
Oh-RAM! One and a Half Round

Atomic Memory

Theophanis Hadjistasi ∗ Nicolas Nicolaou † Alexander Schwarzmann∗

September 9, 2021

Abstract

Implementing atomic read/write shared objects in a message-passing system is an impor-
tant problem in distributed computing. Considering that communication is the most expensive
resource, efficiency of read and write operations is assessed primarily in terms of the needed
communication and the associated latency. The seminal result of Attiya, Bar-Noy, and Dolev
established that two communication round-trip phases involving in total four message exchanges
are sufficient to implement atomic operations when a majority of processors are correct. Sub-
sequently it was shown by Dutta et al. that one round involving two communication exchanges
is sufficient as long as the system adheres to certain constraints with respect to crashes on the
number of readers and writers in the system. It was also observed that three message exchanges
are sufficient in some settings.

This work explores the possibility of devising algorithms where operations are able to com-
plete in three communication exchanges without imposing constraints on the number of par-
ticipants, i.e., the aim is One and half Round Atomic Memory, hence the name OhRam! A
recent result by Hadjistasi et al. suggests that three-exchange implementations are impossible
in the MWMR (multi-writer/multi-reader) setting. This paper shows that this is achievable in
the SWMR (single-writer/multi-reader) setting and also achievable for read operations in the
MWMR setting by “sacrificing” the performance of write operations. In particular, we present
an atomic SWMR memory implementation, where reads complete in three and writes complete
in two communication exchanges. Next, we provide an atomic MWMR memory implementa-
tion, where reads involve three and writes involve four communication exchanges. In light of
the impossibility result these algorithms are optimal in terms of the number of communication
exchanges. Both algorithms are then refined to allow some reads to complete in just two com-
munication exchanges. To evaluate these algorithms we use the NS3 simulator and compare
their performance in terms of operation latency. The algorithms are evaluated with different
topologies and operation loads.

∗University of Connecticut, Storrs CT, USA. Email: theo@uconn.edu, aas@engr.uconn.edu
†IMDEA Networks Institute, Madrid, Spain. Email: nicolas.nicolaou@imdea.org

1

ar
X

iv
:1

61
0.

08
37

3v
2

 [
cs

.D
C

]
 1

6
N

ov
 2

02
0

1 Introduction

Emulating atomic [8] (or linearizable [7]) read/write objects in message-passing environments is an
important problem in distributed computing. Atomicity is the most intuitive consistency semantic
as it provides the illusion of a single-copy object that serializes all accesses such that each read
operation returns the value of the latest preceding write operation. Solutions to this problem are
complicated when the processors are failure-prone and when the environment is asynchronous. To
cope with processor failures, distributed object implementations use redundancy by replicating the
object at multiple network locations. Replication introduces the problem of consistency because
operations may access different object replicas possibly containing obsolete values.

The seminal work of Attiya, Bar-Noy, and Dolev [2] provided an algorithm, colloquially referred
to as ABD, that implements single-writer/multiple-reader (SWMR) atomic objects in message-
passing crash-prone asynchronous environments. The operations are ordered with the help of
logical timestamps associated with each value. Here each operation is guaranteed to terminate
as long as some majority of replica servers do not crash. Each write operation takes one com-
munication round-trip phase, or round, involving two communication exchanges and each read
operation takes two rounds involving in total four communication exchanges. Subsequently, [10]
showed how to implement multi-writer/multiple-reader (MWMR) atomic memory where both read
and write operations involve two communication round trips involving in total four communication
exchanges.

The work by Dutta et al. [3] introduced a SWMR implementation where both reads and writes
involve a single round consisting of two communication exchanges. Such an implementation is
called fast, and it was shown that this is possible only when the number of readers r is bounded
with respect to the number of servers s and the number of server failures f , viz. r < s

f − 2.
An observation made in [3] suggests that atomic memory may be implemented (using a max/min
technique) so that each read and write operation complete in three communication exchanges. The
authors did not elaborate on the inherent limitations that such a technique may impose on the
distributed system.

Subsequent works, e.g., [4, 5], focused in relaxing the bound on the number of readers and
writers in the service by proposing hybrid approaches where some operations complete in one and
others in two rounds. Tight bounds were provided in [4] on the number of rounds that read and
write operations require in the MWMR model.

A natural question arises whether one can devise implementations where all operations complete
in at most three communication exchanges without imposing any restrictions on the numbers of
participants in the service. A recent work by Hadjistasi, Nicolaou, and Schwarzmann [6] showed
that such implementations are impossible in the MWMR setting. It is not known whether there
is an SWMR implementation and whether there exists some trade off that allows operations to
complete in three communication exchanges in the MWMR setting.

Model Algorithm Read Exchanges Write Exchanges Read Comm. Write Comm.

SWMR ABD 4 2 4|S| 2|S|
SWMR OhSam 3 2 |S|2 + 2|S| 2|S|
SWMR OhSam’ 2 or 3 2 |S|2 + 3|S| 2|S|
MWMR ABD 4 4 4|S| 4|S|
MWMR OhMam 3 4 |S|2 + 2|S| 4|S|
MWMR OhMam’ 2 or 3 4 |S|2 + 3|S| 4|S|

Table 1: Summary of communication exchanges and communication complexities.

2

Contributions. We focus on the gap between one-round and two-round algorithms by presenting
atomic memory algorithms where read operations can take “one and a half rounds,” i.e., complete
in three communication exchanges. We also provide SWMR and MWMR algorithms where read
operations complete in either two or three communication exchanges. We rigorously reason about
the correctness of the algorithms. To assess the practicality of these implementations we simulate
them and compare their performance. Additional details are as follows.

1. We present a new SWMR algorithm (OhSam) for atomic objects in the asynchronous message-
passing model with processor crashes. Write operations take two communication exchanges
and are similar to the write operations of ABD. Read operations take three communication
exchanges: (1) the reader sends a message to servers, (2) the servers share this information,
and (3) once this is “sufficiently” done, servers reply to the reader. A key idea of the algorithm
is that the reader returns the value that is associated with the minimum timestamp (cf. the
observation in [3]). The read operations are optimal in terms of communication exchanges in
light of [6]. (Section 3.)

2. We extend the SWMR algorithm to yield a MWMR algorithm (OhMam). In the new algorithm
the write operations are more complicated, taking four communication exchanges (cf. [10]).
Read operations complete as before in three communication exchanges. (Section 4.)

3. We then present a revised SWMR algorithm (OhSam’) and a revised MWMR algorithm
(OhMam’), where read operations complete in either two or three communication exchanges.
The original and the revised versions of each algorithm are presented for pedagogical reasons:
for ease of understanding and reasoning about the algorithms. (Section 5.)

4. We simulate our algorithms using the NS3 simulator and assess their performance under
practical considerations. We note that the relative performance of our algorithms depends on
the simulation topologies and object server placement; this is another reason for presenting
both versions of each algorithm. (Section 6.)

The summary of complexity results in comparison with ABD [2] is in Table 1. Improvements in
the latency (in terms of the number of exchanges) are obtained in a trade-off with communication
complexity. We note that increases in the communication complexity need not necessarily have
negative consequences in some practical settings, such as data centers, where servers communicate
over high-bandwidth links.

2 Models and Definitions

The system consists of a collection of crash-prone, asynchronous processors with unique identifiers
from a totally-ordered set I partitioned into: setW of writer identifiers, set R of reader identifiers,
and set S of replica server identifiers with each server maintaining a copy of the object. Any
subset of writers and readers, and up to f servers, f < |S|

2 , may crash at any time. Processors
communicate by exchanging messages via asynchronous point-to-point reliable channels; messages
may be reordered. For convenience we use the term broadcast as a shorthand denoting sending
point-to-point messages to multiple destinations.

Executions. An algorithm A is a collection of processes, where process Ap is assigned to processor
p ∈ I. The state of processor p is determined over a set of state variables, and the state of A is

3

a vector that contains the state of each process. Algorithm A performs a step, when some process
p (i) receives a message, (ii) performs local computation, (iii) sends a message. Each such action
causes the state at p to change. An execution is an alternating sequence of states and actions of A
starting with the initial state and ending in a state. A process p crashes in an execution if it stops
taking steps; otherwise p is correct.

Atomicity. An implementation of a read or a write operation contains an invocation action (such
as a call to a procedure) and a response action (such as a return from the procedure). An operation
π is complete in an execution ξ, if ξ contains both the invocation and the matching response actions
for π; otherwise π is incomplete. An execution is well formed if any process invokes one operation at
a time. We say that an operation π precedes an operation π′ in an execution ξ, denoted by π → π′, if
the response step of π appears before the invocation step in π′ in ξ. Two operations are concurrent
if neither precedes the other. The correctness of an atomic read/write object implementation is
defined in terms of atomicity (safety) and termination (liveness) properties. Termination requires
that any operation invoked by a correct process eventually completes. Atomicity is defined following
[9]. For any execution ξ, if all invoked read and write operations are complete, then the operations
can be partially ordered by an ordering ≺, so that the following properties are satisfied:

A1 The partial order ≺ is consistent with the external order of invocation and responses, that is,
there do not exist operations π and π′, such that π completes before π′ starts, yet π′ ≺ π.

A2 All write operations are totally ordered and every read operation is ordered with respect to all
writes.

A3 Every read operation returns the value of the last write preceding it in the partial order, and
any read operation ordered before all writes returns the initial value of the object.

Efficiency and Communication Exchanges. Efficiency of implementations is assessed in terms
of operation latency and message complexity. Latency of each operation is determined by the
computation time and the communication delays. Computation time accounts for the computation
steps that the algorithm performs in each operation. Communication delays are measured in terms
of communication exchanges. The protocol implementing each operation involves a collection of
sends (or broadcasts) of typed messages and the corresponding receives. Communication exchange
within an execution of an operation is the set of sends and receives for the specific message type
within the protocol. Note that using this definition, traditional implementations in the style of
ABD are structured in terms of rounds, cf. [2, 5], where each round consists of two communication
exchanges, the first, a broadcast, is initiated by the process executing an operation, and the second,
a convergecast, consists of responses to the initiator. We refer to the ith exchange using the
notation ei. The number of messages that a process expects during a convergecast depends on the
implementation. Message complexity measures the worst-case total number of messages exchanged
during an operation.

3 SWMR Algorithm OhSam

We now present our SWMR algorithm OhSam: One and a Half round Single-writer Atomic Memory.
The write operations are fast, that is, they take two communication exchanges to complete (similarly
to ABD [2]). We show that atomic operations do not need to involve complete communication round

4

trips between clients and servers. In particular, we allow server-to-server communication and we
devise read operations that take three communication exchanges using the following communication
pattern: exchange e1 the reader sends message to the participating servers, in exchange e2 each
server that receives the request it then relays the request to all the servers, and once a server
receives the relay for a particular read from a majority of servers, it replies to the requesting reader
forming exchange e3. The read completes once the invoker collects a majority of acknowledgment
replies. A key idea of the algorithm is that the reader returns the value that is associated with
the minimum timestamp. In particular, while the replica servers update their local value to the
associated with the maximum timestamp received, the reader returns the value associated with the
minimum timestamp discovered in the set of the received acknowledgment messages. The code is
given in Algorithm 1. We now give the details of the protocols; in referring to the numbered lines
of code we use the prefix “L” to stand for “line”.

