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Abstract. Spark is a new promising platform for scalable data-pdratenpu-
tation. It provides several high-level application pragraing interfaces (APIS)
to perform parallel data aggregation. Since execution odljed aggregation in
Spark is inherently non-deterministic, a natural requigatrfor Spark programs
is to give the same result for any execution on the same datdVeepresent
PURESPARK, an executable formal Haskell specification for Spark agmpe
combinators. Our specification allows us to deduce the geemindition for de-
terministic outcomes from Spark aggregation. We reporé ctisdies analyzing
deterministic outcomes and correctness of Spark programs.

1 Introduction

Spark [30,1,31] is a popular platform for scalable distrifabdata-parallel computation
based on a flexible programming environment with conciserégia-level APls. Spark
is by many considered as the successor of MapRedulte [1DE2§hite its fame, the pre-
cursory computational model of MapReduce suffers from Ié@gestion and limited
programming support for distributed problem solving. NidyaSpark has the following
advantages over MapReduce. First, it has high performame¢addistributed, cached,
and in-memory computation. Second, the platform adopteaed fault tolerant model
where sub-results are recomputed upon faults rather thgressgjvely stored. Third,
lazy evaluation semantics is used to avoid unnecessaryuatign. Finally, Spark of-
fers greater programming flexibility through its powerfuPs founded in functional
programming. Spark also owes its popularity to a unified #ramrk for efficient graph,
streaming, and SQL-based relational database computatimachine learning library,
and the support of multiple distributed data storage fosm@park is one of the most
active open-source projects with over 1000 contributdfs [1

In a typical Spark program, a sequence of transformatidimfed by an action are
performed on Resilient Distributed Datasets (RDDs). An RBEhe principal abstrac-
tion for data-parallel computation in Spark. It representead-only collection of data
items partitioned and stored distributively. RDD opermasicuch asnap, reduce, and
aggregate are calledccombinators They generate and aggregate data in RDDs to carry
out Spark computation. For instance, #ygregate combinator takes user-defined func-
tionsseq andcomb: seq accumulates a sub-result for each partition while:b merges
sub-results across different partitions. Spark also plesa family of aggregate combi-
nators for common data structures such as pairs and grapBpark computation, data
aggregation is ubiquitous.


http://arxiv.org/abs/1702.02439v1

Programming in Spark, however, can be tricky. Since subksare computed us-
ing multiple applications okeq and comb across partitions concurrently, the order
of their applications varies on different executions. Besga of indefinite orders of
computation, aggregation in Spark is inheremttyn-deterministicA Spark program
may produce different outcomes for the same input on diffierens. This form of
non-deterministic computation has other side effectsifgiance, the private function
AreaUnderCurve.of in the Spark machine learning library computes numeridagra-
tion distributively; it exhibits numerical instability éuto non-deterministic computa-
tion. Consider the integral af™® on the interval—2, 2]. Sincez™ is an odd function,
the integral i). In our experimentAreaUnderCurve.of returns different results ranging
from —8192.0to 12288.0 on the same input because of different orders of floatingrtpoi
computation. To ensure deterministic outcomes, prograsmest carefully develop
their programs to adhere to Spark requirements.

Unfortunately, Spark’s documentation does not specifyréggiirements formally.
It only describes informal algebraic properties about ciorators to ensure correctness.
The documentation provides little help to a programmer idarstanding the complex,
and sometimes unexpected, interaction betwegrand comb, especially when these
two are functions over more complex domains, e.qg. listsa@gr Inspecting the Spark
implementation is a laborious job since public combinatoes built by composing a
long chain of generic private combinators—determiningdkecution semantics from
the complex implementation is hard. Moreover, Spark is ioowously evolving and
the implementation semantics may change significantlysscreleases. We therefore
believe that a formal specification of Spark combinatoreisassary to help developers
understand the program semantics better, clarify hiddsmagtions about RDDs, and
help to reason about correctness and sources of non-detemmin Spark programs.

Building a formal specification for Spark is far from straifgirward. Spark is im-
plemented in Scala and provides high-level APIs also in &ythAnd Java. Because
Spark heavily exploits various language features of Séis,hard to derive specifi-
cations without formalizing the operational semanticsha&f cala language, which is
not an easy task by itself. Instead of that, we have develapéaskell library RRES-
PARK [4], which for each key Spark combinator provides an abssaquential func-
tional specification in Haskell. We use Haskell as a spetifindanguage for two rea-
sons. First, the core of Haskell has strong formal foundatio A-calculus. Second,
program evaluation in Haskell, like in Scala, is lazy, whachmits faithful modeling of
Spark aggregation. Through the use of Haskell we obtain aiseriormal functional
model for Spark combinators without formalizing Scala.

An important goal of our specification is to make non-deteism in various com-
binators explicit. Spark developers can inspect it to ifgsburces of non-determinism
when program executions yield unexpected outputs. Rese@ can also use it to un-
derstand distributed Spark aggregation and investigateoinputational pattern. Our
specification is alsexecutableA programmer can use the Haskell APIs to implement
data-parallel programs, test them on different input RDérg] verify correctness of
outputs independent of the Spark programming environnierdur case studies, we
capture non-deterministic behaviors of real Spark prograsn executing the corre-
sponding MRESPARK specifications with crafted input data sets. We also showv tha
the sequential specification is useful in developing disteéd Spark programs.



Our main contributions are summarized below:

— We present formal, functional, sequential specificatimrskkey Spark aggregate
combinators. The PRESPARK specification consists of executable library APIs. It
can assist Spark program development by mimicking datalpbprogramming in
conventional environments.

— Based on the specification, we investigate and identify sesog and sufficient con-
ditions for Spark aggregate combinators to produce detestia outcomes for gen-
eral and pair RDDs.

— Our specification allows to deduce the precise conditiod&berministic outcomes
from Spark aggregation.

— We perform a series of case studies on practical Spark progyta validate our
formalization. With RIRESPARK, we find instances of numerical instability in the
Spark machine learning library.

— Up to our knowledge, this is the first work to provide a fornfiahctional specifica-
tion of key Spark aggregate combinators for data-paradielgutation.

2 Preliminaries

Let A be a non-empty setanmd : A x A — A be a function. An elemerite A is the
identity of @ if for everya € A, it holds thate = ¢ ® ¢ = a ©® ¢. The function® is
associativef for everya,a’,a” € A, a ® (¢’ ©d”) = (a®d') ®a”; © is commutative
if for everya,a’ € A, a ® @' = a’ ® a. The algebraic structured, ©) is asemigroup
if © is associative. Anonoidis a structurd A, ®, L) such that{ A, @) is a semigroup
and L € A is the identity of®. The semigroug 4, ®) and monoid(A, ®, 1) are
commutative if® is commutative.

Haskell is a strongly typed purely functional programmiagduage. Similar to
Scala, Haskell programs are lazily evaluated. We use devitaly used Haskell func-
tions (Figurdll)fst andsnd are projections on pairaull tests whether a list is empty.
elem is the membership function for lists; its infix notation isef used, as it ‘elem" [].
(+) concatenates two lists; it is used as an infix operator, @Ealse | -+ [True]. map ap-
plies a function to elements of a listducel merges elements of a list by a given binary
function from left to rightfoldl accumulates by applying a function to elements of a list
iteratively, also from left to rightconcat concatenates elements in a listncatMap
applies a function to elements of a list and concatenatesesthéts.lookup finds the
value of a key in a list of pairdilter selects elements from a list by a predicate.

In order to formalize non-determinism in distributed aggton, we define the fol-
lowing non-deterministic shuffle function for lists:
shuffle ! :: [a] — [a]
shuffle I xs = ... —— shuffle xs randomly
A random monad can be used to define random shuffling. Insteaxpticit monadic
notation, we introduce thehaoticshuffle ! function in our presentation for the sake of
brevity. Thusshuffle ! [0, 1, 2] evaluates to one of the six possible ligts1, 2], [0, 2, 1],
[1,0,2][1,2,0],[2, 0, 1], or[2, 1, 0] randomly. Usingshuffle !, more chaotic functions
are defined.
map!:: (a — B) — [a] — [6] concatMap ! :: (a — [B]) — [e] — [B]
map! f xs = shuffle | (map f xs) concatMap ! f xs = concat (map! f xs)



fst i1 (o, B) = «
fst (x, ) =x

null :: [a] — Bool
null [] = True
null (x:xs) = False

() [a] = [o] = [a]
[+ ys=ys
X:XS H YS = X:(XS H yS)

reducel :: (a—a—a)—[a]—a
reducel h (x:xs) = foldl h x xs

concat :: [[a]] = [«¢]
concat [ =]
concat (xs:xss) = xs H (concat Xss)

lookup :: a — [(a, B)] = Maybe 3
lookup k [] = Nothing
lookup k ((x, y):xys) = if k ==x

then Just vy else lookup k xys

snd :: (o, B) = B
snd (L, y)=Yy

elem :: a — [a] — Bool
elem x [] = False
elem x (y:ys) = x==y || elem x ys

map :: (« — B) = [a] = [5]

map f[] =]
map f (x:xs) = (f x):(map f xs)

foldl :: (B—a—pB)—B—[a]—8
foldl hz[|=z
foldl h z (x:xs) =foldl h (h zx) xs

concatMap :: (o — [8]) — [a] — [6]
concatMap xs = concat (map f xs)

filter :: (¢ — Bool) — [a] — [a]
fiter p[J=1]
filter p (x:xs) =if p x
then x:(filter p xs) else filter p xs

Fig. 1. Basic functions

Chaoticmap! shuffles the result ahap randomly,concatMap ! concatenates the shuf-
fled result ofmap. For instancemap! even [0, 1] evaluates tgFalse, True] or [True,
False]; concatMap ! fact [2, 3] evaluatest@1, 2, 1, 3] or[1, 3, 1, 2] wherefact computes
a sorted list of factors (note that the two sub-sequeficgsand[1,3] are kept intact).

repartition ! :: [a] — [[a]]

repartition ! xs = let ys = shuffle ! xs ...
—— ys == concat yss

in yss

The functiorrepartition ! shuffles a given list and partitions the shuffled list intoesav
non-empty lists. For instancegpartition ! [0, 1] results in[[0], [1]1, [[1], [O]], [[O, 1]], or
[[1, 0]]. The chaotic function can be implemented by a random monsitygiés precise

definition is omitted here.

