
ar
X

iv
:1

70
2.

02
43

9v
1

 [c
s.

D
C

]
8

F
eb

 2
01

7

An Executable Sequential Specification
for Spark Aggregation

Yu-Fang Chen1, Chih-Duo Hong1, Ondřej Lengál1,2,
Shin-Cheng Mu1, Nishant Sinha3, Bow-Yaw Wang1

1 Academia Sinica, Taiwan
2 Brno University of Technology, Czech Republic

3 IBM Research, India

Abstract. Spark is a new promising platform for scalable data-parallel compu-
tation. It provides several high-level application programming interfaces (APIs)
to perform parallel data aggregation. Since execution of parallel aggregation in
Spark is inherently non-deterministic, a natural requirement for Spark programs
is to give the same result for any execution on the same data set. We present
PURESPARK, an executable formal Haskell specification for Spark aggregate
combinators. Our specification allows us to deduce the precise condition for de-
terministic outcomes from Spark aggregation. We report case studies analyzing
deterministic outcomes and correctness of Spark programs.

1 Introduction

Spark [30,1,31] is a popular platform for scalable distributed data-parallel computation
based on a flexible programming environment with concise andhigh-level APIs. Spark
is by many considered as the successor of MapReduce [14,26].Despite its fame, the pre-
cursory computational model of MapReduce suffers from I/O congestion and limited
programming support for distributed problem solving. Notably, Spark has the following
advantages over MapReduce. First, it has high performance due to distributed, cached,
and in-memory computation. Second, the platform adopts a relaxed fault tolerant model
where sub-results are recomputed upon faults rather than aggressively stored. Third,
lazy evaluation semantics is used to avoid unnecessary computation. Finally, Spark of-
fers greater programming flexibility through its powerful APIs founded in functional
programming. Spark also owes its popularity to a unified framework for efficient graph,
streaming, and SQL-based relational database computation, a machine learning library,
and the support of multiple distributed data storage formats. Spark is one of the most
active open-source projects with over 1000 contributors [1].

In a typical Spark program, a sequence of transformations followed by an action are
performed on Resilient Distributed Datasets (RDDs). An RDDis the principal abstrac-
tion for data-parallel computation in Spark. It representsa read-only collection of data
items partitioned and stored distributively. RDD operations such asmap, reduce, and
aggregate are calledcombinators. They generate and aggregate data in RDDs to carry
out Spark computation. For instance, theaggregate combinator takes user-defined func-
tionsseq andcomb: seq accumulates a sub-result for each partition whilecomb merges
sub-results across different partitions. Spark also provides a family of aggregate combi-
nators for common data structures such as pairs and graphs. In Spark computation, data
aggregation is ubiquitous.

http://arxiv.org/abs/1702.02439v1

Programming in Spark, however, can be tricky. Since sub-results are computed us-
ing multiple applications ofseq and comb across partitions concurrently, the order
of their applications varies on different executions. Because of indefinite orders of
computation, aggregation in Spark is inherentlynon-deterministic. A Spark program
may produce different outcomes for the same input on different runs. This form of
non-deterministic computation has other side effects. Forinstance, the private function
AreaUnderCurve.of in the Spark machine learning library computes numerical integra-
tion distributively; it exhibits numerical instability due to non-deterministic computa-
tion. Consider the integral ofx73 on the interval[−2, 2]. Sincex73 is an odd function,
the integral is0. In our experiments,AreaUnderCurve.of returns different results ranging
from−8192.0 to 12288.0 on the same input because of different orders of floating-point
computation. To ensure deterministic outcomes, programmers must carefully develop
their programs to adhere to Spark requirements.

Unfortunately, Spark’s documentation does not specify therequirements formally.
It only describes informal algebraic properties about combinators to ensure correctness.
The documentation provides little help to a programmer in understanding the complex,
and sometimes unexpected, interaction betweenseq andcomb, especially when these
two are functions over more complex domains, e.g. lists or trees. Inspecting the Spark
implementation is a laborious job since public combinatorsare built by composing a
long chain of generic private combinators—determining theexecution semantics from
the complex implementation is hard. Moreover, Spark is continuously evolving and
the implementation semantics may change significantly across releases. We therefore
believe that a formal specification of Spark combinators is necessary to help developers
understand the program semantics better, clarify hidden assumptions about RDDs, and
help to reason about correctness and sources of non-determinism in Spark programs.

Building a formal specification for Spark is far from straightforward. Spark is im-
plemented in Scala and provides high-level APIs also in Python and Java. Because
Spark heavily exploits various language features of Scala,it is hard to derive specifi-
cations without formalizing the operational semantics of the Scala language, which is
not an easy task by itself. Instead of that, we have developeda Haskell library PURES-
PARK [4], which for each key Spark combinator provides an abstract sequential func-
tional specification in Haskell. We use Haskell as a specification language for two rea-
sons. First, the core of Haskell has strong formal foundations in λ-calculus. Second,
program evaluation in Haskell, like in Scala, is lazy, whichadmits faithful modeling of
Spark aggregation. Through the use of Haskell we obtain a concise formal functional
model for Spark combinators without formalizing Scala.