Counter variables read op, operations and relays are used to help processes identify “new”
read and write operations, and distinguish “fresh” from “stale” messages (since messages can be
reordered). The value of the object and its associated timestamp, as known by each process,
are stored in variables v and ts respectively. Set rAck, at each reader ri, stores all the received
acknowledgment messages. Variable minTS holds the minimum timestamp discovered in the set of
the received acknowledgment messages rAck. Below we provide a brief description of the protocol
of each participant of the service.
Writer Protocol. Writer w increments its local timestamp ts and broadcasts a writeRequest
message to all the participating servers S (L24-26). Once the writer receives replies from at least
a majority of servers, |S|/2 + 1, the operation completes (L27-27).
Reader Protocol. When a read process r invokes a read operation it first monotonically increases
its local read operation counter read op and empties the set of the received acknowledgment mes-
sages, rAck (L8). Then, it creates a 〈readRequest, r, read op〉 readRequest message in which it
encloses its id and local read counter and it broadcasts this request message to all the participating
servers S, forming exchange e1 (L10). It then waits to collect at least |S|/2 + 1 messages from
servers. While collecting readAck messages from exchange e3, reader r discards any delayed mes-
sages from previous operations due to asynchrony. When “fresh” messages are collected from a
majority of servers, then the reader returns the value v associated with the minimum timestamp,
minTS, among the set of the received acknowledgment messages, rAck (L12-14).
Server Protocol. Each server s ∈ S expects three types of messages:

(1) Upon receiving a 〈readRequest, r, read op〉 message the server creates a readRelay message,
containing its ts, v, and its id s, and it broadcasts it to all the servers S (L39-40).

(2) Upon receiving message 〈readRelay, ts′, v′, r, read op〉 server s compares its local timestamp
ts with ts′ enclosed in the message. If ts < ts′, then s sets its local timestamp and value to those
enclosed in the message (L46-47). In any other case, no updates are taking place. As a next step
s checks if the received readRelay message marks a new read operation by r. This is achieved by
checking if reader’s r operation counter is newer than the local one, i.e., read op > operations[r]
(L48). If this holds, then s: a) sets its local read operation counter for reader r to be equal to the
received counter, i.e., operations[r] = read op; and b) re-initializes the relay counter for r to zero,
i.e., relays[r] = 0 (L48-50). Server s also updates the number of collected readRelay messages re-
garding the read request created by reader r (L51-52). When s receives 〈readRelay, ts, v, read op, si〉
messages from a majority of servers, it creates a 〈readAck, ts, v, read op, s〉 message in which it en-
closes its local timestamp and value, its id, and the reader’s operation counter and sends it to the

5

Algorithm 1 Reader, Writer, and Server Protocols for SWMR algorithm OhSam

1: At each reader r
2: Variables:
3: ts ∈ N+, minTS ∈ N+, v ∈ V
4: read op ∈ N+, rAck ⊆ S ×M
5: Initialization:
6: ts← 0, minTS ← 0, v ←⊥, read op← 0
7: function Read
8: read op← read op+ 1
9: rAck ← ∅

10: broadcast (〈readRequest, r, read op〉) to S
11: wait until (|rAck| = |S|/2 + 1)
12: minTS ← min{m.ts′|m ∈ rAck}
13: v ← {m.val | m ∈ rAck ∧m.ts′ = minTS}
14: return(v)

15: Upon receive m from s
16: if m.read op = read op then
17: rAck ← rAck ∪ {(s,m)}

18: At writer w
19: Variables:
20: ts ∈ N+, v ∈ V , wAck ⊆ S ×M
21: Initialization:
22: ts← 0, v ←⊥
23: function Write(val : input)
24: (ts, v)← (ts+ 1, val)
25: wAck ← ∅
26: broadcast (〈writeRequest, ts, v, w〉) to S
27: wait until (|wAck| = |S|/2 + 1)
28: return

29: Upon receive m from s
30: if m.ts = ts then
31: wAck ← wAck ∪ {(s,m)}

32: At server si
33: Variables:
34: ts ∈ N+, v ∈ V
35: operations[1..|R|+1], relays[1..|R|+1] : array of int
36: Initialization:
37: ts← 0, v ←⊥
38: operations[i]← 0 for i ∈ R, relays[i]← 0 for i ∈ R

39: Upon receive(〈readRequest, r, read op〉)
40: broadcast(〈readRelay, ts, v, r, read op, si〉) to S

41: Upon receive(〈writeRequest, ts′, v′, w〉)
42: if (ts < ts′) then
43: (ts, v) ← (ts′, v′)

44: send (〈writeAck, ts, v, si〉) to w

45: Upon receive(〈readRelay, ts′, v′, r, read op, si〉)
46: if (ts < ts′) then
47: (ts, v) ← (ts′, v′)

48: if (operations[r] < read op) then
49: operations[r]← read op
50: relays[r]← 0.

51: if (operations[r] = read op) then
52: relays[r]← relays[r] + 1

53: if (relays[r] = |S|/2 + 1) then
54: send (〈readAck, ts, v, read op, si〉) to r

requesting reader r (L53-54).
(3) Upon receiving message 〈writeRequest, ts′, v′, w〉 server s compares its local timestamp ts

with the received one, ts′. If ts < ts′, then the server sets its local timestamp and value to be equal
to those in the received message (L42-43). In any other case, no updates are taking place. Finally,
the server always sends an acknowledgement, writeAck, message to the requesting writer (L44).

3.1 Correctness.

To prove correctness of algorithm OhSam we reason about its liveness (termination) and atomicity
(safety).
Liveness. Termination holds with respect to our failure model: up to f servers may fail, where
f < |S|/2 and each operation waits for messages from some majority of servers. We now give more
detail on how each operation satisfies liveness.
Write Operation. Per algorithm OhSam, writer w creates a writeRequest message and then it

6

broadcasts it to all servers in exchange e1 (L26). Writer w then waits for writeAck messages from

a majority of servers from e2 (L27-27). Since in our failure model up to f < |S|
2 servers may

crash, writer w collects writeAck messages form a majority of live servers during e2 and the write
operation ω terminates.

Read Operation. The reader r begins by broadcasting a readRequest message all the servers forming
exchange e1. Since f < |S|

2 , then at least a majority of servers receives the readRequest message
sent in e1. Any server s that receives this message it then broadcasts a readRelay message to all
the servers, forming e2, (L39-40), and no server ever discards any incoming readRelay messages.
Any server, whether it is aware or not of the readRequest, always keeps a record of the incoming
readRelay messages and takes action as if it is aware of the readRequest. The only difference
between server si that received a readRequest message and server sk that did not, is that si is
able to broadcast a readRelay message, and sk broadcasts a readRelay message when it receives the
corresponding readRequest message (L39-40). Each non-failed server receives readRelay messages
from a majority of servers during e2 and sends a readAck message to the requesting reader r at e3
(L51-52). Therefore, reader r collects readAck messages from a majority of servers during e3, and
the read operation terminates (L12-14).

Based on the above, it is always the case that acknowledgment messages readAck and writeAck
are collected from at least a majority of servers in any read and write operation, thus ensuring
liveness.

Atomicity. To prove atomicity we order the operations with respect to timestamps written and
returned. More precisely, for each execution ξ of the algorithm there must exist a partial order
≺ on the operations in on the set of completed operations Π that satisfy conditions A1, A2, and
A3 as given in Section 2. Let tsπ be the value of the timestamp at the completion of π when π is
a write, and the timestamp computed as the maximum ts at the completion of a read operation
π. With this, we denote the partial order on operations as follows. For two operations π1 and π2,
when π1 is any operation and π2 is a write, we let π1 ≺ π2 if tsπ1 < tsπ2 . For two operations π1
and π2, when π1 is a write and π2 is a read we let π1 ≺ π2 if tsπ1 ≤ tsπ2 . The rest of the order
is established by transitivity and reads with the same timestamps are not ordered. We now state
and prove the following lemmas.

It is easy to see that the ts variable in each server s is monotonically increasing. This leads to
the following lemma.

Lemma 1 In any execution ξ of OhSam, the variable ts maintained by any server s in the system
is non-negative and monotonically increasing.

Proof. When a server s receives a timestamp ts then s updates its local timestamp tss if and only
if ts > tss (L42-43 and L46-47). Thus the local timestamp of the server monotonically increases
and the lemma follows. �

Next, we show that if a read operation ρ2 succeeds read operation ρ1, then ρ2 always returns a
value at least as recent as the one returned by ρ1.

Lemma 2 In any execution ξ of OhSam, if ρ1 and ρ2 are two read operations such that ρ1 precedes
ρ2, i.e., ρ1 → ρ2, and ρ1 returns the value for timestamp ts1, then ρ2 returns the value for timestamp
ts2 ≥ ts1.

7

Proof. Let the two operations ρ1 and ρ2 be invoked by processes with identifiers r1 and r2
respectively (not necessarily different). Also, let RSet1 and RSet2 be the sets of servers that sent
a readAck message to r1 and r2 during ρ1 and ρ2.

Assume by contradiction that read operations ρ1 and ρ2 exist such that ρ2 succeeds ρ1, i.e.,
ρ1 → ρ2, and the operation ρ2 returns a timestamp ts2 that is smaller than the ts1 returned by
ρ1, i.e., ts2 < ts1. According to our algorithm, ρ2 returns a timestamp ts2 that is smaller than
the minimum timestamp received by ρ1, i.e., ts1, if ρ2 obtains ts2 and v in the readAck message of
some server sx ∈ RSet2, and ts2 is the minimum timestamp received by ρ2.

Let us examine if sx replies with ts′ and v′ to ρ1, i.e., sx ∈ RSet1. By Lemma 1, and since
ρ1 → ρ2, then it must be the case that ts′ ≤ ts2. According to our assumption ts1 > ts2, and since
ts1 is the smallest timestamp sent to ρ1 by any server in RSet1, then it follows that r1 does not
receive the readAck message from sx, and hence sx /∈ RSet1.

Now let us examine the actions of the server sx. From the algorithm, server sx collects readRelay
messages from a majority of servers in S before sending a readAck message to ρ2 (L53-54). Let
RRSetsx denote the set of servers that sent readRelay to sx. Since, both RRSetsx and RSet1
contain some majority of the servers then it follows that RRSetsx ∩RSet1 6= ∅.