3 Spark Aggregation

Resilient Distributed Datasets (RDDade the basic data abstraction in Spark. An RDD
is a collection of partitions of immutable data; data in eli#fint partitions can be pro-
cessed concurrently. We formalize partitions by lists, REDs by lists of partitions.

type Partition o = [a]

type RDD « = [Partition o]

The Sparkaggregate combinator computesub-resultsof every partitions in an
RDD, and returns the aggregated result by combining suliitses
aggregate =8> (B—>a—=>pB)—>(B—>F—>B)—>RDDa—
aggregate z seq comb rdd = let presults = map! (foldl seq z) rdd
in foldl comb z presults



More concretely, let be a default aggregated valuggregate appliesfoldl seq z to
every partition ofdd. Hence the sub-result of each partition is accumulated lojrfg
elements in the partition witkeq. The combinator then combines sub-results by another
folding usingcomb.

Note that the chaotimap! function is used to model non-deterministic interleav-
ings of sub-results. To exploit concurrency, Spark creatéssk to compute the sub-
result for each partition. These tasks are executed cagrtlyrand hence induce non-
deterministic computation. We use the chaatip! function to designate non-deter-
minism explicitly.

A related combinator iseduce . Instead offoldl , the combinator useeducel to
aggregate data in an RDD.
reduce 1 (¢« > a— a) > RDD a — «
reduce comb rdd = let presults = map! (reducel comb) rdd

in reducel comb presults
Similar to theaggregate combinatoryeduce computes sub-results concurrently. The
chaoticmap! function is again used to model non-deterministic comporat

Sub-results of different partitions are computed in pataliut theaggregate com-
binator still combines sub-results sequentially. Thisloarfurther parallelized. Observe
that several sub-results may be available simultaneotmsty €listributed computation.
The SparkreeAggregate combinator appliesomb to pairs of sub-results concurrently
until the final result is obtained. In addition to concurreamputation of sub-results,
treeAggregate also combines sub-results from different partitions irfiat.

In our specification, two chaotic functions are used to modeldeterministic com-
putation on two different levels. Theap! function models non-determinismin comput-
ing sub-results of partitions. Thaply ! function (introduced below) models concurrent
combination of sub-results from different partitions. dincbines two consecutive sub-
results picked chaotically, and repeats such chaotic coatibins until the final result is
obtained. Observe that the computation has a binary-tneetste withcomb as internal
nodes and sub-results from different partitions as leaves.
apply!:: (8 — 8 —B) = [l =8
apply!comb [r]=r
apply! comb [r,r]=combrr
apply! combrs =let (Is’, I', r', rs") = ... ——rs==Is"+#[I' r] #rs’

in apply ! comb (Is’ +# [comb I' '] ++ rs’)

treeAggregate :: 8 — (6—a—8) — (6—8—8) - RDD a — 8
treeAggregate z seq comb rdd = let presults = map! (foldl seq z) rdd
in apply ! comb presults
ThetreeReduce combinator optimizeseduce by combining sub-results in parallel.
Similar totreeAggregate , two levels of non-deterministic computation can occur.
treeReduce :: (¢ > a—a) > RDD a — «
treeReduce comb rdd = let presults = map! (reducel comb) rdd
in apply ! comb presults

Pair RDDs. Key-value pairs are widely used in data parallel compuntatibthe data
type of an RDD is a pair, we say that the RDD ipair RDD. The first and second
elements in a pair are called tkeyand thevalueof the pair respectively.



type PairRDD « 8 = RDD (o, 5)

In a pair RDD, different pairs can have the same key. Spankigees combinators to ag-
gregate values associated with the same keyafbeegateByKey combinator returns
an RDD by aggregating values associated with the same keysé&/dhe following
functions to formalizeggregateByKey :

hasKey :: o — Partition («, ) — Bool hasValue :: a — g — Partition (o, 5) —
hasKey k ps = case (lookup k ps) of hasValue k val ps = case (lookup k ps) of
Just _ — True Just v—v
Nothing — False Nothing — val

addTo :: o — 8 — Partition («, 8) — Partition («, )
addTo key val ps = foldl (\r (k, v) — if key == k then r else (k, v):r) [(key, val)] ps

The expressiohasKey k ps checks ifkey appears in a partition of pairsasvalue k

val ps finds a value associated wikhy in a partition of pairs. It evaluates to the default
valueval if key does not appear in the partition. The expressiddio key val ps adds
the pair(key, val) to the partitionps, and removes other pairs with the same key.

The aggregateByKey combinator first aggregates all pairs with the vatuand
the functionmergeComb in each partition. If valuess are associated with the same
key in a partition, the valutsldl mergeComb z vs for the key is pre-aggregated. Since
a key may appear in several partitions, all pre-aggregatkeets associated with the key
across different partitions are merged usimggeValue.

aggregateByKey i1y —-(y—=8—7v) = (v —» v — ~v) — PairRDD « 8 — PairRDD « ~
aggregateByKey z mergeComb mergeValue pairRdd =
let mergeBy fun left (k, v) = addTo k (fun (hasValue k z left) v) left
preAgg = concatMap ! (foldl (mergeBy mergeComb) []) pairRdd
in repartition ! (foldl (mergeBy mergeValue) [] preAgg)

In the specification, we accumulate values associated gtkame key bgnergeComb

in each partition, keeping a list of pairs of a key and theipbytaggregated value for the
key. Since accumulation in different partitions runs ingllat, the chaoticoncatMap !
function is used to model such non-deterministic compaotathfter all partitions fin-

ish their accumulatiormergeVvalue merges values associated with the same key across
different partitions. The final pair RDD can have a defaulueer-defined partition-
ing. Since a user-defined partitioning may shuffle a pair RDt@rily, it is in our
specification modeled by the chaotépartition ! function.

Pair RDDs have a combinator correspondingetduce calledreduceByKey . re-
duceByKey merges all values associated with a keyniirgeVvalue, following a sim-
ilar computational pattern aggregateByKey . Note that every key is associated with
at most one value in resultant pair RDDsagfjregateByKey or reduceByKey .
reduceByKey : (8 — 8 — ) — PairRDD a 8 — PairRDD « 3
reduceByKey mergeValue pairRdd =

let merge left (k, v) = case lookup k left of Just v’ — addTo k (mergeValue v’ v) left
Nothing — addTo kv left
preAgg = concatMap ! (foldl merge []) pairRdd
in repartition ! (foldl merge [] preAgg)

Spark also provides a library, called GraphX, for a distiéloluanalysis of graphs. See
App.[Afor a formalization of some of its key functions.



4 Deterministic Aggregation

Having deterministic outcomes is desired from all aggriegaunctions. If a function
may return different values on different executions, thecfion is often not imple-
mented correctly. A program with explicit assumptions oe ihput data is also de-
sirable. Otherwise, the program may work correctly on ¢entiata sets but produce
unexpected outcomes on others where implicit assumptiomothold [28]. We now
investigate conditions under which Spark aggregation doatbrs always produce de-
terministic outcomes. Proofs of the given lemmas can bedanpp.[Q. Proofs of
some crucial lemmas have also been formalized using Adda [4]
We first show how to deal with non-deterministic behaviorthimaggregate com-

binator. Consider a variant of the formalizationegfyregate from Sectior B:
aggregate "\ > (B —-a—B8)— (B —-F—F) >RDDa — g
aggregate ' z seq comb rdd = let presults = perm (map (foldl seq z) rdd)

in foldl comb z presults
Observe that we changed the application of the chaadje! function with an applica-
tion of the permutatioperm after the regulamap function. The function composition
perm( map ...) iS a concrete instantiation ofap!, that is, a function that permutes its
list argument. Notice thaterm can be pushed insideap:

perm (map f xs) == map f (perm xs).
Assume thatdd was obtained from a lists by splitting and permuting, that isgd
== perm’ (split xs) wheresplit :: [o] — [[o]] Satisfiesxs == (concat . split) xs. We can
therefore rewrite the computation pfesults in aggregate ' to
let pres = perm (map (foldl seq z) (perm’ (split xs))),
After pushingperm insidemap, we obtain
let pres = map (foldl seq z) ((perm . perm’) (split xs)).
Sinceperm . perm’ is also a permutatioperm”, we have
let pres = map (foldl seq z) rdd’
whererdd’ is another RDD obtained froms by splitting and shuffling. Let us call
(deterministic) instances eépartition ! aspartitionings As a consequence, we focus
only on proving if calls taaggregate © defined below have deterministic outcomes for
different partitionings of a list into RDDs:
aggregate ’:: > (B—-a— B = (B — 58— ) - RDDa —j
aggregate P z seq comb rdd = let pres = map (foldl seq z) rdd
in foldl comb z pres
Moreover, we define deterministic versionseduce

reduce® :: (¢ - o — a) > RDD a — «
reduce © comb rdd = let presults = perm (map (reducel comb) rdd)

in reducel comb presults
and alsareeAggregate © andtreeReduce ” in a similar way.

In the following, given a functiofithat takes an RDD as one of its parameters and

contains a single occurrence of the chaatip! (respectivelyconcatMap !) function,
we usef” to denote the function obtained frarby replacing the chaotimap! (respec-
tively concatMap !) with a regulamap (respectivelyconcatMap ). A similar reasoning



can show that it suffices to check whether call$tdvave deterministic outcomes for
different partitionings on a list into RDDs.

For better readability, standard mathematical notatidonmdtions is used in the rest
of this section. We represent a Haskell function applicetia ... xnasf(z1,...,z,).

4.1 aggregate

In this section, we give conditions for deterministic outws of calls to the aggregate
combinatoraggregate (z, seq, ®, rdd) for z :: 8, seq = B x a = 3, ® :: B x 8 = B,
andrdd :: RDD «. We first define what it means for calls to thggregate combinator
to have deterministic outcomes.

Definition 1. Calls toaggregate (z, seq, b, rdd) havedeterministic outcomei$
aggregate P (z, seq, ®, part(L)) = foldl (seq, z, L) Q)
for all lists L. and partitioningspart.

Conventionally,aggregate is regarded as a parallelized counterparfotdl . For
example, the sequentiaygregate function in the standard Scala library ignores the
@ operator and is implemented ligidl . This is why we characterize deterministic
aggregate asfoldl in Definition[d. Our characterization, however, does notecaall
aggregate calls that always give the same outputs. In particular, @sdoot cover an
aggregate call whered is a constant function, which is, however, quite suspicious
a distributed data-parallel computation and should bertegdo

We give necessary and sufficient conditions dggregate calls to have determi-
nistic outcomes in several lemmas, culminating in Corgl[r The first lemma al-
lows us to check only conditions oseq and & over all possible pairs of lists in-
stead of enumerating all possible partitionings on lists. lBrevity, we use(p;) for
foldl (seq, z, p1), andimg(foldl (seq, z)) for the image ofoldl (seq, z, L) for any listL.
That is,img(foldl (seq, z)) = {y | there is a lisL such thafold! (seq, z, L) = y}.

