the number of faulty nodes does not appear to
be directly correlated to the total number of moves performed by the team of
agents.
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networks)

In summary, the theoretical analysis and simulation results both prove that
all faulty nodes can be repaired and the black hole can be located with b + 4
agents in O(n2) moves using only one whiteboard in the homebase, with no a
priori knowledge of b, the number of faulty nodes.
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7 Discussion on the Dynamic Nature of the Black Hole

In this section, we discuss the special scenario mentioned in Observation 1, that
is, when the black hole only shows up after all faulty nodes have been repaired.
This is a simpler case since the faulty node repair and black hole search problem
that we defined in this paper now becomes a multiple faulty nodes repair followed
by a dynamic black hole search. Executing procedure New Node Exploration is
enough to have all the faulty nodes repaired. The dynamic black hole search
can then be dealt with. It is trivial to illustrate the difference between such a
dynamic black hole search and the traditional black hole search: In traditional
black hole search, the black hole is assumed to exist before any search algorithm
begins. As a result, an agent dies in a black hole after leaving its hb as shown on
the left in Figure 4. In contrast, in a dynamic black hole search, a repaired node
may still be a non-black hole the first time an agent visits it after leaving its hb.
Then, because the exact time at which the one-hop GV turns a repaired node
into a black hole is unpredictable but finite, an agent may die in a dynamically
spawned black hole after checking on another node further down in the network
(e.g., counter clockwise leaving from hb.), that is, while returning to its hb, as
shown in the right figure in Figure 4.

Fig. 4. Difference between searching a Dynamic Spawned Black Hole Search vs. a Static
Black Hole
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Once the black hole shows up in the network, the problem becomes the same
as for the traditional (i.e., static) black hole search problem. Consequently, in
this scenario, locating the dynamically spawned black hole comes at the cost of
1 more agent than the cost of solutions to the traditional black hole problem.

8 Conclusion and Future Work

In this paper, we first present a new attack model involving both faulty nodes and
a gray virus (GV ) that may infect a repaired faulty node at an arbitrary point
in time, turning it into a black hole. We then propose a solution to the Faulty
Node Repair and Dynamically Spawned Black Hole Search problem with only one
whiteboard in an asynchronous ring network with the presence of a GV . Due
to the possible coexistence in the network of faulty nodes with the black hole,
the problem we consider is significantly more complex than the traditional black
hole search (which deals with a single static black hole whose existence must be
known before the search starts). We present proofs for algorithm correctness and
complexity analysis and confirm these using extensive simulations. We conclude
that b + 4 agents can repair all faulty nodes as well as locate the black hole
that is created by a one-stop GV , when the black hole appears in the network
before the last faulty node is repaired. We then discuss the scenario in which the
black hole appears in the network after all faulty nodes have been repaired and
point out the difference between this scenario and the traditional static black
hole search. In this special case, we remark that repairing the faulty nodes is less
complex than when allowing the black hole and the faulty nodes to coexist. Also,
for this special case, searching for the dynamically spawned black hole requires
merely one more agent than solutions to the traditional static black hole search.

A GV that could move from node to node and thus infect multiple repaired
nodes is not discussed in this paper but left as future work. It is important to
notice that in an asynchronous network, the GV may move much faster than
the agents. Consequently, from the agents’ viewpoint, all the repaired nodes
may appear to be black holes. That is, in the case of a multi-stop GV , the
Repair and Search problem becomes a multiple black hole search problem and
thus remains unsolvable in an asynchronous network. We are currently exploring
whether requiring that a multi-stop GV have to kill at least one agent before
being enabled to move could enable a solution for handling a multi-stop GV in
an asynchronous network.
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