Thus there exists a server si ∈ RRSetsx ∩RSet1, which sent (i) a readAck to r1 for ρ1, and (ii) a
readRelay to sx during ρ2. Note that si sends a readRelay for ρ2 only after it receives a read request
from ρ2 (L39-40). Since ρ1 → ρ2, then it follows that si sent the readAck to ρ1 before sending the
readRelay to sx. By Lemma 1, if si attaches a timestamp tssi in the readAck to ρ1, then si attaches
a timestamp ts′si in the readRelay message to sx, such that ts′si ≥ tssi . Since ts1 is the minimum
timestamp received by ρ1, then tssi ≥ ts1, and hence ts′si ≥ ts1 as well. By Lemma 1, and since
sx receives the readRelay message from si before sending a readAck to ρ2, it follows that sx sends a
timestamp ts2 ≥ ts′si . Thus, ts2 ≥ ts1 and this contradicts our initial assumption. �

The next lemma shows that any read operation following a write operation receives readAck
messages from servers where each included timestamp is at least as large as the one returned by
the complete write operation.

Lemma 3 In any execution ξ of OhSam, if a read operation ρ succeeds a write operation ω that
writes ts and v, i.e., ω → ρ, and receives readAck messages from a majority of servers RSet, then
each s ∈ RSet sends a readAck message to ρ with a timestamp tss s.t. tss ≥ ts.

Proof. Let WSet be the set of servers that send a writeAck message in ω and let RRSet be the
set of servers that send readRelay messages to server s.

By Lemma 1, if a server s receives timestamp ts from process p, then s includes timestamp
ts′ s.t. ts′ ≥ ts in any subsequent message. This, means that every server in WSet, sends a
writeAck message to ω with a timestamp greater or equal to ts. Hence, every server sx ∈ WSet
has timestamp tssx ≥ ts. Let us now examine timestamp tss that server s ∈ RSet sends in read
operation ρ.

Before server s sends a readAck message in ρ, it must receive readRelay messages from the
majority of servers, RRSet (L53-54). Since both WSet and RRSet contain a majority of servers,
then WSet ∩RRSet 6= ∅. By Lemma 1, any server sx ∈ WSet ∩RRSet has a timestamp tssx s.t.
tssx ≥ ts. Since server sx ∈ RRSet and from the algorithm, server’s s timestamp is always updated
to the highest timestamp it receives (L46-47), then when server s receives the message from sx,
it updates its timestamp tss s.t. tss ≥ tssx . Thus, by Lemma 1, each s ∈ RSet sends a readAck

8

(L53-54) in ρ with a timestamp tss s.t. tss ≥ tssx ≥ ts. Therefore, tss ≥ ts holds and the lemma
follows. �

Next show that if a read operation succeeds a write operation, then it returns a value at least
as recent as the one that was written.

Lemma 4 In any execution ξ of OhSam, if a read ρ succeeds a write operation ω that writes
timestamp ts, i.e. ω → ρ, and returns a timestamp ts′, then ts′ ≥ ts.

Proof. Suppose that read operation ρ receives readAck messages from a majority of servers RSet.
By lines 12-14 of the algorithm, it follows that ρ decides on the minimum timestamp, ts′ = ts min,
among all the timestamps in the readAck messages of the servers in RSet. From Lemma 3, ts min ≥
ts holds, where ts is the timestamp written by the last complete write operation ω, then ts′ =
ts min ≥ ts also holds. Therefore, ts′ ≥ ts holds and the lemma follows. �

Theorem 5 Algorithm OhSam implements an atomic SWMR object.

Proof. We now use the lemmas stated above and the operations order definition to reason about
each of the three atomicity conditions A1, A2 and A3.

A1 For any π1, π2 ∈ Π such that π1 → π2, it cannot be that π2 ≺ π1.
When the two operations π1 and π2 are reads and π1 → π2 holds, then from Lemma 2 it follows
that the timestamp returned from π2 is always greater or equal to the one returned from π1,
tsπ2 ≥ tsπ1 . If tsπ2 > tsπ1 then by the ordering definition π1 ≺ π2 is satisfied. When tsπ2 = tsπ1
then the ordering is not defined, thus it cannot be the case that π2 ≺ π1. If π2 is a write, the
sole writer generates a new timestamp by incrementing the largest timestamp in the system. By
well-formedness (see Section 2), any timestamp generated by the writer for any write operation
that precedes π2 must be smaller than tsπ2 . Since π1 → π2, then it holds that tsπ1 < tsπ2 . Hence,
by the ordering definition it cannot be the case that π2 ≺ π1. Lastly, when π2 is a read and π1 a
write and π1 → π2 holds, then from Lemmas 3 and 4 it follows that tsπ2 ≥ tsπ1 . By the ordering
definition, it cannot hold that π2 ≺ π1 in this case either.

A2 For any write ω ∈ Π and any operation π ∈ Π, then either ω ≺ π or π ≺ ω.
If the timestamp returned from ω is greater than the one returned from π, i.e. tsω > tsπ, then
π ≺ ω follows directly. Similartly, if tsω < tsπ holds, then ω ≺ π follows. If tsω = tsπ, then it
must be that π is a read and π discovered tsω as the minimum timestamp in at least a majority of
servers. Thus, ω ≺ π follows.

A3 Every read operation returns the value of the last write preceding it according to ≺ (or the
initial value if there is no such write).
Let ω be the last write preceding read ρ. From our definition it follows that tsρ ≥ tsω. If tsρ = tsω,
then ρ returned the value written by ω on a majority of servers. If tsρ > tsω, then it means that ρ
obtained a larger timestamp. However, the larger timestamp can only be originating from a write
that succeeds ω, thus ω is not the preceding write and this cannot be the case. Lastly, if tsρ = 0,
no preceding writes exist, and ρ returns the initial value.

�

Having shown liveness and atomicity of algorithm OhSam the result follows.

9

3.2 Performance.

We now assess the performance of OhSam in terms of (i) latency of read and write operations as
measured by the number of communication exchanges, and (ii) the message complexity of read and
write operations.

In brief, for algorithm OhSam write operations take 2 exchanges and read operations take 3
communication exchanges. The (worst case) message complexity of read operations is |S|2 + 2|S|
and the (worst case) message complexity of write operations is 2|S|. This follows directly from the
structure of the algorithm. We now give additional details.

Operation Latency. Write operation latency: According to algorithm OhSam, writer w sends
a writeRequest message to all the servers in exchange e1, and, awaits for writeAck messages from
at least a majority of servers in exchange e2. Once the writeAck messages are received, no further
communication is required and the write operation terminates. Therefore, any write operation
consists of 2 communication exchanges.

Read operation latency: A reader sends a readRequest message to all the servers in the first
communication exchange e1. Once a server receives a readRequest message, it broadcasts a readRelay
message to all the servers in exchange e2. Any active servers now await readRelay messages from
at least a majority of servers, and then, the servers send a readAck message to the reader during
communication exchange e3. We note that servers do not reply to any incoming readRelay messages.
Thus, a read operation consists of 3 communication exchanges.

Message Complexity. We measure operation message complexity as the worst case number of
exchanged messages in each read and write operation. The worst case number of messages corre-
sponds to failure-free executions where all participants send messages to all destinations according
to the protocols.

Write operation: A single write operation in algorithm OhSam takes 2 communication ex-
changes. In the first exchange e1, the writer sends a writeRequest message to all the servers in S.
The second exchange e2, occurs when all servers in S send a writeAck message to the writer. Thus,
at most 2|S| messages are exchanged in a write operation.

Read operation: Read operations take 3 communication exchanges. Exchange e1 occurs when
a reader sends a readRequest message to all the servers in S. Exchange e2 occurs when servers in
S send a readRelay message to all the servers in S. The last exchange, e3, occurs when servers in
S send a readAck message to the requesting reader. Therefore, |S|2 + 2|S| messages are exchanged
during a read operation.

4 MWMR Algorithm OhMam

We seek a solution for the MWMR setting that involves three communications exchanges per read
operation and four exchanges per write operation. We now present our MWMR algorithm OhMam:
One and a half round Multi-writer Atomic Memory. To impose an ordering on the values written
by the writers we associate each value with a tag tg defined as the pair 〈ts, id〉, where ts is a
timestamp and id is the identifier of a writer. Tags are ordered lexicographically (cf. [10]). The
read protocol is identical to the one presented in section ?? for algorithm OhSam (except that tags
are used instead of timestamps). Thus, for algorithm OhMam we briefly describe only the protocols
that differ, and that is, the writer and server protocols.

10

Algorithm 2 Reader, Writer and Server Protocols for MWMR algorithm OhMam

55: At each reader r
56: Components:
57: tg ∈ 〈N+, I〉, minTAG ∈ 〈N+,N+〉
58: v ∈ V , read op ∈ N+, rAck ⊆ S ×M
59: Initialization:
60: tg ← 〈0, r〉, minTAG← 〈0, 0〉
61: v ←⊥, read op← 0
62: function Read
63: read op← read op+ 1.
64: rAck ← ∅
65: broadcast (readRequest, r, read op) to S
66: wait until (|rAck| = |S|/2 + 1)
67: minTAG← min({m.tg′|m ∈ rAck})
68: v ← {m.val | m ∈ rAck ∧m.tg′ = minTAG}
69: return(v)

70: Upon receive m from s
71: if m.read op = read op then
72: rAck ← rAck ∪ {(s,m)}

73: At each writer w
74: Variables:
75: tg ∈ 〈N+, I〉, v ∈ V , write op ∈ N+

76: maxTS ∈ N+, mAck ⊆ S ×M
77: Initialization:
78: tg ← 〈0, w〉, v ←⊥, write op← 0
79: maxTS ← 0
80: function Write(val : input)
81: write op← write op+ 1
82: mAck ← ∅
83: broadcast(〈discover, write op, w〉) to S
84: wait until (|mAck| = |S|/2 + 1)
85: maxTS ← max{m.tg.ts′|m ∈ mAck}
86: (tag, v)← (〈maxTS + 1, w〉, val)
87: write op← write op+ 1
88: mAck ← ∅
89: broadcast(〈writeRequest, 〈tg, v〉, write op, w〉) to S
90: wait until (|mAck| = |S|/2 + 1)
91: return

92: Upon receive m from s
93: if m.write op = write op then
94: mAck ← mAck ∪ {(s,m)}

95: At each server si
96: Variables:
97: tg ∈ 〈N+, I〉, v ∈ V ,
98: write ops[1...|W|+ 1] : array of int
99: operations[1...|R|+ 1] : array of int
100: relays[1...|R|+ 1] : array of int
101: Initialization:
102: tg ← 〈0, si〉, v ←⊥
103: write ops[i]← 0 for i ∈ W
104: operations[i]← 0 for i ∈ R
105: relays[i]← 0 for i ∈ R

106: Upon receive(〈readRequest, r, read op〉)
107: broadcast (readRelay, 〈tg, v〉, r, read op, si) to S

108: Upon receive〈(readRelay, 〈tg′, v′〉, r, read op, si)〉
109: if (tg < tg′) then
110: 〈tg, v〉 ← 〈tg′, v′〉.
111: if (operations[r] < read op) then
112: operations[r]← read op.
113: relays[r]← 0.