Lemma 1. Calls toaggregate (z, seq, @, rdd) have deterministic outcomes iff:
1. (img(foldl (seq, z)), ®, z) is a commutative monoid, and
2. foralllistsp1, ps :: [, (p1 H p2) = (P1) B (P2) .
Note that condition 2 in Lemnid 1 is equivalent to saying thiais a list homomor-
phism to the monoidimg(foldl (seq, z)), &, z) [6].
The lemma below further helps us reduce the need of testinditons over all
possible pairs of lists to conditions over elements.of img(foldl (seq, 2)).

Lemma 2. Let® be associative oy = img(foldl (seq, z)) and z be the identity ofp
on~. The following are equivalent:

1. for all listspy, ps :: [,

(p1 +p2) = (p1) @ (p2), (2)
2. for all elementsl :: « ande :: 7,
seq(e,d) = e @ seq(z,d). (3)

Summarizing the lemmas, we get the following corollary:

Corollary 1. Calls toaggregate (z, seq, B, rdd) have deterministic outcomes iff
1. (img(foldl (seq, 2)), @, z) is a commutative monoid and
2. foralld :: « ande :: img(foldl (seq, z)), it holds thatseq(e, d) = e @ seq(z, d).



4.2 reduce

This section explores conditions for deterministic outesrof calls taeduce (&, rdd)

for ® : o x a — a andrdd :: RDD «. We use the functiomeduce © defined in

the introduction of Sectiohnl 4. Foeduce , we assume that for any non-empty list, all

partitions of its partitioning are non-empty (otherwise tlsult ofeduce is undefined).
We define deterministic outcomes fetluce as follows.

Definition 2. Calls toreduce (@, rdd) havedeterministic outcomei$
reduce © (@, part(L)) = reducel (&, L) 4

for all lists L and patrtitioningspart.

We reduce the problem of checkingrifduce has deterministic outcomes to the
problem of checking ihggregate has deterministic outcomes by the following lemma.
Lemma 3. Calls toreduce (&, rdd) have deterministic outcomes iff callsdggregate (
Nothing , seq’, @', rdd) have deterministic outcomes, wherg’ and®’ are as follows:

seq’ X y = case x of (@) xy = case (x, y) of (Nothing ,y") =y’
Nothing — Just y (x’, Nothing ) — X’
Just X' — Just (X' @) (Just x', Just y') — Just (X ®VY') .

Combining Corollaryll and Lemnia 3, we get the condition faled®ministic out-
comes ofreduce (&, rdd) calls.

Corollary 2. Calls toreduce (&, rdd) have deterministic outcomes(t, @) is a com-
mutative semigroup.

4.3 treeAggregate andtreeReduce
This section gives conditions for deterministic outcomgsadls to the following two
aggregate combinators:

1. treeAggregate (z, seq, @, rdd) forz :: B8, seq : Bx a — B8, ® = B x 8 — 3, and
rdd :: RDD «; and
2. treeReduce (¢, rdd) for & :: @ X a — «, rdd :: RDD av.

Different fromaggregate andreduce , the tree variants have another level of non-deter-
minism modeled bypply !. The chaotic function effectively simulates non-detetistin
computation with a binary-tree structure (Secfibn 3).

To define calls tareeAggregate andtreeReduce to have deterministic outcomes,
we use the functiongeeAggregate T andtreeReduce ' obtained by adding an explicit
deterministic instantiation afpply ! to treeAggregate ” andtreeReduce P.

Definition 3. Calls to treeAggregate (z, seq, ®, rdd) and treeReduce (®, rdd) have
deterministic outcomes$
treeAggregate ~(apply, z, seq, @, part(L)) = fold! (seq, z, L) (5)
and T
treeReduce * (apply, ®, part(L)) = reducel (P, L) (6)
respectively for all listd, partitioningspart, and instantiationsipply of apply !.
The following two propositions state necessary and sufftcenditions for the
treeAggregate andtreeReduce combinators to have deterministic outcomes.

Proposition 1. Calls totreeAggregate (z, seq, @, rdd) have deterministic outcomes iff
calls toaggregate (z, seq, @, rdd) have deterministic outcomes.

Proposition 2. Calls to treeReduce (&, rdd) have deterministic outcomes iff calls to
reduce (@, rdd) have deterministic outcomes.



4.4 aggregateByKey andreduceByKey

We proceed by investigating conditions for the followingrdzinators on pair RDDs:

1. aggregateByKey (z, seq, ®, prdd) for z :: 4, seq :: vy X B = 4, & iy X v = 7,
andprdd :: PairRDD « [3; and
2. reduceByKey (b, prdd) for & :: 8 x 8 — S andprdd :: PairRDD « (3.

We define an auxiliary functiofilterkey that obtains a list of all values associated with
the given key from a list of pairs.

filterkey :: a — [(a, B8)] — [6]
filterkey _[1=1]

filterkey k (k, v):xs = v:(filterkey k xs)
filterkey k (-, _):xs = filterkey k xs

Deterministic outcomes of calls tmgregateByKey are now defined using the function
aggregateByKey ” as follows.

Definition 4. Calls toaggregateByKey (z, seq, ®, prdd) havedeterministic outcomes
if

lookup (k, aggregateByKey (2, seq, @, part(L))) = foldl (z, seq, filterkey (k, L))
for all lists L of pairs, partitioningspart, and keyss.

Finally, the following proposition states the conditiohatneed to hold for calls to
aggregateByKey to have deterministic outcomes.

Proposition 3. Calls toaggregateByKey (z, seq, @, prdd) have deterministic outcomes
iff calls to aggregate (z, seq, ®, rdd) have deterministic outcomes.

We define when calls t@duceByKey have deterministic outcomes visduceByKey .

Definition 5. Calls toreduceByKey (&, prdd) havedeterministic outcome§
lookup (k, reduceByKey (@, part(L))) = reducel (@, filterkey (k, L))

for all list L of pairs, partitioningpart, and keyk.

Proposition 4. Calls toreduceByKey (&, prdd) have deterministic outcomes iff calls
to reduce (@, rdd) have deterministic outcomes.

4.5 Discussion

Our conditions for deterministic outcomes are more gerikeal it appears. In addition
to scalar data, such as integers, they are also applicaBBBs containing non-scalar
data, such as lists or sets. In our extended set of case stuatiavill prove deterministic
outcomes from a distributed Spark program using non-sdala (App[B).

Corollary[d gives necessary and sufficient conditions fdis ¢a aggregate to have
deterministic outcomes. Instead of checking whetlgregate computes the same



result on all possible partitionings on any list for givenseq, and comb, the corol-
lary, instead, allows us to investigate properties forlalireents ofimg (foldl (seq, z)) x
img(foldl (seq, z)) anda x img(foldl (seq, z)). Our precise conditions reduce the need
of checking all partitionings to checking all elements oft€aian products. It appears
that deterministic outcomes from calls to combinators carvérified automatically.
The problem, however, remains difficult for the followings®ns:

(a) The domairimg(foldl (seq, z)) can be infinite and in general not computable.
(b) Even if & and img(foldl (seq, z)) are computableseq and ® may not be com-

putable. Naively enumerating elementsiandimg(foldl (seq, z)) would not work.
(c) Testing equality between elementsiofy (foldl (seq, z)) can be undecidable.

Givenseq :: 8 x a — (3, recall thatimg(foldl (seq, z)) is a subset off. A sound but
incomplete way to avoidia) in practice is to test the prapsif® on all elements off
instead. If a counterexample is found for some elements tfe counterexample may
not be valid in a reahggregate call because it may not belong img(foldl (seq, 2)).

In practical cases, the setsand 5 are finite (such as machine integers) and equal-
ity between their elements is decidable. Even for such ¢cabesking if outcomes of
aggregate are deterministic is still difficult sinceeq and® might not terminate for
some input. In many real Spark programs, howex@rand® are very simple and thus
computable (for instance, with only bounded loops or réoads A semi-procedure to
test these conditions might work on such practical examples

5 Case Studies

We evaluated advantages of owWHESPARK specification on several case studies. In
this section, we first analyze a Spark implementation ofdir@assification. Using the
treeAggregate specification and its criteria for deterministic outcomes, construct
inputs yielding non-deterministic outcomes from the Spamdementation. Second, we
analyze an implementation of a standard scaler and find adaterministic behavior
there, too. Yet more case studies are provided in App. B.

5.1 Linear Classification

Linear classification is a well-known machine learning ta@gbe to classify data sets.
Fix a set offeatures A data pointis a vector of numerical feature valueslabeleddata
point is a data point with a discrete label. Given a labeletd dat, theclassification
problemis to classify (new) unlabeled data points by the labeled dat. A particularly
useful subproblem is thainary classification problem. Consider, for instance, a data set
of vital signs of some population; each data point is labblethe diagnosis of a disease
(positive or negative). The binary classification problean be used to predict whether
a person has the particular disease. Linear classificatioasthe binary classification
problem by finding an optimal hyperplane to divide the laledata points. After a
hyperplane is obtained, linear classification predictsrdaheled data point by the half-
space containing the point. Logistic regression and liragwport Vector Machines
(SVMs) are linear classification algorithms.

Consider a data sdt(7;, ;) : 1 < i < n} of data pointsz’; € R? labeled by
y; € {0,1}. Linear classification can be expressed as a numerical atiion problem:
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where¢ > 0 is aregularization parameterR () is arégtljlarizer, andL(w; 2, y;) is
aloss function A vector @ corresponds to a hyperplane in the data point space. The
vector,,; attaining the optimum hence classifies unlabeled data guiith criteria
defined by the objective functiofi(w)). Logistic regression and linear SVM are but
two instances of the optimization problem with objectivadtions defined by different
regularizers and loss functions.

In the Spark machine learning library, the numerical optation problem is solved
by gradient descent. Very roughly, gradient descent findsal iminimum off () by
“walking” in the opposite direction of the gradient ¢{w’). The mean of subgradients
at data points is needed to compute the gradierft@f). The Spark machine learning
library invokestreeAggregate to compute the mean. Floating-point addition is used as
the comb parameter of the aggregate combinator. Since floatingtaaidition is not
associative, we expect to observe non-deterministic ouésoPropositionl1).

Consider the following three labeled data point30?° labeled with1, 600 labeled
with 0, and10?° labeled withl. We create a 20-partition RDD with an equal number of
the three labeled data points. The Spark machine learrbngryi functionLogisticRe-
gressionWithSGD.train is used to generate a logistic regression model to predictdta
points—102°, 600, and10% in each run. Among 49 runs, 19 of them classify the three
data points into two different classes: the two positivegatints are always classified
in the same class, while the negative data point in the offfer.other 30 runs, how-
ever, classify all three data points into the same class. b8erve similar predictions
from SVMWithSGD.train with the same labeled data points. 37 out of 46 runs classify
the data points into two different classes; the other 9 rilassify them into one class.
Interestingly, the data points are always classified in different classes by both lo-
gistic regression and linear SVM when the input RDD has omigé partitions. As we
expected from our analysis of the function, non-deterrtimitcomes were witnessed
in our Spark distributed environment.

5.2 Standard Scaler

Standardization of data sets is a common pre-processipgteachine learning. Many
machine learning algorithms tend to perform better whentriaing set is similar to
the standard normal distribution. In the Spark machineiieagrlibrary, the classtan-
dardScaler is provided to standardize data sets. The func8eamdardScaler.fit takes
an RDD of raw data and returns an instanc&whdardScalerModel to transform data
points. Two transformations are availableStandardScalerModel. One standardizes
a data point by mean, and the other normalizes by variancawflata. If data points
in raw data are transformed by mean, the transformed datdsgoave the mean equal
to 0. Similarly, if they are transformed by variance, the transfed data points have
the variancd.

The StandardScaler implementation useseeAggregate to compute statistical in-
formation. It uses floating-point addition to combine meahsaw data in different
partitions. As in the previous use case, since floatingtmddition is not associative,
StandardScaler does not produce deterministic outcomes (Sedctioh 4.3)utrerperi-
ment, we create a 100-partition RDD with value$02°, 600, 102° of the same number



of occurrences. The mean of the data sétis0%° x n-+600 x n+10*°xn)/(3n) = 200
wheren is the number of occurrences of each value. The data poinshould there-
fore be after standardization transformedtdn 50 runs on the same data set in our
distributed Spark platformGtandardScaler transforms200 to a range of values from
—944 to 1142, validating our prediction of a non-deterministic outcome

6 Related Work

MapReduce modeling and optimization.In the MapReduce (MR) computation, var-
ious cost and performance models have been proposéd [26.32]. These models
estimate the execution time and resource requirements gblR Karloff et al. devel-
oped a formal computation model for MR |20] and showed howratsaof algorithms
can exploit the combination of sequential and parallel cotaion in MR. We are not
aware of a similar work in the context of Spark. To the bestwflamowledge, our work
is the first to address the problem of formal, functional #ption of Spark aggrega-
tion. Verifying the correctness of a MR program involvesahtirg the commutativity
and associativity of the reduce function. Xu et al. proposBous semantic criteria
to model commonly held assumptions on MR programs [29] uiticlg determinism,
partition isolation, commutativity, and associativity mfp/reduce combinators. Their
empirical survey shows that these criteria are often oe&dd by programmers and
violated in practice. A recent survey [28] has found thatrgdanumber of industrial
MR programs are, in fact, non-commutative. Recent work mapgsed techniques for
checking commutativity of bounded reducers automaticidlB]. Because it is non-
trivial to implement high-level algorithms using the MRifnawork, various approaches
to compute optimized MR implementations have been propfi&@3,.25]. Emoto et
al. [16] formalize the algebraic conditions using semitirggnomorphism, under which
an efficient program based on the generate-test-aggregafeamming model can be
specified in the MR framework. Given a monolitheducefunction, the work in{[2B]
tries to decomposeduceinto partial aggregation functions (similar segandcomb
in this paper) using program inversion techniqueud [25] translates imperative
Java code into MR code by transforming imperative loops fiokd combinators using
semantic-preserving program rewrite rules.

Numerical Stability under MapReduce. Several works try to scale up machine learn-
ing algorithms for large datasets using MapReducé [13,P&Jachieve numerically
stable results across multiple run$ [5,27], for exampley@nting overflow, underflow
and round-off errors due to finite-precision arithmetic aaiety of techniques are pro-
posed [2F7]: generalizing sequential numerical stabiltghhiques to distributed set-
tings, shifting data values by constants, divide-and-cengetc. We showed that sim-
ulating machine learning algorithms using our specificaoables early detection of
points of numerical instability.

Relational Query Optimization. Relational query optimization is an extensively re-
searched topi¢ [11.19]: the goal is to obtain equivalentiorte efficient query expres-
sions by exploiting the algebraic properties of the coustit operators, for instance,
join, select, together with statistics on relations anddes. For example, while inner
joins commute independent of data, left joins commute omlggecific cases. Query
optimization for partitioned tables has received lessnéitta [18,2]: because the key
relational operators are not partition-aware, most work fegused on necessary but
not sufficient conditions for query equivalence. In cortira® investigate determinism



of Spark aggregate expressions, constructed using parttivaresegandcombcombi-
nators. We describe necessary and sufficient conditionsruvidch these computations
yield deterministic results independent of the data pantit

Deterministic Parallel Programming. In order to enable deterministic-by-default par-
allel programming[[l7,1018l9,21], researchers have deeslseveral programming ab-
stractions and logical specification languages to ensatgtiograms produce the same
output for the same input independent of thread schedutiogexample, Determinis-
tic Parallel Java []8] ensures exclusive writes to sharethary regions by means of
verified, user-provided annotations over memory regionsohtrast, deterministic out-
comes from Spark aggregation depend on algebraic propéikiecommutativity and
associativity osegandcombfunctions and their interplay

7 Conclusion

In this paper, we give a Haskell specification for variousr8@agregate combinators.
We focus on aggregation of RDDs representing general sgsp$pairs, and graphs.
Based on our specification, we derive necessary and suffaaditions that guarantee
deterministic outcomes of the considered Spark aggregatbinators. We investigate
several case studies and use the conditions to predict e@mrainistic outcomes. Our
executable specification can be used by developers for netaflet analysis and effi-
cient development of distributed Spark programs. We alfieveethat our specifications
are valuable resources for research communities to uraerSpark better.

There are several future directions. The conditions foemhinistic outcomes of
aggregate combinators could be used for: (i) creating fakychanized proofs for prop-
erties about data-parallel programs; (ii) developing matic techniques for detect-
ing non-deterministic outcomes of data-parallel prograans (iii) synthesizing deter-
ministic concurrent programs from sequential specificestioVe have formalized the
proofs of some crucial lemmas in Agda [4]. Using Scalaz [8}ified Haskell specifi-
cations can be translated to Spark programs to ensure detemby construction.
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A Graph RDDs

Using RDDs, Spark provides a framework to analyze graptisialigively. In the Spark
GraphX library, each vertex in a graph is designated bgréexid, and associated with
a vertex attribute. Each edge on the other hand is reprakbpigertexids of its source
and destination vertices. An edge is also associated witdtlga attribute.

type Vertexid = Int

type VertexRDD o = PairRDD Vertexld a

type EdgeRDD g = RDD (Vertexld, Vertexld, 3)

data GraphRDD « 8 = Graph { vertexRdd :: VertexRDD «, edgeRdd :: EdgeRDD 3 }

Let graphRdd be a graph RDD. Its vertex RDertexRdd graphRdd) contains pairs
of vertex identifiers and attributes. Different from contienal pair RDDs, each vertex
identifier can appear at most once in the vertex RDD since tewér associated with
exactly one attribute. If, for instance, two pairs with tlaere vertex identifier are gen-
erated during computation, their associated attributest tme&1 merged to obtain a valid
vertex RDD. The edge RD@dgeRdd graphRdd) consists of triples of source and des-
tination vertex identifiers, and edge attributes. Multged directed graphs are allowed.
In a graph RDD, the vertex and edge RDDs need to be consi3teat.is, the source
and destination vertex identifiers of any edge from the edg® Rust appear in the
vertex RDD of the graph RDD.

The Spark GraphX library provides aggregate combinatargrimph RDDs. We be-
gin with an informal description of a slightly more genesgfregateMessagesWith-
ActiveSet combinator (Algorithn{1l). The combinator takes functiceeadMsg and
mergeMsg, and a listactive of vertices as its parameters. The kstive determinesc-
tive edges, that is, edges with source or destination vertexifaa in active. For each
active edge, the functicaggregateMessagesWithActiveSet  invokessendMsg to send
messages to its vertices. Messages sent to each vertex @yedibymergeMsg. Since
a vertex is associated with at most one message after metiggngesult is a valid vertex
RDD.

foreach active edge: do

| call sendMsg on e to send messages to vertices:pf
end
foreach vertexv receiving messageato

| call mergeMsg to merge all messages sentto

end

return a vertex RDD with merged messages;

Algorithm 1: aggregateMessagesWithActiveSet

Formally, the functiorsendMsg accepts source and destination vertex identifiers,
attributes of the vertices, and the edge attribute of an edgeputs. It sends messages
to the source or destination vertex, both, or none. In outifipation,lookup is used to
obtain vertex attributes from a vertex RDD. We generateaRiaD of vertex identifiers
and messages by invokisgndMsg on every active edge. The messages associated with
the same vertex are then merged by applystyiceByKey on the pair RDD. The re-
sultant vertex RDD contains merged messages as vertebuadtsi We call it anessage
RDD for clarity. Note that if a vertex from the input graph RRIDes not receive any
message, it is not present in the output message RDD. TheicatotaggregateMes-
sages in the Spark GraphX library is defined bggregateMessagesWithActiveSet



It invokesaggregateMessagesWithActiveSet by passing the list of all vertex identi-
fiers as thective list. The combinator effectively appliegndMsg to every edge in a
graph RDD.

aggregateMessagesWithActiveSet
(Vertexld — o — Vertexld — o — 8 — [(VertexId, 7)])
— (v = v = v) — [Vertexld] — GraphRDD « 8 — VertexRDD ~
aggregateMessagesWithActiveSet sendMsg mergeMsg active graphRdd =
let isActive (srcld, dstld, ) = srcld ‘elem* active || dstld ‘elem* active
VALttrs = concat (vertexRdd graphRdd)
f edge = if isActive edge then
let (srcld, dstld, edgeAttr) = edge
srcAttr = fromJust (lookup srcld VAttrs)
dstAttr = fromJust (lookup dstld vAttrs)
in sendMsg srcld srcAttr dstld dstAttr edgeAttr
else []
pairRdd = map (concatMap f) (edgeRdd graphRdd)
in reduceByKey mergeMsg pairRdd

aggregateMessages :: (Vertexld — a — Vertexld — a — 8 — [(VertexId, 7)])
— (v = v — ) — GraphRDD « 8 — VertexRDD ~
aggregateMessages sendMsg mergeMsg graphRdd =
let vertices = concatMap (map fst) (vertexRdd graphRdd)
in aggregateMessagesWithActiveSet sendMsg mergeMsg vertices graphRdd

Many graph algorithms perform fixed point computation. Tpai® GraphX library
hence provides a Pregel-like function to appfgregateMessages on a graph RDD
repetitively [24]. The Sparkregel function takes four input parameténgMsg, vprog,
sendMsg, andmergeMsg (Algorithm[2). At initialization, it updates vertex attribes of
the graph RDD by invokingprog with the initial messagmitMsg. Thepregel function
then callsaggregateMessages to obtain a message RDD. If a vertex receives a mes-
sage, its attribute is updated fyyrog with the message. After updating vertex attributes,
pregel obtains a new message RDD by invokimgpregateMessagesWithActiveSet
with the active list equal to message-receiving verticebsgquently, only edges con-
necting to such vertices can send new messages.