114: if (operations[r] = read op) then
115: relays[r]← relays[r] + 1 .

116: if (relays[r] = |S|/2 + 1) then
117: Send (readAck, 〈tg, v〉, read op, si) to r

118: Upon receive(〈discover, write op, w〉)
119: Send (〈discoverAck, 〈tg, v〉, write op, si〉) to w

120: Upon receive(〈writeRequest, tg′, v′, write op, w〉)
121: if ((tg < tg′) ∧ (write op[w] < write op)) then
122: 〈tg, v〉 ← 〈tg′, v′〉
123: write ops[w]← write op

124: send (〈writeAck, 〈tg, v〉, write op, si〉) to w

Writer Protocol. This protocol is similar to [10]. When a write operation is invoked, a writer
w monotonically increases its local write operation counter write op, empties the set mAck that
holds the received acknowledgment messages (L81 - 82), and it broadcasts a discover message to
all servers s ∈ S (L83). It then waits to collect discoverAck messages from a majority of servers,
|S|/2 + 1. While collecting discoverAck messages, writer w checks the write op variable that is
included in the message m and discards any message where the value of write op < m.write op
(L92 - 94). This, happens in order to avoid any delayed discoverAck messages sent during previous

11

write operations. Once the discoverAck messages are collected, writer w determines the maximum
timestamp maxTS from the tags included in the received messages (L85) and creates a new local
tag tg, in which it assigns its id and sets the timestamp to one higher than the maximum one,
tg = 〈maxTS + 1, w〉 (L86). The writer then broadcasts a writeRequest message, including the
updated tag, the value to be written, its write operation counter and id, tg, v, write op and w, to
all the participating servers (L89). It then waits to collect |S|/2 + 1 writeAck messages (L90) for
completion.
Server Protocol. Servers react to messages from the readers exactly as in Algorithm OhSam.
Here we describe server actions for discover and writeRequest messages.

(1) Upon receiving message 〈discover, write op, w〉, server s attaches its local tag and local value
in a new discoverAck message that it sends back to the requesting writer w (L118-119).

(2) Upon receiving 〈writeRequest, 〈tg′, v′〉, write op, w〉 message server compares its local tag tg
with the received tag tg′. If the message is not stale and server’s local tag is older, tg < tg′, it
updates its local timestamp and local value to those received (L121-123). Otherwise, no update
takes place. Server s acknowledges the requesting writer w by creating and sending it a writeAck
message (L124).

4.1 Correctness.

To show correctness of Algorithm 2 we prove that it satisfies the termination and atomicity prop-
erties.
Liveness. Similarly to OhSam, termination holds with respect to our failure model: up to f servers
may fail, where f < |S|/2 and each operation waits for messages from some majority of servers.
We now give additional details.

Write Operation. Writer w finds the maximum tag by broadcasting a discover message to all
servers forming exchange e1, and waiting to collect discoverAck replies from a majority of servers
during exchange e2 (L83-85 and L118-119). Since we tolerate f < |S|

2 crashes, then at least a
majority of live servers will collect the discover messages from e1 and reply to writer w in e2.
Once the maximum timestamp is determined, then writer w updates its local tag and broadcasts a
writeRequest message to all the servers forming e3. Writer w then waits to collect writeAck replies
from a majority of servers before completion. Again, at least a majority of servers collects the
writeRequest message during e3, and acknowledges to the requesting writer w in e4.

Read Operation. A read operation of algorithm OhMam differs from OhSam only by using tags
instead of timestamps in order to impose an ordering on the values written. The structure of the
read protocol is identical to OhSam, thus liveness is ensured as reasoned in section 3.1.

Based on the above, any read or write operation collects a sufficient number of messages to
terminate, guaranteeing liveness.

Atomicity. MWMR setting we use tags instead of timestamps, and here we show how algorithm
OhMam (algorithm 2) satisfies atomicity using tags. We now state and prove the following lemmas.

It is easy to see that the tg variable in each server s is monotonically increasing. This leads to
the following lemma.

Lemma 6 In any execution ξ of OhMam, the variable tg maintained by any server s in the system
is non-negative and monotonically increasing.

12

Proof When server s receives a tag tg then s updates its local tag tgs iff tg > tgs (L109-110 and
L121-123). Thus the local tag of the server monotonically increases and the lemma follows.

Next, we show that if a read operation ρ2 succeeds read operation ρ1, then ρ2 always returns a
value at least as recent as the one returned by ρ1.

Lemma 7 In any execution ξ of OhMam, If ρ1 and ρ2 are two read operations such that ρ1 precedes
ρ2, i.e., ρ1 → ρ2, and ρ1 returns a tag tg1, then ρ2 returns a tag tg2 ≥ tg1.

Proof Let the operations ρ1 and ρ2 be invoked by processes r1 and r2 respectively (not necessarily
different). Let RSet1 and RSet2 be the sets of servers that reply to r1 and r2 during ρ1 and ρ2
respectively.

Suppose, for purposes of contradiction, that read operations ρ1 and ρ2 exist such that ρ2 succeeds
ρ1, i.e., ρ1 → ρ2, and the operation ρ2 returns a tag tg2 which is smaller than the tg1 returned by
ρ1, i.e., tg2 < tg1.

According to our algorithm, ρ2 returns a tag tg2 which is smaller than the minimum tag received
by ρ1, i.e., tg1, if ρ2 discovers tag tg2 and value v in the readAck message of some server sx ∈ RSet2,
and tg2 is the minimum tag received by ρ2.

Assume that server sx replies with tag tg′ and value v′ to read operation ρ1, i.e., sx ∈ RSet1.
By monotonicity of the timestamp at the servers (Lemma 6), and since ρ1 → ρ2, then it must be
the case that tg′ ≤ tg2. According to our assumption tg1 > tg2, and since tg1 is the smallest tag
sent to ρ1 by any server in RSet1, then it follows that r1 does not receive the readAck message from
sx, and hence sx /∈ RSet1.

Now examine the actions of server sx. From the algorithm, server sx collects readRelay messages
from a majority of servers in S before sending readAck message to ρ2 (L116-117). Let RRSetsx
denote the set of servers that send readRelay to sx. Since, both RRSetsx and RSet1 contain some
majority of the servers then it follows that RRSetsx ∩RSet1 6= ∅.

This above means that there exists a server si ∈ RRSetsx ∩ RSet1 that sends (i) a readAck
message to r1 for ρ1, and (ii) a readRelay message to sx during ρ2. Note that si sends a readRelay
message for ρ2 only after it receives a read request from ρ2 (L106-107). Since ρ1 → ρ2, then it
follows that si sends the readAck message to ρ1 before sending the readRelay message to sx. Thus,
by Lemma 6, if si attaches a tag tgsi in the readAck to ρ1, then si attaches a tag tg′si in the readRelay
message to sx, such that tg′si ≥ tgsi . Since tg1 is the minimum tag received by ρ1, then tgsi ≥ tg1,
then tg′si ≥ tg1 as well. By Lemma 6, and since sx receives the readRelay message from si before
sending a readAck to ρ2, it follows that sx sends a tag tg2 ≥ tg′si . Therefore, tg2 ≥ tg1 and this
contradicts our initial assumption and completes our proof.

Next, we reason that if a write operation ω2 succeeds write operation ω1, then ω2 writes a value
accosiated with a tag strictly higher than ω1.

Lemma 8 In any execution ξ of OhMam, if a write operation ω1 writes a value with tag tg1 then
for any succeeding write operation ω2 that writes a value with tag tg2 we have tg2 > tg1.

Proof Let WSet1 be the set of servers that send a writeAck message within write operation ω1.
Let Disc2 be the set of servers that send a discoverAck message within write operation ω2.

Based on the assumption, write operation ω1 is complete. By Lemma 6, we know that if a
server s receives a tag tg from a process p , then s includes tag tg′ s.t. tg′ ≥ tg in any subsequently
message. Thus the servers in WSet1 send a writeAck message within ω1 with tag at least tag tg1.
Hence, every server sx ∈WSet obtains tag tgsx ≥ tg1.

13

When write operation ω2 is invoked, it obtains the maximum tag, max tag, from the tags stored
in at least a majority of servers. This is achieved by sending discover messages to all servers and
collecting discoverAck replies from a majority of servers forming set Disc2 (L83-85 and L118-119).

Sets WSet1 and Disc2 contain a majority of servers, and so WSet1 ∩ Disc2 6= ∅. Thus, by
Lemma 6, any server sk ∈ WSet ∩ Disc2 has a tag tgsk s.t. tgsk ≥ tgsx ≥ tg1. Furthermore, the
invoker of ω2 discovers a max tag s.t. max tag ≥ tgsk ≥ tgsx ≥ tg1. The invoker updates its local
tag by increasing the maximum tag it discovered, i.e. tg2 = 〈max tag+1, v〉 (L86), and associating
tg2 with the value to be written. We know that, tg2 > max tag ≥ tg1, hence local tag > tg1.

Now the invoker of ω2 includes its tag local tag with writeRequest message to all servers, and
terminates upon receiving writeAck messages from a majority of servers. By Lemma 6, ω2 receives
writeAck messages with a tag tg2 s.t. tg2 ≥ local tag > tg1 hence tg2 > tg1, and the lemma follows.

At this point we have to show that any read operation which succeeds a write operation, will
receive readAck messages from the servers where each included timestamp will be greater or equal
to the one that the complete write operation returned.

Lemma 9 In any execution ξ of OhMam, if a read operation ρ succeeds a write operation ω that
writes value v with tag tg, i.e., ω → ρ, and receives readAck messages from a majority of servers
RSet, then each s ∈ RSet sends a readAck message to ρ with a tag tgs s.t. tgs ≥ tg.

Proof Let WSet be the set of servers that send a writeAck message to the write operation ω
and let RRSet be the set of servers that sent readRelay messages to server s.

It is given that write operation ω is complete. By Lemma 6, we know that if server s receives
a tag tg from process p, then s includes a tag tg′ s.t. tg′ ≥ tg in any subsequent message. Thus a
majority of servers, forming WSet, send a writeAck message in ω with tag greater or equal to tag
tg. Hence, every server sx ∈ WSet has a tag tgsx ≥ tg. Let us now examine tag tgs that server s
sends to read operation ρ.

Before server s sends a readAck message to ρ, it must receive readRelay messages for the majority
of servers, RRSet (L116-117). Since both WSet and RRSet contain a majority of servers, then it
follows that WSet∩RRSet 6= ∅. Thus, by Lemma 6, any server sx ∈WSet∩RRSet has a tag tgx
s.t. tgx ≥ tg.