foreach vertexv in G do
| call vprog on v with initMsg to obtain its initial vertex attribute;
end
msgRdd«— call aggregateMessages on G;
while msgRdd is not emptjo
foreach vertexv with messagen in msgRdddo
| call vprog on v with m to update its vertex attribute on G;
end
msgRdd« call aggregateMessagesWithActiveSet  with active equal to the
vertices in msgRdd;
end

return G; )
Algorithm 2: pregel



We use several auxiliary functions to specify the Spa#gel function. Given a
function computing an attribute from a vertex identifier aand attribute, the auxil-
iary functionmapVertexRDD applies the function to every vertex in a vertex RDD
and obtains another vertex RDD with new attributes. Ta@VertexRDD function is
used inmapVertices to update vertex attributes in graph RDDs. Moreover, rebafl
aggregateMessagesWithActiveSet  returns a message RDD. The auxiliary function
joinGraph updates a graph RDD with messages in a message RDD. For edek ve
in the graph RDD, its attribute is joined with the messagehia inessage RDD. If
there is no message, the vertex attribute is left unchafgeshregel function sets up
the initial graph RDD bymapVertices . It then computes the initial message RDD by
aggregateMessages . In each iteration, a new graph RDD is obtained by joining the
graph RDD with a message RDBggregateMessagesWithActiveSet  is then invoked
to compute a new message RDD for the next iteration.prbgel function terminates
when no more message is sent.

mapVertexRDD :: (Vertexld — o — 38) — VertexRDD o — VertexRDD f3
mapVertexRDD fvRdd = map (map (A(i, attr) — (i, f i attr))) vRdd

mapVertices :: (Vertexld -+ a — v) — GraphRDD « 8 — GraphRDD ~ 3
mapVertices updater gRdd = Graph {

vertexRdd = mapVertexRDD updater (vertexRdd gRdd),

edgeRdd = edgeRdd gRdd }

joinGraph :: (Vertexld - a — v — a) — GraphRDD «
— VertexRDD v — GraphRDD « 3
joinGraph joiner gRdd msgRdd = let assoc = concat msgRdd
updt i attr = case lookup iassoc of Just v — joineri attr v
Nothing — attr
in mapVertices updt gRdd

pregel :: v — (Vertexld - a — v — a) —
(Vertexld — o — Vertexld — a — 8 — [(VertexId, v)])
— (y = v — ) — GraphRDD «a 8 — GraphRDD «a 3
pregel initMsg vprog sendMsg mergeMsg graphRdd =
let initG = let init_f i attr = vprog i attr initMsg
in mapVertices init_f graphRdd
initMsgRdd = aggregateMessages sendMsg mergeMsg initG
loop curG [] = curG
loop curG msgRdd = let newG = joinGraph vprog curG msgRdd
active = concatMap (map fst) msgRdd
msgRdd’ = aggregateMessagesWithActiveSet
sendMsg mergeMsg active newG
in loop newG msgRdd’
in loop initG initMsgRdd

A.1 Deterministic Aggregation in Graph Rdds

In this section, we explore necessary and sufficient camtitfor aggregation in graph
RDDs. In particular, we investigate deterministic outceneé calls to the function



aggregateMessages (send, ®, graphRdd) for send :: VertexID x « x VertexID x
a x B — [(VertexID,v)], ® :: v X v — =, andgraphRdd :: GraphRDD « 3. We
define deterministic outcomes first.

Definition 6. Calls to the functioraggregateMessages (send,®,graphRdd) havede-
terministic outcome# for any two graph RDD representations of the same graph

graphRdd,, graphRdd, :: GraphRDD « /3,

we have for all vertex identifiers:: VertezID,

lookup (v, aggregateMessages (send, ®, graphRdd,)) =
lookup (v, aggregateMessages (send, ®, graphRdd,)).

The following proposition gives a sufficient condition faggregateMessages to
have deterministic outcomes.

Proposition 5. It holds that if calls to the functioreduceByKey (@, rdd) have deter-
ministic outcomes, then calls to the functimgregateMessages (send, @, graphRdd)
also have deterministic outcomes.

B Extended Set of Case Studies

This section of the appendix gives yet more case studiesviakplored when analyz-
ing Spark’s machine learning and graph libraries.

B.1 Vertex Coloring

LetI" = {1,..., k} denote the set of colors Given an undirected graphl = (V, E),
ak-coloringof G is amapC : V — I' such thatC(v) # C(u) for any{v,u} € E.
In this case study, we will implement the CommunicationeHtearning (CFL) algo-
rithm [22] to find ak-coloring using the Spark GraphX library. Let< g8 < 1. The
algorithm computes &-coloring by iterations. We say a vertexs inactiveif all ver-
tices adjacent t@ have colors different from the color af Otherwisew is active
At the n-th iteration, the CFL algorithm randomly chooses a c@lgfv) € I" by the
color distributionP,, (v, ®) of v. The color distributionP,, (v, e) is defined as follows.
Forn =0, Py(v,c) = 1/kforallv € V andc € I'. Each vertex hence chooses one of
the k colors uniformly at random. For > 0, letc = C,,_1(v) be the color ofv in the
previous iteration.

— If v is inactive, defineP,, (v,c) = 1 and P, (v,d) = 0 for d # ¢. Thusv does not
change its color.
— Otherwise, define

_J(@=B) Pua(v,0) if d=c
Palend) = {(1 ~B) - Pu_1(v,d) + B/(k—1) ifd#c

Thusw is more likely to choose a color different from



Observe that’,, stabilizes if and only if it is &-coloring.

We implement the CFL algorithm usimgegel in PURESPARK. For each vertex,
its attribute consists of the vertex col@y, (v), the color distributiorP, (v, e), the vertex
state (active or not), and a random number generator. Asdtic®&.3, an edgeéu, v,
) with w > v in an edge RDD represenfs, v} € E. Given a graph RDQyraphRdd,
we construct its base graphseG with initial vertex attributes.

initDist = map (A- — 1.0/ fromintegral k) [1..k]

baseG = mapVertices (\i - — let (c, g) = randomR (1, k) (mkStdGen i)
in (c, initDist, True, g)) graphRdd

whereinitDist is the uniform distribution ovek colors.
Consider the followingendMsg function:

sendMsg srcld (srcColor, _, srcActive, ) dstld (dstColor, _, dstActive, ) _ =
if srcColor == dstColor then [(srcld, True), (dstld, True)]
else (if srcActive then [(srcld, False)] else []) +
(if dstActive then [(dstld, False)] else [])
mergeMsg msgl msg2 = msgl || msg2

If the source and destination vertices of an edge have the saor, sendMsg
sendsTrue to both vertices to update vertex attributes. If they hatfexdint colors and
the source vertex is activEalse is sent to the source vertex. Similafiglse is sent to
the destination vertex if the vertex is activeergeMsg is the disjunction of messages.
After applying aggregateMessagesWithActiveSet ~ with sendMsg and mergeMsg, a
vertex may receive a Boolean message. If a vertex reca@ies it becomes active
since one of its neighbors has the same color. Otherwisegittex becomes inactive.

We usevprog to update vertex attributes. For each vertex receiving ssatgs its
vertex state, color, and color distribution are updateaading to the CFL algorithm.
The auxiliary functionsampleColor chooses a color randomly by the color distribu-
tion. Thehelper function invprog computes the color distributioR, (v, e) for the next
iteration.

sampleColor dist p = let f (color, mass) weight =
(if m < p then succ color else color, m)
where m = mass + weight
in fst (foldl f (1, 0.0) dist)

vprog _ (c, dist, _, g) active = let helper (i, res) weight =
let decay = weight * (1 — beta)
d = decay + (if c ==ithen 0 else beta/fromintegral (numColors—1))
e=if c==ithen 1.0 else 0.0
in (succ i, if active then res + [d] else res +- [e])
dist' = snd (foldl helper (1, []) dist)
(p, @) =random g
¢’ = if active then sampleColor dist’ p else ¢
in (c’, dist, active, @)

Finally, we invokepregel to compute &:-coloring:

coloring = pregel True vprog sendMsg mergeMsg baseG



We test our executable Haskell specification on a typicalkiserver. Since our Spark
specification PRESPARK is faithful to Spark APls, we realize it in the GraphX library
with little manual effort. Our implementation works as intied on the distributed Spark
platform.

B.2 Connected Components

The Spark GraphX library implements a connected compongotithm for direct
graphs. The documentation however does not explain whatexded components are
in directed graphs. We will find out what the implementatiares here. Consider the
following PURESPARK specification extracted from the Spark implementation:

connectedComponent graphRdd =
let baseG = mapVertices (i _ — i) graphRdd
initMsg = maxBound :: Int
sendMsg src srcA dst dstA _ =
if srcA < dstA then [(dst, srcA)]
else if dstA < srcA then [(src, dstA)]
else []
vprog _ attr msg = min attr msg
in pregel initMsg vprog sendMsg min baseG

Given a graph RDyraphRdd, its base graphaseG is obtained by setting the attribute
of a vertex to the identifier of the vertesendMsg compares the attributes of the source
and destination vertices of an edge. The smaller attrisusent to the vertex with the
larger attribute. If both attributes are equal, no messagerit. If a number of messages
are sent to a vertex, only the minimal message remains gffdyiag aggregateMes-
sagesWithActiveSet with sendMsg andmin. When a vertex receives a message, its
attribute is set to the minimum of its attribute and the mgssa

Consider a graplty = (V, E) with E C V x V. We useattr(v) for the attribute
of the vertexv € V. Two verticesu andv arelinkedif (u,v) € E or (v,u) € E. Us-
ing our specification ofregel , it is not hard to see that theURESPARK specification
implements Algorithni 13. Note that the two for-each loopsesislly propagate mini-
mal attributes to linked vertices. When the setive is empty, the attributes of every
linked vertices are equal and the algorithm terminates. &yewo vertices: andv are
connectedf there arewy = w, wy,...,w; = v such thatw; andw;,, are linked for
0 < i < k. WhenconnectedComponent terminates, connected vertices have the same
attribute equal to the minimal vertex identifier among theience the Spark implemen-
tation returns a graph RDD whose vertex attributes are tinéhmai vertex identifiers of
connected vertices.

One can informally reason that th@ RESPARK connected component specification
has deterministic outcomes. Note tid&rtexld, min) is a commutative semigroup. This
allows us to derive a similar proposition faggregateMessagesWithActiveSet . The
calls toaggregateMessages andaggregateMessagesWithActiveSet in pregel there-
fore have deterministic outcomes (Proposilibn 5). Exangjtinevprog in our connected
component specification, the functiomapVertices andjoinGraph also have determi-
nistic outcomes. All potential sources of non-determinisqregel have deterministic



attr (v) + the vertix identifier of;
active < V;
while active # () do
active’ < {;
foreachv € active do
if attr(u) < attr(v) for someu linked withv then
| sendattr(u) tov and addv to active’
if attr(v) < attr(u) for someu linked withv then
| sendattr(v) tow and addu to active’

end
foreachv € active’ do
| attr(v) < the minimal attribute sent to
end
active < active’;

end
Algorithm 3: connectedComponents

outcomes. The connected component specification constyghas deterministic out-
comes. Experiments in a distributed Spark environmentgardur reasoning.

B.3 Triangle Count

LetG = (V, E) be an undirected graph without self-loops or multiple edgesu, v €
V,{u,v} € E denotes that andv are adjacent. Arianglein G is formed byu, v, w €

V such thaf{u, v}, {u, w}, {v,w} € E. Counting the number of triangles is important
to, for example, network analysis. The Spark GraphX libierglements the triangle
counting algorithm usingggregateMessages .

In the GraphX implementation, an undirected graph is represl by a graph RDD
where the source vertex identifier of every edge is greatar its destination vertex
identifier. An edge{u, v} € E with u > v is thus represented ki, v, ) in an edge
RDD. Below is the BPRESPARK specification extracted from the Spark GraphX imple-
mentation.
sendMsg src _ dst _ _ = [(dst, singleton src), (src, singleton dst)]
adjacentVRdd = aggregateMessages sendMsg (union) graphRdd

newGRdd = let adjacents = concat adjacentVRdd
updt v _ = case lookup v adjacents of
Just adj — delete v adj
Nothing — empty
in mapVertices updt graphRdd

sendMsg2 src srcA dst dstA _ =
let num = size (intersection srcA dstA)
in [(dst, num),(src,num)]
sumTriangles = aggregateMessages sendMsg?2 (+) newGRdd



triangleCount = mapVertexRDD (A\_y — quot y 2) sumTriangles

For each edgdu,v} € FE, sendMsg sends{u} and{v} to verticesv andu re-
spectively. Multiple messages to a vertex are merged byrudifier applyingaggre-
gateMessages Wwith sendMsg andunion , adjacentVRdd is a vertex RDD where the
attribute of the vertex is {u : {u,v} € E}.

The implementation updates vertex attributes of the inpajtlyto obtaimewGRdd.

If the setA of vertices adjacent tois not empty, the attribute ofis updated tod \ {v}.

If v does not have any adjacent vertices, its attribute is séiet@mpty set. Hence the
attribute of a vertex imewGRdd contains its adjacent vertices but not itself. Recall that
we assume the input graph does not have self-loops. A vealenat be adjacent to
itself. Removing a vertex from the set of its adjacent veriis redundant.

For each edgéu, v} € E in newGRdd, sendMsg2 sends the messafé N V| to u
andv whereU andV are the sets of vertices adjacenttandwv respectively. Observe
that for everyw € U NV, we have{w,u}, {w,v},{u,v} € E. Let Ay, denote
the number of triangles containing the edge v}. Ay, .y is sent to bothu andwv.
Messages are moreover merged by summation. Hence thaitgtobeach vertex in
sumTrianglesis >, 1em Do)

Now consider a vertex in a triangle ofu, v, w. The triangle is counted in both
Aquwy and Ay, .y Since a triangle is always counted twice, the attributeigias
%Z{u,v}eE A,y Of vertexw in triangleCount is the the number of triangles con-
tainingv. Both calls toaggregateMessages have deterministic outcomes because the
algebras(Set, (union)) and (Int, (+)) are commutative semigroups (Propositioh§14, 5,
and CorollaryR).

B.4 In-Degrees

The Spark GraphX library implements several graph algoritlusing aggregation. We
show how our specification helps to understand and analyaek§pograms utilizing
aggregate combinators.

Let G = (V,E) with E C V x V be a directed graph. We define timedegree
of a vertexv € V as|{(u,v) : (u,v) € E}|. The GraphX library uses the function
aggregateMessages to compute in-degrees of vertices in a graph RDD. Consider th
following PURESPARK specification for the GraphX implementation:

inDegrees graphRdd =
let sendMsg _ _dst _ _ = [(dst, 1)]
in aggregateMessages sendMsg (+) graphRdd

By our specificationaggregateMessages invokessendMsg on every edge igraphRdd.
ThesendMsg function sends the messagéo the destination vertex of an edge. If sev-
eral messages are sent to a vertex, they are summed up. iHBagee returns a vertex
RDD where each vertex has the number of its incoming edgdeaatribute. They are
in-degrees of vertices igraphRdd. The call toaggregateMessages has a determi-
nistic outcome becaudént, (+)) is a commutative semigroup (Propositidd$ ¥4, 5, and
Corollary(2).



C Missing Proofs

We start with proving the following auxiliary lemma.

Lemma 4.
foldl (fa Z,P1 +H p2) = foldl (f? foldl (f? Z7p1)7p2) (7)

Proof. By induction on the length af; .
— forp, =[]

foldl (£, foldl (f, 2, [1), p2) = foldl (f, 2, p2) (def. offold! )
=foldl (f,z,[] 4 p2) (def. of )

— suppose the lemma holds for all of lengthn. Now consider the list : p;. It follows that

foldl (f, z,x : p1 H p2) = foldl (f, f(z,z),p1 H p2) (def. offoldl)
= foldl (fvaIdl (fvf(zvx)vpl)vl)Q) (IH)
= foldl (£, fold! (f, 2,2 : 1), p2) (def. offoldl ) O

In the following we use the following function:

aggregatelList part z seq comb xs = aggregate © z seq comb (part xs)

Lemma 5. The following are necessary (though not sufficient) coodgifor a callaggregate (z, seq, ®, part(L)) to be determi-
nistic:

1. zis the identity ofp on~ = img(foldl (seq, z)),
2. @is closed ony,

3. @ is commutative ory, and

4. ¢ is associative on.

Proof. 1. We assume thatgregate (z, seq, ®, part(L)) is deterministic and show thatis both the left and the right identity of
@ on~. First, assume the following partitioningart, (L) = [L]. From the assumption that thggregate is deterministic, it
follows that

(L) = aggregateList (partq, z, seq, ®, L)

= foldl (@, z, [(L)]) (def. ofaggregateList )
= foldl (&, z & (L), []) (def. offoldl)
=z@ (L) (def. offoldl )

Thereforey is the left identity ofd on-y.

Second, assume the following partitioningirt, (L) = [L, []]. From the assumption that tkggregate is deterministic, it
follows that

(L) = aggregateList (part,, z, seq, ®, L)
= foldl (&, z, [(L), {[)]) (def. ofaggregateList )
= foldl (&, z, [(L), 2]) (def. of (-) andfoldI )
= foldl (&, z & (L), [2]) (def. offoldl)
= foldl (&, (L), [2]) (z is the left id. of®)
= foldl (@, (L) @ z, []) (def. offoldl)
=(L)®z (def. offoldl )

Thereforey is also the right identity ofo on~.



2. We assume thatggregate (z, seq, @, rdd(L)) is deterministic and show that is closed ony. First, we assume thdt =
p1 H p2 and consider the following partitioningiart(py, + p2) = [p1,p2]. From the assumption that thggregate is
deterministic, it follows that

(p1 + p2) = aggregatelList (part, z, seq, ®, L)

= foldl (&, z, [(p1), (p2)]) (def. ofaggregateList )
= foldl (&, z ® (p1), [(p2)]) (def. offoldl )
= foldl (&, (p1), [(p2)]) (z is the id. of®)
— foldl (&, (p1) @ (p2), []) (def. offoldl )
= (p1) ® (p2) (def. offoldl )

Therefore®d is closed ony.

3. We assume thaiggregate (z, seq, ®, rdd(L)) is deterministic and show that is commutative ony. First, we assume that
L = p1 # p, and consider the following two partitioningsart, (p1 + p2) = [p1, p2] andpart,(pi H p2) = [p2,p1]). From
the assumption that theggregate is deterministic, it follows that

aggregatelist (partq, z, seq, ®, L) = aggregateList (part,, z, seq, ®, L)
= foldl (6, z, [(p1), (p2)]) = foldl (&, z, [(p2), {p1)]) (def. ofaggregateList )
— foldl (&, z ® (p1), [(p2)]) = foldl (&, z @ (p2), [{p1)]) (def. offold! )
— foldl (&, (p1), [(p2)]) = foldl (D, {p2), [(p1)]) (z istheid. of®)
— foldl (63, (p1) @ (pa), []) = foldl (&, (p2) & (p1), []) (def. offoldl )
— (p1) ® (p2) = (p2) ® (p1)) (def. offold)

Therefore® is commutative ony.

4. We assume thatggregate (z, seq, @, rdd(L)) is deterministic and show that is associative ory. First, we assume that
L = p1+p2+ps and consider the following two partitioningsirt, (p; Hpa+p3) = [p1, pa, ps] andpart, (py +pa+ps) =
[p2, p3,p1]). From the assumption that thggregate is deterministic, it follows that

aggregatelist (partq, z, seq, ®, L) = aggregateList (part,, z, seq, ®, L)
= foldl (&, z, [(p1), (p2), (p3)]) = foldl (&, z, [(p2), (p3), (P1)]) (def. ofaggregateList )
— foldl (&, z & (p1), [(p2), (ps)]) = foldl (B, z & (p2), [(p3), (P1)]) (def. offold! )
= foldl (&, (p1), [(p2), (ps)]) = foldl (&, (p2), [(ps), (p1)]) (zis the id. ofe)
— fold (&, {p1) & (p2), [(pa)]) = foldl (&, (p2) & (p), [(p1)) (def. offold)
= foldl (&, ((p1) @ (p2)) @ (ps), []) = foldl (&, ((p2) & (ps)) & (p1), []) (def. offoldl)
= ((p1) © (p2)) & (p3) = ((p2) & (p3)) & (p1) (def. offoldl)
= ((p1) ® (p2)) © (p3) = (p1) ® ((p2) ® (p3)) (comm. ofép)
Therefore® is associative ory. a

Lemma 6. For all functionsh : [4] — B, the following are equivalent:

1. his alist homomorphism toB, ®, 1),
2. Vass € [[A]] : foldl (®, L, map (h, zss)) = h(concat (zss)).