Since server sx ∈ RRSet and by the algorithm, server’s s tag is always updated to the highest
tag it observes (L109-110), then when server s receives the message from sx, it updates its tag tgs
s.t. tgs ≥ tgx.

Furthermore, server s creates a readAck message where it includes its local tag tgs and its local
value vs, and sends this readAck message within the read operation ρ (L116-117). Each s ∈ RSet
sends a readAck to ρ with a tag tgs s.t. tgs ≥ tgx ≥ tg. Therefore, tgs ≥ tg and the lemma follows.

Next we show that if a read operation succeeds a write operation, then it returns a value at
least as recent as the one written.

Lemma 10 In any execution ξ of OhMam, if read operation ρ succeeds write operation ω, i.e.,
ω → ρ, that writes value v associated with tag tg, and returns tag tg′, then tg′ ≥ tg.

Proof Suppose that read operation ρ receives readAck messages from a majority of servers RSet
and decides on a tag tg′ associated with value v and terminates.

In this case, by Algorithm (L67-69) it follows that read operation ρ decides on a tag tg′ that
belongs to a readAck message among the messages from servers in RSet; and it is the minimum
tag among all the tags that are included in messages of servers RSet, hence tg′ = min tag.

14

Furthermore, since tg′ = min tag holds and from Lemma 9, min tag ≥ tg holds, where tg is
the tag returned from the last complete write operation ω, then tg′ = min tag ≥ tg also holds.
Therefore, tg′ ≥ tg holds and the lemma follows.

Lemma 11 In any execution ξ of OhMam, if a write ω succeeds a read operation ρ that reads tag
tg, i.e. ρ→ ω, and returns a tag tg′, then tg′ > tg.

Proof Let RR be the set of servers that sent readRelay messages to ρ. Let dAck be the set of
servers that sent discoverAck messages to ω. Let wAck be the set of servers that sent writeAck
messages to ω and let RA be the set of servers that sent readAck messages to ρ. It is not necessary
that a 6= b 6= c holds.

Based on the read protocol, the read operation ρ terminates when it receives readAck messages
from a majority of servers. It follows that ρ decides on the minimum tag, tg = minTG, among all
the tags in the readAck messages of the set RA and terminates. Writer ω, initially it broadcasts a
discover message to all servers, and it then awaits for “fresh” discoverAck messages from amajority
of servers, that is, set dAck. Each of RA and dAck sets are from majorities of servers, and so
RA ∩ dAck 6= ∅. By Lemma 6, any server sk ∈ RA ∩ dAck has a tag tgsk s.t. tgsk ≥ tg. Since ω
generates a new local tag-value (tg′, v) pair in which it assigns the timestamp to be one higher than
the one discovered in the maximum tag from set dAck, it follows that tg′ > tg. Furthermore, ω
broadcasts the value to be written associated with tg′ in a writeRequest message to all servers and
it awaits for writeAck messages from a majority of servers before completion, set wAck. Observe
that each of dAck and wAck sets are from majority of servers, and so dAck∩wAck 6= ∅. By Lemma
6, any server sk ∈ dAck ∩ wAck has a tag tgsk s.t. tgsk ≥ tg′ > tg and the result follows.

Theorem 12 Algorithm OhMam implements an atomic MWMR object.

Proof We use the above lemmas and the operations order definition to reason about each of the
three atomicity conditions A1, A2 and A3.

A1 For any π1, π2 ∈ Π such that π1 → π2, it cannot be that π2 ≺ π1.
If both π1 and π2 are writes and π1 → π2 holds, then from Lemma 8 it follows that tgπ2 > tgπ1 .
By the ordering definition π1 ≺ π2 is satisfied. When π1 is a write, π2 a read and π1 → π2 holds,
then from Lemmas 9 and 10 it follows that tgπ2 ≥ tgπ1 . By definition π1 ≺ π2 is satisfied. If π1 is
a read, π2 a write and π1 → π2 holds, then from Lemma 11 it follows that π2 always returns a tag
tgπ2 s.t. tgπ2 > tgπ1 . By the ordering definition π1 ≺ π2 is satisfied. If both π1 and π2 are reads
and π1 → π2 holds, then from Lemma 7 it follows that the tag returned from π2 is always greater
or equal to the one returned from π1. tgπ2 ≥ tgπ1 . If tgπ2 > tgπ1 , then by the ordering definition
π1 ≺ π2 holds. When tgπ2 = tgπ1 then the ordering is not defined but it cannot be that π2 ≺ π1.
A2 For any write ω ∈ Π and any operation π ∈ Π, then either ω ≺ π or π ≺ ω.
If tgω > tgπ, then π ≺ ω follows directly. Similarly, if tgω < tgπ holds, then it follows that ω ≺ π.
When tsω = tsπ holds, then the uniqueness of each tag that a writer creates ensures that π is a
read. In particular, remember that each tag is a 〈ts, id〉 pair, where ts is a natural number and id
a writer identifier. Tags are ordered lexicographically, first with respect to the timestamp and then
with respect to the writer id. Since the writer ids are unique, then even if two writes use the same
timestamp ts in the tag pairs they generate, the two tags cannot be equal as they will differ on the
writer id. Furthermore, if the two tags are generated by the same writer, then by well-formedness
it must be the case that the latter write will contain a timestamp larger than any timestap used

15

by that writer before. Since π is a read operation that receives readAck messages from a majority
of servers, then the intersection properties of majorities ensure that ω ≺ π.

A3 Every read operation returns the value of the last write preceding it according to ≺ (or the
initial value if there is no such write).
Let ω be the last write preceding read ρ. From our definition it follows that tgρ ≥ tgω. If tgρ = tgω,
then ρ returned a value written by ω in some servers. Read ρ waited for readAck messages from a
majority of servers and the intersection properties of majorities ensure that ω was the last complete
write operation. If tgρ > tgω holds, it must be the case that there is a write ω′ that wrote tgρ and
by definition it must hold that ω ≺ ω′ ≺ ρ. Thus, ω is not the preceding write and this cannot be
the case. Lastly, if tgρ = 0, no preceding writes exist, and ρ returns the initial value.

Having shown liveness and atomicity of algorithm OhMam the result follows.

4.2 Performance.

Briefly, for algorithm OhMam write operations take 4 communication exchanges and read operations
take 3 exchanges. The (worst case) message complexity of read operations is |S|2 + 2|S| and the
(worst case) message complexity of write operations is 4|S|. This follows directly from the structure
of the algorithm. We now give additional details.
Operation Latency. Write operation latency: According to algorithm OhMam, writer w broad-
casts a discover message to all the servers during exchange e1, and, awaits for discoverAck messages
from a majority of servers during e2. Once the discoverAck messages are received, then writer
w broadcasts a writeRequest message to all servers in exchange e3. Lastly, it waits for writeAck
messages from a majority of servers in e4. No further communication is required and the write
operation terminates. Thus any write operation consists of 4 communication exchanges.

Read operation latency: The structure of the read protocol of OhMam is identical to OhSam,
thus a read operation consists of 3 communication exchanges as reasoned in Section 3.2.
Message Complexity. Similarly as in Section 3.2, we measure operation message complexity as
the worst case number of exchanged messages in each read and write operation.

Write operation: A write operation in algorithm OhMam takes 4 communication exchanges.
The first and the third exchanges, e1 and e3, occur when a writer sends discover and writeRequest
messages respectively to all servers in S. The second and fourth exchanges, e2 and e4, occur when
servers in S send discoverAck and writeAck messages back to the writer. Thus, in a write operation
there are 4|S| messages exchanged.

Read operation: The structure of the read protocol of OhMam is identical to OhSam thus, as
reasoned in Section 3.2, during a read operation, |S|2 + 2|S| messages are exchanged.

5 Reducing the Latency of Read Operations

In this section we revise the protocol implementing read operations of algorithms OhSam and
OhMam to yield protocols that implement read operations that terminate in either two or three
communication exchanges. The key idea here is to let the reader determine “quickly” that a
majority of servers holds the same timestamp (or tag) and return its associated value. This is
achieved by having the servers send relay messages to each other as well as to the requesting reader.
While the reader collects the relays and the read acknowledgment messages, if it observes in the
set of the received relay messages that a majority of servers holds the same timestamp (or tag),

16

then it safely returns the associated value and the read operation terminates in two communication
exchanges. If that was not the case, then the reader proceeds similarly to algorithm OhSam and
terminates in three communication exchanges. We name the revised algorithms as OhSam’ and
OhMam’.

5.1 Algorithm OhSam’ for the swmr setting

The code for OhSam’ that presents the revised read protocol is given in Algorithm 3. In addition,
for the servers protocol we show only the changes from algorithm OhSam. We now give additional
details.

Algorithm 3 Read Protocol Changes for SWMR algorithm OhSam’

119: At each reader r
120: Variables:
121: ts ∈ N+, minTS ∈ N+, v ∈ V
122: read op ∈ N+, rRelay, rAck ⊆ S ×M
123: Initialization:
124: ts← 0, minTS ← 0, v ←⊥, read op← 0
125: function Read
126: read op← read op+ 1.
127: rAck, rRelay ← (∅, ∅)
128: bdcast (readRequest, r, read op) to S
129: wait until (|rAck| = |S|/2 + 1) OR
130: (∃Z ⊆ rRelay : (|Z| ≥ |S|/2 + 1) ∧
131: (∀(m′, s′), (m′′, s′′) ∈ Z : m′.ts = m′′.ts))
132: if (rAck = |S|/2 + 1) then
133: minTS ← min{m.ts′|m ∈ rAck}
134: v ← {m.val | m ∈ rAck ∧m.ts′ = minTS}
135: return(v)
136: else
137: v ← {m.val | m ∈ rRelay}
138: return(v)

139: Upon receive m from s
140: if m.read op = read op then
141: if m.type = readAck then
142: rAck ← rAck ∪ {(s,m)}
143: else
144: rRelay ← rRelay ∪ {(s,m)}

145: At each server si
146: Upon receive(〈readRequest, r, read op〉)
147: bdcast(〈readRelay, ts, v, r, read op, si〉) to S ∪ {r}

In order to construct algorithm OhSam’ we modify readers and servers protocol of algorithm
OhSam. In particular, we update the read protocol to wait for both readRelay and readAck messages
(L129-131). Next, in order for the servers protocol to support the broadcast of a readRelay message
to all the servers and the reader process we replace lines 39-40 of OhSam with lines 146-147 of
OhSam’, as shown in algorithm 3. The combination of those changes yells algorithm OhSam’.

Revised Protocol for the Server. The server sends a readRelay message to all the servers and
to the requesting reader (L147).

Revised Protocol for the Reader. Here we let the reader await for either (i) readAck messages or
(ii) readRelay messages from a majority of servers (L129-131). Notice that in latter, all the |S|/2+1
readRelay messages must include the same timestamp to ensure that at least a majority of servers
is informed regarding the last complete write operation (L130-131). In addition, since at least a
majority of servers is informed regarding the last complete operation, then it is safe for the reader
to return the value v associated with the timestamp ts found in the readRelay messages collected
from the majority of servers. Otherwise, when case (i) holds, then the read protocol proceeds as in
OhSam.