Proof. (1 = 2): By induction on the length ofss:
o foruzss =[]

foldl (®, L, map (h,[])) = foldl (®, L,[]) (def. ofmap)
=1 (def. offoldl )
=h([]) (assumption)
= h(concat ([])) (def. ofconcat)

e Consider the following induction hypothesis fexs,, of the lengthn:

IH : foldl (®, L, map(h, zss,)) = h(concat (zss,)). (8)



Forzss,, + [zs] we proceed as follows:

foldl (®, L, map(h, zss,, H [zs]))

= foldl (®, L, map (h, zss,,) + map (h, [zs]
= foldl (®, foldl (®, L, map

= foldl (®, foldl (®, L, map
= foldl (®, h(concat (zssy,)
= h(concat (zss,)) ® h(zs

h, xssy,)), map (h,
h, xssy,)), [h(zs)])
, [h(zs)])

—_ — —~

= h(concat (zss,) H xs)
= h(concat (zss, H [zs]))

(2 = 1): We prove that the two properties of a list homomorphism hold

e Fromfoldl (®, L,map(h,[])) = h(concat ([])) it follows thath([]) =
h(zs) ® h(ys), first we consider the listss = [zs]:

e To prove thati(zs + ys) =

L.

foldl (®, L, map (h, [xs])) = h(concat ([zs]))

= foldl (®, L, [h(zs)]) = h(zs)

— foldl (®, L ® h(zs),[]) = h(xs)

= 1 ®© h(zs) = h(zs)

Then we consider the listss = [zs, ys]:
foldl (®, L, map (h, [zs, ys])) = h(concat ([zs, ys]))

= foldl (®, L, [A(zs), h(ys)]) = h(zs H ys)
= foldl (©, L @ h(zs), [h(ys)]) = h(zs H ys)
— foldl (©, (L © h(zs)) © h(ys),[]) = h(zs H ys)
— (1 ® h(ss)) © h(ys) = h(zs + ys)
= h(zs) © h(ys) = h(zs H ys)

Lemma 1. Calls toaggregate (z, seq, b, rdd) have deterministic outcomes iff:

1. (img(foldl (seq, 2)), @, z) is a commutative
2. forall listspy, p2 :: [, (p1 + p2) =

monoid, and

(p1) @ (p2) -

Proof. =: (a) Proving 1: Follows from Lemnid 5.

(b) Proving 2: consider the liats + ys and

its partitioningart (zs + ys) = [zs, ys].

aggregatelist (part, z, seq, ®, xs H ys) = (xs H ys)
= foldl (@, z, [(xs), (ys)]) = (s H ys)
— foldl (@, z ® (ws), [(ys)]) = (zs H ys)
— foldl (&, (zs), [(ys)]) = (zs + ys)
= foldl (@, (zs) ® (ys),[]) = (zs H ys)
= (zs) @ (ys) = (s H ys)

(def. ofmap)
(Lemmd3)

(def. ofmap)

(IH)

(def. offoldl )
(assumption)

(def. ofconcat )

(def. of map, def. ofconcat)

(def. offoldl )

(def. offold! ) (9)

(def. of map, def. ofconcat)

(def. offoldl )
(def. offoldl )
(def. offoldl )

(@)

(def. of det.aggregate )
(def. ofaggregateList )

(def. offoldl )
(zis the id. of®)
(def. offoldl )
(def. offoldl )

«: Consider an arbitrary partitioning:rt(L) of L and its permutatioperm s.t. L = concat (perm(part(L))). From the defini-

tion of (-, it follows that([ ]) = foldl (seq,
From Lemmab it follows that

foldl (&, z, map ({-), perm(part(L)))) =
foldl (&, z, map ({-), perm(part(L)))) = (L)

—
<~

Becauseb is associative and commutative, it follows thagtregateList (perm,, o part, z, seq, ®, L) =

aggregatelist (perm o part,

(concat (perm(part(L))))

z,seq,®, L) = (L)

Thereforeaggregate (z, seq, ®, rdd(L)) is deterministic.

z,[]) = z, and, therefore,) is a list homomorphism téimg(foldl (segq, 2)), @, z).

(def. of perm andpart)
(def. ofaggregateList )

(L) for any perm,,.
O



Lemma 2. Let® be associative ofy = img(foldl (seq, z)) and z be the identity ofo on~. The following are equivalent:

. forallli o
1. foralllistspy, ps :: [a] (p1 H p2) = (p1) B (p2), @

2. for all elementsl :: « ande :: 7,
seq(e,d) = e @ seq(z,d). 3)

Proof. 1 = 2: This s a special case. We pigk such thatp;) = e andp, = [d]. When we substitute int@](2), we get
(p1 4+ [d]) = e ® ([d]). (10)
For the left-hand side, according to Lemima 4, it holds that
(p1 H [d]) = foldl (seq, z, p1 H [d]) = foldl (seq, foldl (seq, z, p1), [d]) = foldl (seq, (p1), [d]). (12)

After substitution, we gefoldl (seq, e, [d]), which is (from the definition ofoldl ) equal toseq(e, d). For the right-hand side
of (I0), we just notice thaf]d)) = foldl (seq, z, [d]) = seq(z, d).
2 = 1: Setx = foldl (seq, z,p1) = (p1) and substitute intd{2) to obtain a new target for proving:

(p1 + p2) = (p1) @ (p2)
= foldl (seq, z, p1 4 p2) = (p1) ® (p2) (def. of (-))
— foldl (seq, foldl (seq, z,p1), p2) = (p1) © (p2) (Lemmd4)
— foldl (z, seq, p2) = « @& (p2) (subst. ofr) (12)
We prove[(IR) using induction on the lengttof ps.
n = 0: for p; =[], we get to prove the following:
foldl (seq, z, []) = « @ foldl (seq, z, []))- (13)
From the definition ofoldl , we get an equivalent formula
r=x®z, (14)
which is true due ta being the identity oft on~.
n =1+ 1. We assumd_(12) holds fes of lengthi, i.e.
IH : foldl (seq,x,p;) = = @ foldl (seq, z, p;) (15)
and prove that, for ang € «,
foldl (seq, z, p; + [h]) = = @ foldl (seq, z, p; H [h]). (16)
We do it in the following way:
foldl (seq, x, p; + [h])
= foldl (seq, foldl (seq, =, p;), [h]) (Lemmd34)
= foldl (seq, seq(foldl (seq, x, p;), h),[]) (def. offoldl )
= seq(foldl (seq, z, p;), h) (def. offoldl)
= foldl (seq, x, p;) & seq(z, h) (appl. of [3))
= (z @ foldl (seq, z,p;)) ® seq(z, h) (IH)
=z @ (foldl (z, seq, p;) ® seq(z, h)) (assoc. ofp)
=z P seq(foldl (seq, z,p;), h) (appl. of [3))
= z @ foldl (seq, seq(foldl (seq, z, p;), h), []) (def. offoldl)
= z @ foldl (seq, foldl (seq, z, p;), [h])) (def. offoldl )
= x @ foldl (seq, z, p; H [h])) (Lemmd%) O
Lemma 7.
reducel (f, zs) = reducel ' (f, xs) a7

where



reducel’ f xs = fromJust (foldl f' Nothing xs)
where f' x y = case x of
Nothing — Just y
Just X" — Just (fx'y)

Proof. by induction on the length ofs:

1. forzs =[], bothreduce andreducel are undefined.
2. forxzs = [z]:

reducel (f, [z]) = foldl (f,z,[]) ==

and
reducel '(f, [x]) = fromJust (foldl (f’, Nothing , [z]) (def. ofreducel ")
= fromJust (foldl (', f'(Nothing , z),[]) (def. offoldl )
= fromJust (foldl (', Just (), []) (def. of f')
= fromJust (Just (z)) (def. offoldl )
=z (def. offromJust )
3. assume the following induction hypothesis:
reducel (f,z : xs) = reducel '(f',z : xs) = R (18)

We now prove that the lemma holds for zs H [a]. First, we compute the result fegducel (f, z : zs + [a]):

reducel (f,z : zs H [a]) = foldl (f, z, zs + [a]) (def. ofreducel )
= foldl (£, foldl (f, z, zs), [a]) (Lemmd4)
= foldl (f, reducel (f,x : zs), [a]) (def. ofreducel )
= foldl (f, R, [a]) (IH)
= foldl (f, f(R,a),[]) (def. offoldl )
= f(R,a) (def. offoldl )

We proceed by computing the result feducel ’(f, z : zs 4 [a]):

reducel '(f, z : xs + [a])

= fromJust (foldl (f’, Nothing ,x : s + [a])) (def. ofreducel ")
= fromJust (foldl (', foldl (f’, Nothing , z : zs), [a])) (Lemmd4)
= fromJust (foldl (', f'(foldl (f',Nothing , x : zs),a),[])) (def. offoldl )
= fromJust (f’(foldl (f’, Nothing ,z : x5), a)) (def. offoldl )
(f'is applied at least once an: s = the result of the nestefdidl cannot beNothing )
= fromJust (Just (f(fromJust (foldl (f’, Nothing , z : zs)), a)) (def. of )
= f(fromJust (foldl (f’,Nothing , : z5)), a) (def. offromJust )
= f(reducel'(f',z : zs),a) (def. ofreducel ")
~ /(R,a) (H) O

Lemma 3. Calls toreduce (b, rdd) have deterministic outcomes iff callsdggregate (Nothing , seq’, &', rdd) have deterministic
outcomes, whereeq’ and@’ are as follows:

seq Xy = case x of (@) xy = case (x, y) of (Nothing,y) =Yy
Nothing — Just y (X', Nothing ) — x’
Just X' — Just (X' @) (Just x', Just y) — Just (X' ®Y) .

Proof. We show that given the following definition of the functiosuce ”,

reduce” ! (¢ > a—a) > RDD a — «
reduce ” (@) rdd = fromJust (aggregate Nothing seq’ (¢’) rdd),



it holds thatreduce (¢, rdd) = reduce P (@, rdd) for all & andrdd. In caserdd is a partitioning of an empty list, the result of
bothreduce’ andreduce” is undefined. For a non-empty list:

reduce”’ (@', zs : wss)
= fromJust (aggregate (Nothing , seq’, &', s : xss)) (def. ofreduce ")
= fromJust (foldl (&', Nothing , map (Ays . foldl (seq’, Nothing , ys), zs : zss))) (def. ofaggregate )
( from the assumption on partitionings, no elementof zss is empty)
= fromJust (foldl (&', Nothing , map (Ays . Just (fromJust (foldl (seq’, Nothing , ys))), zs : zss)))  (def. offromJust )

= fromJust (foldl (&', Nothing , map (Ays . Just (reducel (®, ys)), zs : x5s))) (LemmdT)
= fromJust (foldl (&', Nothing , Just (reducel (b, zs)) : map (Ays . Just (reducel (&, ys)), zss))) (def. of map)
= fromJust (foldl (&', Nothing &’ Just (reducel (6, zs)), map (Ays . Just (reducel (&, ys)), zss))) (def. offoldl )
= fromJust (foldl (&, Just (reducel (b, zs)), map (Ays . Just (reducel (B, ys)), ss))) (def. of ®’)
= fromJust (Just (foldl (®, reducel (®, zs), map (Ays . reducel (&, ys), zss)))) (def. of ®’)
= foldl (&, reducel (®, zs), map (Ays . reducel (®, ys), zss)) (def. offromJust )
= reducel (@, reducel (@, zs) : map (Ays . reducel (®, ys), zss)) (def. ofreducel )
= reducel (&, map (Ays . reducel (&, ys), zs : zss)) (def. of map)
= reduce P (@, zs : xss) (def. ofreduce ) O

Corollary 2. Calls toreduce (@, rdd) have deterministic outcomes i, &) is a commutative semigroup.