17

5.1.1 Correctness.

Liveness and atomicity of the revised algorithm OhSam’ is shown similarly to algorithm OhSam as
reasoned in Section 3.1.

Liveness. Termination of Algorithm OhSam’ is guaranteed with respect to our failure model:
up to f servers may fail, where f < |S|/2, and any type of operation awaits for messages from a
majority of servers before completion. We now provide additional details.

Read Operation. A read operation of algorithm OhSam’ terminates when the client either (i)
collects readRelay messages from at least a majority of serves and all of them include the same
timestamp; or (ii) collects readAck messages from a majority of servers. When case (i) occurs then
the operation terminates immediately (and faster). Otherwise, case (ii) holds, the read operation
proceeds identically to algorithm OhSam and its termination is ensured as reasoned in Section 3.1.

Write Operation. A write operation of algorithm OhSam’ is identical to that of algorithm
OhSam, thus liveness is guaranteed as reasoned in Section 3.1.

Atomicity. Next, we show how algorithm OhSam’ satisfies atomicity. Due to the similarity of
the writer and server protocols of algorithm OhSam’ to those in OhSam, we state the lemmas and
we omit some of the proofs. Lemma 13 shows that the timestamp variable ts maintained by each
server s in the system is monotonically non-decreasing.

Lemma 13 In any execution ξ of OhSam’, the variable ts maintained by any server s in the system
is non-negative and monotonically increasing.

Proof. Lemma 1 for algorithm OhSam also applies to algorithm OhSam’ because the modification
in line 147 does not affect the update of the timestamp ts at the server protocol. �

Next, we show that if a read operation ρ2 succeeds read operation ρ1, then ρ2 always returns a
value at least as recent as the one returned by ρ1.

Lemma 14 In any execution ξ of OhSam’, if ρ1 and ρ2 are two read operations such that ρ1
precedes ρ2, i.e., ρ1 → ρ2, and ρ1 returns the value for timestamp ts1, then ρ2 returns the value for
timestamp ts2 ≥ ts1.

Proof. Since read operations in algorithm OhSam terminate in 3 communication exchanges then
from Lemma 2 we know that any two non-concurrent 3-exchange read operations satisfy this. Thus
we have to show that the lemma holds for the cases where (i) a 2-exchange read operation ρ1
precedes a 2-exchange read operation ρ2; (ii) a 2-exchange read operation ρ1 precedes a 3-exchange
read operation ρ2; and (iii) a 3-exchange read operation ρ1 precedes a 2-exchange read operation
ρ2. Let the two operations ρ1 and ρ2 be invoked by processes with identifiers r1 and r2 respectively
(not necessarily different).

Case (i). Let RRSet1 and RRSet2 be the sets of servers that send a readRelay message to r1 and r2
during ρ1 and ρ2. Assume by contradiction that 2-exchange read operations ρ1 and ρ2 exist such
that ρ2 succeeds ρ1, i.e., ρ1 → ρ2, and the operation ρ2 returns a timestamp ts2 that is smaller than
the ts1 returned by ρ1, i.e., ts2 < ts1. According to our algorithm, ρ2 returns a timestamp ts2 that
is smaller than the timestamp that ρ1 returned i.e., ts1, if ρ2 received |S|/2 + 1 readRelay messages
that all included the same timestamp ts2 and ts2 is smaller than ts1, which is included in |S|/2 + 1

18

readRelay messages received by ρ1. Since, both RRSet1 and RRSet2 contain some majority of
servers then it follows that RRSet1∩RRSet2 6= ∅. And since by Lemma 13 the timestamp variable
ts maintained by servers is monotonically increasing, then it is impossible that ρ2 received |S|/2+1
readRelay messages that all included the same timestamp ts2 and ts2 < ts1. In particular, since at
least a majority of servers have a timestamp at least as ts1 then ρ2 can receive only |S|/2 readRelay
messages with a timestamp ts2 s.t. ts2 < ts1. Therefore, this contradicts our assumption.

Case (ii). Since ρ1 is a 2-exchange operation, then r1 receives at least |S|/2 + 1 readRelay messages
that includes the same timestamp ts1. Thus after the completion of ρ1 at least a majority of servers
hold a timestamp at least as ts1. In addition, we know that the servers relay to each other and wait
for readRelay messages from a majority of servers before they send a readAck message to the reader
r2. By Lemma 13 the timestamp variable ts maintained by servers is monotonically increasing then
each server si that sends a readAck message to r2 must include a timestamp tssi s.t. tssi ≥ ts1.
Therefore, the minimum timestamp ts2 that r2 can observe in each readAck message received from
si must be ts2 ≥ tssi ≥ ts1. Since a 3-exchange read operation decides on the minimum timestamp
observed in the readAck responses, then reader r2 will decide on a timestamp ts2 s.t. ts2 ≥ ts1.
Case (iii). Since ρ1 is a 3-exchange operation, then r1 receives at least |S|/2 + 1 readAck messages
that include the minimum timestamp ts1. Servers relay to each other before they send a readAck
message to ρ1 and timestamps in servers are monotone (Lemma 13), thus after the completion of
ρ1 at least a majority of servers, si ∈ RSet, hold a timestamp no smaller than ts1. Let RRSet be
the set of servers that send a readRelay message to r2 during ρ2. In order for ρ2 to terminate, based
on the read protocol the size of RRSet must be at least |S|/2 + 1. Let tssi be a timestamp received
from a server si ∈ RRSet. Since RSet∩RRSet 6= ∅ then the 2-exchange operation ρ2 that succeeds
ρ1 can receive at most |S|/2 (minority) readRelay messages with a timestamp tssi s.t. tssi < ts1.
Thus, when ρ2 terminates it must return a timestamp ts2 s.t. ts2 ≥ ts1 and the lemma follows. �

Now we show that if a read operation succeeds a write operation, then it returns a value at
least as recent as the one written.

Lemma 15 In any execution ξ of the algorithm, if a read ρ succeeds a write operation ω that writes
timestamp ts, i.e. ω → ρ, and returns a timestamp ts′, then ts′ ≥ ts.

Proof. From Lemma 4 for algorithm OhSam we know that lemma holds if a 3-exchange read
operation succeeds a write operation. We now show that the same holds in case where the read
operation terminates in 2 exchanges.

Assume by contradiction that a 2-exchange read operation ρ and a write operation ω exist such
that ρ succeeds ω, i.e. ω → ρ, and ρ returns a timestamp ts′ that is smaller than ts that ω wrote,
ts′ < ts. From our algorithm, in order for this to happen, ρ receives |S|/2 + 1 readRelay messages
that all include the same timestamp ts′ and ts′ < ts. Since ω is complete it means that at least a
majority of servers hold a timestamp tss s.t. tss ≥ ts. Since any two majorities have a non empty
intersection, this contradicts the assumption that ρ received |S|/2 + 1 readRelay messages that all
included the same timestamp ts′ where ts′ < ts and the lemma follows. �

Theorem 16 Algorithm OhSam’ implements an atomic SWMR object.

Proof. We now use the lemmas stated above and the operations order definition to reason about
each of the three atomicity conditions A1, A2 and A3.

19

A1 For any π1, π2 ∈ Π such that π1 → π2, it cannot be that π2 ≺ π1.
When the two operations π1 and π2 are reads and π1 → π2 holds, then from Lemma 14 it follows
that the timestamp returned from π2 is always greater or equal to the one returned from π1,
tsπ2 ≥ tsπ1 . If tsπ2 > tsπ1 then by the ordering definition π1 ≺ π2 is satisfied. When tsπ2 = tsπ1
then the ordering is not defined, thus it cannot be the case that π2 ≺ π1. If π2 is a write, the
sole writer generates a new timestamp by incrementing the largest timestamp in the system. By
well-formedness (see Section 2), any timestamp generated by the writer for any write operation
that precedes π2 must be smaller than tsπ2 . Since π1 → π2, then it holds that tsπ1 < tsπ2 . Hence,
by the ordering definition it cannot be the case that π2 ≺ π1. Lastly, when π2 is a read and π1
a write and π1 → π2 holds, then from Lemma 15 it follows that tsπ2 ≥ tsπ1 . By the ordering
definition, it cannot hold that π2 ≺ π1 in this case either.

A2 For any write ω ∈ Π and any operation π ∈ Π, then either ω ≺ π or π ≺ ω.
If the timestamp returned from ω is greater than the one returned from π, i.e. tsω > tsπ, then
π ≺ ω follows directly. Similartly, if tsω < tsπ holds, then ω ≺ π follows. If tsω = tsπ, then it must
be that π is a read and π either discovered tsω as the minimum timestamp in at least a majority
of servers or returned fast tsω because it was noticed in at least a majority of servers. Thus, ω ≺ π
follows.

A3 Every read operation returns the value of the last write preceding it according to ≺ (or the
initial value if there is no such write).
Let ω be the last write preceding read ρ. From our definition it follows that tsρ ≥ tsω. If tsρ = tsω,
then ρ returned the value written by ω on a majority of servers. If tsρ > tsω, then it means that ρ
obtained a larger timestamp. However, the larger timestamp can only be originating from a write
that succeeds ω, thus ω is not the preceding write and this cannot be the case. Lastly, if tsρ = 0,
no preceding writes exist, and ρ returns the initial value.

�

Having shown liveness and atomicity of algorithm OhSam’ the result follows.

5.1.2 Performance.

In algorithm OhSam’ write operations take 2 exchanges and read operations take 2 or 3 exchanges.
The (worst case) message complexity of read operations is |S|2 + 3|S| and the (worst case) message
complexity of write operations is 2|S|. These results follows directly from the structure of the
algorithm. We now provide additional details.

Operation Latency. Write operation latency: The structure of the write protocol of OhSam’ is
identical to OhSam, thus a write operation consists of 2 communication exchanges as reasond in
Section 3.2.

Read operation latency: A reader sends a readRequest message to all servers in the first commu-
nication exchange e1. Once the servers receive the readRequest message they broadcast a readRelay
message to all the servers and to the requesting reader in the exchange e2. The reader can ter-
minate at the end of the second exchange, e2, if it can be “fast” and complete. If not, then the
operation waits for exchange e3 as in algorithm OhSam before completion. Thus, a read operation
terminate either in 2 or 3 communication exchanges.

Message Complexity. Write operation: The structure of the write protocol of OhSam’ is identical
to OhSam, thus, as reasond in Section 3.2, 4|S| messages are exchanged during a write operation.

20

Read operation: Read operations in the worst case take 3 communication exchanges. Exchange
e1 occurs when a reader sends a readRequest message to all servers in S. The second exchange e2
occurs when servers in S send readRelay messages to all servers in S and to the requesting reader.
The final exchange e3 occurs when servers in S send a readAck message to the reader. Summing
together |S|+ (|S|2 + |S|) + |S|, shows that in the worst case, |S|2 + 3|S| messages are exchanged
during a read operation.

5.2 Algorithm OhMam’ for the mwmr setting

Algorithm OhMam’ is obtained similarly to OhSam’ by (i) using tags instead of timestamps in the
revised read protol of OhSam’ and (ii) using the write protocol of OhMam without any modifications.
Next, we reason about OhMam’ correctness.

5.2.1 Correctness.

Liveness and atomicity of the revised algorithm OhMam’ is shown similarly to algorithm OhMam

as reasoned in Section 4.1.

Liveness. Termination of Algorithm OhMam’ is guaranteed with respect to our failure model:
up to f servers may fail, where f < |S|/2, and operations wait for messages only from a majority
of servers. We now give additional details.

Read Operation. A read operation of OhMam’ differs from OhSam’ by using tags instead of
timestamps in order to impose an ordering on the values written. The structure of the read
protocol is identical to OhSam’, thus liveness is ensured as reasoned in section 3.1.

Write Operation. Since the write protocol of algorithm OhMam’ is identical to the one that
algorithm OhMam uses, liveness is guaranteed as discussed in Section 4.1.

Atomicity. Next, we show how algorithm OhMam’ satisfies atomicity. Due to the similarity of
the writer and server protocols of algorithm OhMam’ to those in OhMam, we state the lemmas and
we omit some of the proofs. Lemma 17 shows that the timestamp variable ts maintained by each
server s in the system is monotonically non-decreasing.

Lemma 17 In any execution ξ of OhMam’, the variable tg maintained by any server s in the
system is non-negative and monotonically increasing.

Proof. Lemma 6 for algorithm OhMam also applies to algorithm OhMam’ because the modification
in line 147 does not affect the update of the tag tg at the server protocol. �

Next, we show that if a read operation ρ2 succeeds read operation ρ1, then ρ2 always returns a
value at least as recent as the one returned by ρ1.

Lemma 18 In any execution ξ of OhMam’, If ρ1 and ρ2 are two read operations such that ρ1
precedes ρ2, i.e., ρ1 → ρ2, and ρ1 returns a tag tg1, then ρ2 returns a tag tg2 ≥ tg1.

Proof. Since read operations in algorithm OhMam terminate in 3 communication exchanges then
from Lemma 7 we know that the any two non-concurrent 3-exchange satisfy this. Thus we now
have to show that the lemma holds for the cases where (i) a 2-exchange read operation ρ1 precedes

21

a 2-exchange read operation ρ2; (ii) a 2-exchange read operation ρ1 precedes a 3-exchange read
operation ρ2; and (iii) a 3-exchange read operation ρ1 precedes a 2-exchange read operation ρ2. Let
the two operations ρ1 and ρ2 be invoked by processes with identifiers r1 and r2 respectively (not
necessarily different).

Case (i). Assume by contradiction that 2-exchange read operations ρ1 and ρ2 exist such that ρ2
succeeds ρ1, i.e., ρ1 → ρ2, and operation ρ2 returns a tag tg2 that is smaller than tag tg1 returned
by ρ1, i.e., tg2 < tg1. Since both operations ρ1 and ρ2 complete in 2 exchanges, they both have
to collect |S|/2 + 1 readRelay messages with the same tag tg1 and tg2 respectively. We know that
after the completion or ρ1 at least |S|/2 + 1 servers have a tag at least as tg1. By monotonicity of
the tag at the servers (Lemma 17) and the fact that ρ1 is completed it follows that it is impossible
for ρ2 to collect |S|/2 + 1 readRelay messages with the same tag tg2 s.t. tg2 < tg1. In particular,
ρ2 can receive only |S|/2 readRelay messages with a timestamp tg2 s.t. tg2 < tg1. Therefore, this
contradicts our assumption.

Case (ii). We know that since ρ1 is a 2-exchange operation then r1 receives at least |S|/2 + 1
readRelay messages that include the same tag tg1. Thus after the completion of ρ1 at least a
majority of servers hold a timestamp at least as tg1. Servers relay to each other and wait for
readRelay messages from a majority of servers before they send a readAck message to the reader
r2. By Lemma 17 since the tag variable tgs maintained by servers is monotonically increasing
then each server si that sends a readAck message to r2 must include a tag tgsi s.t. tgsi ≥ tg1.
Therefore, the minimum tag tg2 that r2 can observe in each readAck message received from si must
be tg2 ≥ tgsi ≥ tg1. Since a 3-exchange read operation decides on the minimum tag observed in
the readAck responses, reader r2 decides on a timestamp tg2 s.t. tg2 ≥ tg1.
Case (iii). Since ρ1 is a 3-exchange operation, r1 receives at least |S|/2 + 1 readAck messages that
include the minimum tag tg1. Servers relay to each other before they send a readAck message to
ρ1, then, by the monotonicity of tags at servers (Lemma 17), after the completion of ρ1 at least
a majority of servers si ∈ RSet hold a tag at least as tg1. Let RRSet be the set of servers that
send a readRelay message to r2 during ρ2. In order for ρ2 to terminate the size of RRSet must be
at least |S|/2 + 1 based on the read protocol. Let tgsi be a tag received from a server si ∈ RRSet.
Since RSet1 ∩ RRSet 6= ∅ then the 2-exchange operation ρ2 that succeeds ρ1 can receive at most
|S|/2 (minority) readRelay messages with a tag tgsi s.t. tgsi < tg1. Thus, when ρ2 terminates it
must return a tag tg2 s.t. tg2 ≥ tg1 and the lemma follows. �

Now we show that if a read operation succeeds a write operation, then it returns a value at
least as recent as the one written.

Lemma 19 In any execution ξ of OhMam’, if read operation ρ succeeds write operation ω (i.e.,
ω → ρ) that writes value v associated with tag tg and returns tag tg′, then tg′ ≥ tg.

Proof. From Lemma 10 for algorithm OhMam we know that the lemma holds if a 3-exchange
read operation succeeds a write operation. We now show that the same holds for 2-exchange read
operations.

Assume by contradiction that a 2-exchange read operation ρ and a write operation ω exist such
that ρ succeeds ω, i.e. ω → ρ, and ρ returns a tag tg′ that is smaller than the tag tg that ω
wrote, tg′ < tg. From the algorithm, in order for this to happen, ρ receives |S|/2 + 1 readRelay
messages that all include the same tag tg′ and tg′ < tg. Since ω is complete it means that at least
a majority of servers hold tag tgs s.t. tgs ≥ tg. Since any two majorities intersect, this contradicts

22

the assumption that ρ receives |S|/2 + 1 readRelay messages that all include the same timestamp
tg′ where tg′ < tg and the lemma follows. �

Next, we reason that if a write operation ω2 succeeds write operation ω1, then ω2 writes a value
accosiated with a tag strictly higher than ω1.

Lemma 20 In any execution ξ of OhMam’, if a write operation ω1 writes a value with tag tg1 then
for any succeeding write operation ω2 that writes a value with tag tg2 we have tg2 > tg1.

Proof. The modifications of OhMam’ do not have an impact on the write operations thus this
lemma follows directly from lemma 8 of OhMam. �

Lemma 21 In any execution ξ of OhMam’, if a write ω succeeds a read operation ρ that reads tag
tg, i.e. ρ→ ω, and returns a tag tg′, then tg′ > tg.

Proof. The case where the read operation takes three communication exchanges to terminate is
identical as in lemma 11 of algorithm OhMam. Thus, we are interested to examine the case where
the read terminates in two communication exchanges.

Let RR be the set of servers that sent readRelay messages to ρ. Let dAck be the set of servers
that sent discoverAck messages to ω. Let wAck be the set of servers that sent writeAck messages
to ω and let RA be the set of servers that sent readAck messages to ρ. It is not necessary that
a 6= b 6= c holds.

In the case we examine, the read operation ρ terminates when it receives readRelay messages
from a majority of servers and ρ decides on a tag that all servers attached in the set RA and
lastly it terminates. Writer ω, initially it broadcasts a discover message to all servers, and it then
awaits for “fresh” discoverAck messages from amajority of servers, that is, set dAck. Each of RA
and dAck sets are from majorities of servers, and so RA ∩ dAck 6= ∅. By Lemma 17, any server
sk ∈ RA ∩ dAck has a tag tgsk s.t. tgsk ≥ tg. Since ω generates a new local tag-value (tg′, v)
pair in which it assigns the timestamp to be one higher than the one discovered in the maximum
tag from set dAck, it follows that tg′ > tg. Furthermore, ω broadcasts the value to be written
associated with tg′ in a writeRequest message to all servers and it awaits for writeAck messages from
a majority of servers before completion, set wAck. Observe that each of dAck and wAck sets are
from majority of servers, and so dAck ∩ wAck 6= ∅. By Lemma 6, any server sk ∈ dAck ∩ wAck
has a tag tgsk s.t. tgsk ≥ tg′ > tg and the result follows.

�

Similarly to Theorem 16 we show the following for algorithm OhMam’.

Theorem 22 Algorithm OhMam’ implements an atomic MWMR object.

Proof. We use the above lemmas and the operations order definition (using tags instead of times-
tamps) to reason about each of the three atomicity conditions A1, A2 and A3.

A1 For any π1, π2 ∈ Π such that π1 → π2, it cannot be that π2 ≺ π1.
If both π1 and π2 are writes and π1 → π2 holds, then from Lemma 21 it follows that tgπ2 > tgπ1 .
By the ordering definition π1 ≺ π2 is satisfied. When π1 is a write, π2 a read and π1 → π2 holds,
then from Lemma 19 it follows that tgπ2 ≥ tgπ1 . By definition π1 ≺ π2 is satisfied. If π1 is a read,
π2 a write and π1 → π2 holds, then from Lemma 21 it follows that π2 always returns a tag tgπ2

23

s.t. tgπ2 > tgπ1 . By the ordering definition π1 ≺ π2 is satisfied. If both π1 and π2 are reads and
π1 → π2 holds, then from Lemma 18 it follows that the tag returned from π2 is always greater
or equal to the one returned from π1. tgπ2 ≥ tgπ1 . If tgπ2 > tgπ1 , then by the ordering definition
π1 ≺ π2 holds. When tgπ2 = tgπ1 then the ordering is not defined but it cannot be that π2 ≺ π1.
A2 For any write ω ∈ Π and any operation π ∈ Π, then either ω ≺ π or π ≺ ω.
If tgω > tgπ, then π ≺ ω follows directly. Similarly, if tgω < tgπ holds, then it follows that ω ≺ π.
When tsω = tsπ holds, then the uniqueness of each tag that a writer creates ensures that π is a
read. In particular, remember that each tag is a 〈ts, id〉 pair, where ts is a natural number and id
a writer identifier. Tags are ordered lexicographically, first with respect to the timestamp and then
with respect to the writer id. Since the writer ids are unique, then even if two writes use the same
timestamp ts in the tag pairs they generate, the two tags cannot be equal as they will differ on the
writer id. Furthermore, if the two tags are generated by the same writer, then by well-formedness
it must be the case that the latter write will contain a timestamp larger than any timestap used
by that writer before. Since π is a read operation that receives either (i) readAck messages from
a majority of servers, or (ii) readRelay messages from a majority of servers with the same tg, then
the intersection properties of majorities ensure that ω ≺ π.