Proof. From LemmaaB, it follows that we can investigate the functiggregate (Nothing , seq’, &', rdd) instead ofeduce (&, rdd).
From Corollary1, we obtain thaiggregate (Nothing , seq’, &', rdd) has deterministic outcome iff the following two conditions
hold:

1. (img(foldl (seq’, Nothing )), @', Nothing ) is @ commutative monoid,
2. Vd € a, e € img(foldl (seq’, Nothing )) : seq’(e,d) = e &' seq’(Nothing , d).

We start with investigating condition 2;

— For the case = Nothing :

seq'(e,d) = e @ seq’(Nothing , d)
— seq’ (Nothing , d) = Nothing @’ seq’(Nothing , d) (subst. ofe = Nothing )
— Just (d) = Nothing &' Just (d) (def. of seq’)
— Just (d) = Just (d) (def. of &')

— Forthe case = Just (z):

seq'(e,d) = e @ seq'(Nothing , d)
= seq’ (Just (z),d) = Just (z) & seq’ (Nothing , d) (subst. ofe = Just (z))
— Just (z @ d) = Just (x) @& Just (d) (def. of seq’)
= Just (z @ d) = Just (x ® d) (def. of ®’)

We can observe that the condition is a tautology. Theretbesgondition 1 is a sufficient and necessary condition falkta
aggregate (Nothing , seq’, @', rdd) to have a deterministic outcome.

We proceed by investigating the conditions fang(foldl (seq’, Nothing )), @', Nothing ) to be a commutative monoid. First,
we observe that fob : o x a — a, it holds thatimg(foldl (seq’, Nothing )) = Maybe («).

— ldentity. From the definitionNothing is the identity of®’.

— Commutativity From the definitiong’ is commutative iff® is commutative.

— Associativity Consider elements, b, c € Maybe («). We explore wherta &' b) @' ¢ = a @' (b &' ¢):
o If any member of a, b, ¢} is Nothing , the condition holds becausiething is the (left and right) identity ofs’.
e Fora = Just(a’), b = Just (¥'), andc = Just (¢), it holds that:

(Just (a) @' Just (b)) @ Just (c¢) = Just (a) @ (Just (b) @ Just (c))
= Just (a @ b) & Just (c) = Just (a) & Just (b ® c) (def. of &’)
— Just((a®b)®c) =Jdust(a® (b& ¢)) (def. of®’)



Therefore®’ is associative iffp is associative.
— Closed It is easy to observe that’ is closed orMaybe («).

From the previous conditions, we infer thajgregate (Nothing , seq’, @', rdd) has deterministic outcome iffx, &) is a com-
mutative semiring. a0

Proposition 1. Calls to treeAggregate (z, seq, ®, rdd) have deterministic outcomes iff calls dggregate (z, seq, ®, rdd) have
deterministic outcomes.

Proof. =: Consider the following function:

dividel :: [a] — ([a], o, «, [a])
dividel x1:x2:xs = ([], X1, X2, XS) .

Obviously,dividel is one possible way hodivide ! can function. We further consider the following modificatiaf apply:

applyl = (8= 8—=8)—[Bl— 58

applyl comb [r]=r

applyl comb [r, '] =combrr

applyl combrs =let (Is’, I', ', rs") = dividel rsin applyl comb (Is’ ++ [comb I' '] ++ rs’)

After inlinining dividel to applyl , we can modify it to obtain yet futher modification:

applyl”:: (8 = 8 — B) = [l = B

applyl’ comb [r] =

——applyl' comb [r, r']=combrr

applyl’ comb r1:r2:rs = applyl * comb ((comb rl r2):rs)

Note that the case for a list of length 2 is reduntant now. Bigaholds thatapplyl '(f, xs) = reducel(f, xs). If we substitute
reducel for apply in the definition oftreeAggregate , and further use the property of a partitioning that it iserean empty
list, we obtain the definition odggregate .

<: From Lemmadb, it follows thats is associative and commutative. Therefore, any sequend®idé !-apply operations in
apply will yield the same outcome as if we consider the (deterrtig)idividel . O

Proposition 2. Calls to treeReduce (&, rdd) have deterministic outcomes iff calls teduce (®, rdd) have deterministic out-
comes.

Proof. Follows the same structure as the proof of Proposiflon 1. a

When inferring conditions for a deterministic outcome af ttall toaggregateByKey , we make use of the following auxiliary
function:

aggregateWithKey a—~v—>H—>8—79) —>(y—~v— ) — ParRDD a 8 — v
aggregateWithKey k z seq comb pairRdd =
let selectp =key p ==
vrdd = filter (not . null)
(map ((map value) . (filter select)) pairRdd)
in aggregate z seq comb vrdd

We also use the following version afigregateByKey with the partitioning given explicitly:

aggregateListByKey :: ([(ov, B)] = [[(cv, D)) = v = (Y—=B—7)
= (y=v—7) = [(«, B)] — PairRDD « «
aggregateListByKey part z mergeComb mergeValue list = aggregateByKey z mergeComb mergeValue (part list)

Lemma 8. It holds that

lookUp (k, aggregateByKey (z, seq, @, prdd)) = aggregateWithKey (k, z, seq, ®, prdd)),
wherelookUp searches the first value with a given key in an RDD:
lookUp (k, xss) = head ,(concat (map (map (value o filterkey k), zss))),

andhead, returnsz when the input is empty.



Proof. To avoid too many parentheses, we use curried functionshptoof of this lemma. We need a number of additional
lemmas. The following property allows one to swiggerkey & andfoldl (mergeBy (4)) [ |:

filterkey k o foldl (mergeBy (¢0)) [] = foldl (mergeBy (®)) [] o filterkey k. (19)

The next property says that, given a Kegnd a binary operatdm), filtering the list withk and performindoldl (mergeBy(®)) []
gives you a single value:

head . o map value o foldl (mergeBy (®)) [] o filterkey &k = foldl ® z o map value o filterkey k, (20)

wherehead . returnsz when the input is empty. Finally, in the equation below, gieeRDD and any binary operat¢p), the
LHS computesoldl (mergeBy (©)) []) on each partition, pick those with kdy and concatenates their values. The RHS filters
the values with key:, and computefldl (®) z for each partition.

concat o map (map value o filterkey k o foldl (mergeBy (®)) [])
= map (foldl (®) z) ofilter (not o null) o map (map value o filterkey k). (21)

All the lemmas above can be proved by induction. The proodtisflemma follows:

lookUp k o aggregateByKey z (®) (D)
= head, o concat o map (map value o filterkey k) o repartition o

foldl (mergeBy (b)) [] o concat o map (foldl (mergeBy (®)) []) o perm (def. ofaggregateByKey )
= head , o map value o filterkey & o foldl (mergeBy (¢)) [] o
concat o map (foldl (mergeBy (®)) []) o perm (naturality)
= head , o map value o foldl (mergeBy (®)) [] o filterkey k o
concat o map (foldl (mergeBy (®)) []) o perm (by (13))
= foldl () z o map value o filterkey k o concat o map (foldl (mergeBy (®)) []) o perm (by (20))
= foldl () z o concat o map (map value o filterkey k o foldl (mergeBy (®) [])) o perm (naturality)
= foldl () z o map (foldl (®) z) ofilter (not o null) o map (map value o filterkey k) o perm (by (27))
= foldl (®) z o map (foldl (®) z) o perm ofilter (not o null) o map (map value o filterkey k) (naturality)
= aggregateWithKey k z (®) (D) (def. ofaggregateWithKey ) O

Proposition 3. Calls to aggregateByKey (z, seq, @, prdd) have deterministic outcomes iff calls &ggregate (z, seq, ®, rdd)
have deterministic outcomes.

Proof. From LemmdB, it follows thatggregateByKey (z, seq, @, prdd) has deterministic outcome iff for all keys € « and
partitioningspart:
aggregateWithKey (k, z, seq, @, part(L)) = foldl (z, seq, filterkey (k, L)). (22)

From the defition ohggregatewithKey , we infer that this is equivalent to

aggregate (z, seq, ®, part(filterkey (k, L))) = foldl (2, seq, filterkey (k, L))
= aggregate (z, seq, ®, part(L')) = foldl (z, seq, L"), (subst.L’ = filterkey (k, L))

which is the condition foaggregate (z, seq, ®, part(L’)) to have a deterministic outcome. O

Consider the following function.

reduceWithKey :a — (8 — 8 — ) — PairRDD a 8 — 8
reduceWithKey k mergeValue pairRdd =
let selectp=key p ==
vrdd = filter (not . null)
(map ((map value) . (filter select)) pairRdd)
in reduce mergeValue vrdd

Lemma 9. It holds that

lookup (k,reduceByKey (P, prdd)) = reduceWithKey (k,®, prdd)).



Proof. Similar to that of LemmA&]8. O

Proposition 4. Calls toreduceByKey (&, prdd) have deterministic outcomes iff callsrmuce (@, rdd) have deterministic out-
comes.

Proof. Folows the same structure as the proof of Propodion 3. a

Proposition 5. It holds that if calls to the functioreduceByKey (@, rdd) have deterministic outcomes, then calls to the function
aggregateMessages (send, ®, graphRdd) also have deterministic outcomes.

Proof. WhenreduceByKey has deterministic outcome, then it holds (from definitidmgttfor all verticesy € VertezID, lists
L € [a], and partitioningpart:

lookup (v, reduceListWithKey (part,®, L)) = reducel (&, filterkey (v, L)).

When applyingookup (v, aggregateMessages (send, @, graphRdd(V, E))), the result will be the same as if thakup is ap-
plied to the last line of functioaggregateMessagesWithActiveSet

lookup (v, reduceByKey (@, pairRdd)) .

SincereduceByKey (@, pairRdd) has deterministic outcome, it follows that
lookup (v, reduceByKey (@, pairRdd)) = reducel (@, filterkey (v, pairRdd)). (23)

This is a sufficent condition to conclude thggregateMessages (send, @, graphRdd(V, E'))) has a deterministic outcome.O
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