A3 Every read operation returns the value of the last write preceding it according to ≺ (or the
initial value if there is no such write).
Let ω be the last write preceding read ρ. From our definition it follows that tgρ ≥ tgω. If tgρ = tgω,
then ρ returned a value written by ω in some servers. Read ρ waited either (i) for readAck messages
from a majority of servers, or (ii) readRelay messages from a majority of servers with the same tg.
Thus the intersection properties of majorities ensure that ω was the last complete write operation.
If tgρ > tgω holds, it must be the case that there is a write ω′ that wrote tgρ and by definition it
must hold that ω ≺ ω′ ≺ ρ. Thus, ω is not the preceding write and this cannot be the case. Lastly,
if tgρ = 0, no preceding writes exist, and ρ returns the initial value. �

Having shown liveness and atomicity of algorithm OhMam’ the result follows.

5.2.2 Performance.

In algorithm OhMam’ write operations take 4 exchanges and read operations take 2 or 3 exchanges.
The (worst case) message complexity of read operations is |S|2 + 3|S| and the (worst case) message
complexity of write operations is 4|S|. We now provide additional details.

Operation Latency. Write operation latency: The structure of the write protocol of OhMam’ is
identical to OhMam, thus a write operation consists of 4 communication exchanges as reasond in
Section 4.2.

Read operation latency: The structure of the read protocol of OhMam’ is identical to OhSam’,
thus a read operation consists of at most 3 communication exchanges as reasond in Section 5.1.2.

Message Complexity. Write operation: The structure of the write protocol of OhMam’ is identi-
cal to OhMam, thus, as reasoned in Section 4.2, 4|S| messages are exchanged in a write operation.

Read operation: The structure of the read protocol of OhMam’ is identical to OhSam’, thus, as
reasoned in Section 5.1.2, |S|2 + 3|S| messages are exchanged during a read operation.

24

6 Empirical Evaluations

Here we present a comparative study if our algorithms by simulating them using the NS3 discrete
event simulator [1]. We implemented the following three SWMR algorithms: ABD [2], OhSam, and
OhSam’. We also implemented the corresponding three MWMR algorithms: ABD-MW (following
the multi-writer extension [10]), OhMam, and OhMam’. For comparison we also implemented
a benchmark, called LB, that mimics the minimum message requirements for the SWMR and
MWMR settings but without performing any computation or ensuring consistency. In particular,
LB performs two communication exchanges for read and write operations thus providing a lower
bound on performance in simulated scenarios. Note that LB, does not serve the properties of
Atomicity and its use is strictly serving comparison purposes.

Figure 1: Simulated topologies.

Experimentation Setup. The experi-
mental configuration consists of a single
(SWMR) or multiple (MWMR) writers, a
set of readers, and a set of servers. We
assume that at most one server may fail.
This is done to subject the system to a high
communication burden. Communication
among the nodes is established via point-to-
point bidirectional links implemented with
a DropTail queue.

For our evaluation, we use simulations
representing two different topologies, Se-
ries and Star, that include the same array
of routers but differ in the deployment of
server nodes. In both topologies clients are
connected to routers over 5Mbps links with
2ms delay, the routers are connected over
10Mpbs links with 4ms delay. In the Series
topology in Figure 1(a), a server is connected to each router over 10Mbps bandwidth with 2ms
delay. This topology models a network where servers are separated and appear to be in different
networks. In the Star topology in Figure 1(b) all servers are connected to a single router over
50Mbps links with 2ms delay, modeling a network where servers are in a close proximity and are
well-connected, e.g., as in a datacenter. In both topologies readers and writer(s) are located uni-
formly with respect to the routers. We ran NS3 on a Mac OS X with 2.5Ghz Intel Core i7 processor.
The results are compiled as averages over five samples per each scenario.
Performance. We assess algorithms in terms of operation latency that depends on communication
delays and local computation delays. NS3 supports simulated time events, but does not measure
delays due to local computation. In order to measure operation latency we combine two clocks: the
simulation clock to measure communication delays, and a real time clock to measure computation
delays. The sum of the two times yields operation latency.
Scenarios. To measure performance we define several scenarios. The scenarios are designed to
test (i) the scalability of the algorithms as the number of readers, writers, and servers increases;
(ii) the contention effect on efficiency, by running different concurrency scenarios; and (iii) the
effects of chosen topologies on the efficiency. For scalability we test with the number of readers
|R| from the set {10, 20, 40, 80, 100} and the number of servers |S| from the set {10, 15, 20, 25, 30}.

25

(a) (b)

(c) (d)

Figure 2: SWMR Simulation Results.

For the MWMR setting we use at most 80 readers and we range the number of writers |W| over
the set {10, 20, 40}. To test contention we set the frequency of each read and write operation
to be constant and we define two different invocation schemes. We issue reads every rInt = 2.3
seconds and write operations every wInt = 4 seconds. We define two invocation schemes: fixed and
stochastic. In the fixed scheme all operations are scheduled periodically at a constant interval. In
the stochastic scheme read and write operations are scheduled randomly from the intervals [1, rInt]
and [1, wInt] respectively. To test the effects of topology we run our simulations using the Series
and Star topologies.
Results. We generally observe that the proposed algorithms outperform algorithms ABD and ABD-

MW in most scenarios by a factor of 2. A closer examination yields the following observations.
Scalability: As seen in Figures 2(b) and 2(c), increasing the number of readers and servers

increases latency in the SWMR algorithms. The same observation holds for the MWMR algorithms.
When the number of the participating readers and writers is reduced then not surprisingly the
latency improves, but the relative performance of the algorithms remains the same.

26

(e) (f)

(g) (h)

Figure 3: MWMR Simulation Results.

Contention: We examine the efficiency of our algorithms under different concurrency schemes.
We set the operation frequency to be constant and we observe that in the stochastic scheme read
operations complete faster than in the fixed scheme; see Figures 2(c) and 2(d) for the SWMR

setting, and Figures 3(g) and 3(h) for the MWMR setting. This is expected as the fixed scheme
causes congestion. For the stochastic scheme the invocation time intervals are distributed uniformly,
this reduces congestion and improves latency.

Topology: Figures 2(a) and 2(b) for the SWMR setting, and Figures 3(e) and 3(f) for the MWMR

setting show that topology substantially impacts performance. For both the SWMR and MWMR

settings our algorithms outperform algorithms ABD and ABD-MW by a factor of at least 2 in
Star topology where servers are well-connected. Our SWMR algorithms perform much better than
ABD also in the Series topology. For the MWMR setting and Series topology, we note that ABD-

MW generally outperforms algorithm OhMam, however the revised algorithm OhMam’ noticeably
outperforms ABD-MW.

Lastly we compare the performance of algorithms OhSam and OhMam with revised versions

27

OhSam’ and OhMam’. We note that OhSam’ and OhMam’ outperform all other algorithms in
Series topologies. However, and perhaps not surprisingly, OhSam and OhMam outperform OhSam’

and OhMam’ in Star topology. This is explained as follows. In Star topology readRelay and
readAck messages are exchanged quickly at the servers and thus delivered quickly to the clients.
On the other hand, the bookkeeping mechanism used in the revised algorithms incur additional
computational latency, resulting in worse latency.

An important observation is that while algorithms OhSam’ and OhMam’ improve the latencies
of some operations (allowing some reads to complete in two exchanges), their performance relative
to algorithms OhSam and OhMam depends on the deployment setting. Simulations show that
OhSam and OhMam are more suitable for datacenter-like deployment, while in the “looser” settings
algorithms OhSam’ and OhMam’ perform better.

7 Conclusions

We focused on the problem of emulating atomic read/write shared objects in message-passing
settings with the goal of using three communication exchanges (to the extent allowed by the impos-
sibility result [6]). We presented algorithms for the SWMR and MWMR models. We then revised
the algorithms to speed up some read operations. We rigorously reasoned about the correctness of
our algorithms. The algorithms do not impose any constrains on the number of readers (SWMR

and MWMR) and on the number of the writers for the MWMR model. Finally we performed an
empirical study of the performance of algorithms using simulations.

References

[1] NS3 network simulator. https://www.nsnam.org/.

[2] Attiya, H., Bar-Noy, A., and Dolev, D. Sharing memory robustly in message passing
systems. Journal of the ACM 42(1) (1996), 124–142.

[3] Dutta, P., Guerraoui, R., Levy, R. R., and Chakraborty, A. How fast can a dis-
tributed atomic read be? In Proceedings of the 23rd ACM symposium on Principles of Dis-
tributed Computing (PODC) (2004), pp. 236–245.

[4] Englert, B., Georgiou, C., Musial, P. M., Nicolaou, N., and Shvartsman, A. A.
On the efficiency of atomic multi-reader, multi-writer distributed memory. In Proceedings 13th
International Conference On Principle Of DIstributed Systems (OPODIS 09) (2009), pp. 240–
254.

[5] Georgiou, C., Nicolaou, N. C., and Shvartsman, A. A. Fault-tolerant semifast imple-
mentations of atomic read/write registers. Journal of Parallel and Distributed Computing 69,
1 (2009), 62–79.

[6] Hadjistasi, T., Nicolaou, N., and Schwarzmann, A. A. On the impossibility of one-
and-a-half round atomic memory. www.arxiv.com, 2016.

[7] Herlihy, M. P., and Wing, J. M. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems (TOPLAS) 12, 3 (1990),
463–492.

28

[8] Lamport, L. How to make a multiprocessor computer that correctly executes multiprocess
program. IEEE Trans. Comput. 28, 9 (1979), 690–691.

[9] Lynch, N. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[10] Lynch, N. A., and Shvartsman, A. A. Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In Proceedings of Symposium on Fault-Tolerant Computing
(1997), pp. 272–281.

29

	1 Introduction
	2 Models and Definitions
	3 SWMR Algorithm OhSam
	3.1 Correctness.
	3.2 Performance.

	4 MWMR Algorithm OhMam
	4.1 Correctness.
	4.2 Performance.

	5 Reducing the Latency of Read Operations
	5.1 Algorithm OhSam' for the swmr setting
	5.1.1 Correctness.
	5.1.2 Performance.

	5.2 Algorithm OhMam' for the mwmr setting
	5.2.1 Correctness.
	5.2.2 Performance.

	6 Empirical Evaluations
	7 Conclusions