An important goal of our specification is to make non-determinism in various com-
binators explicit. Spark developers can inspect it to identify sources of non-determinism
when program executions yield unexpected outputs. Researchers can also use it to un-
derstand distributed Spark aggregation and investigate its computational pattern. Our
specification is alsoexecutable. A programmer can use the Haskell APIs to implement
data-parallel programs, test them on different input RDDs,and verify correctness of
outputs independent of the Spark programming environment.In our case studies, we
capture non-deterministic behaviors of real Spark programs by executing the corre-
sponding PURESPARK specifications with crafted input data sets. We also show that
the sequential specification is useful in developing distributed Spark programs.

Our main contributions are summarized below:

– We present formal, functional, sequential specifications for key Spark aggregate
combinators. The PURESPARK specification consists of executable library APIs. It
can assist Spark program development by mimicking data-parallel programming in
conventional environments.

– Based on the specification, we investigate and identify necessary and sufficient con-
ditions for Spark aggregate combinators to produce deterministic outcomes for gen-
eral and pair RDDs.

– Our specification allows to deduce the precise condition fordeterministic outcomes
from Spark aggregation.

– We perform a series of case studies on practical Spark programs to validate our
formalization. With PURESPARK, we find instances of numerical instability in the
Spark machine learning library.

– Up to our knowledge, this is the first work to provide a formal,functional specifica-
tion of key Spark aggregate combinators for data-parallel computation.

2 Preliminaries
Let A be a non-empty set and⊙ : A × A → A be a function. An elementi ∈ A is the
identityof ⊙ if for every a ∈ A, it holds thata = i ⊙ a = a ⊙ i. The function⊙ is
associativeif for everya, a′, a′′ ∈ A, a⊙ (a′ ⊙ a′′) = (a⊙ a′)⊙ a′′; ⊙ is commutative
if for everya, a′ ∈ A, a ⊙ a′ = a′ ⊙ a. The algebraic structure(A,⊙) is asemigroup
if ⊙ is associative. Amonoidis a structure(A,⊙,⊥) such that(A,⊙) is a semigroup
and⊥ ∈ A is the identity of⊙. The semigroup(A,⊙) and monoid(A,⊙,⊥) are
commutative if⊙ is commutative.

Haskell is a strongly typed purely functional programming language. Similar to
Scala, Haskell programs are lazily evaluated. We use several widely used Haskell func-
tions (Figure 1).fst andsnd are projections on pairs.null tests whether a list is empty.
elem is the membership function for lists; its infix notation is often used, as in0 ‘elem ‘ [].
(++) concatenates two lists; it is used as an infix operator, as in[False]++ [True]. map ap-
plies a function to elements of a list.reducel merges elements of a list by a given binary
function from left to right.foldl accumulates by applying a function to elements of a list
iteratively, also from left to right.concat concatenates elements in a list.concatMap
applies a function to elements of a list and concatenates theresults.lookup finds the
value of a key in a list of pairs.filter selects elements from a list by a predicate.

In order to formalize non-determinism in distributed aggregation, we define the fol-
lowing non-deterministic shuffle function for lists:
shuffle ! :: [α]→ [α]
shuffle ! xs = ... −− shuffle xs randomly

A random monad can be used to define random shuffling. Instead of explicit monadic
notation, we introduce thechaoticshuffle ! function in our presentation for the sake of
brevity. Thus,shuffle ! [0, 1, 2] evaluates to one of the six possible lists[0, 1, 2], [0, 2, 1],
[1, 0, 2] [1, 2, 0], [2, 0, 1], or [2, 1, 0] randomly. Usingshuffle !, more chaotic functions
are defined.

map ! :: (α→ β)→ [α]→ [β]
map ! f xs = shuffle ! (map f xs)

concatMap ! :: (α→ [β])→ [α]→ [β]
concatMap ! f xs = concat (map ! f xs)

fst :: (α, β)→ α

fst (x,) = x

null :: [α]→ Bool
null [] = True
null (x:xs) = False

(++) :: [α]→ [α]→ [α]
[] ++ ys = ys
x:xs ++ ys = x:(xs ++ ys)

reducel :: (α→α→α)→[α]→α

reducel h (x:xs) = foldl h x xs

concat :: [[α]]→ [α]
concat [] = []
concat (xs:xss) = xs ++ (concat xss)

lookup :: α→ [(α, β)]→ Maybe β

lookup k [] = Nothing
lookup k ((x, y):xys) = if k == x

then Just y else lookup k xys

snd :: (α, β)→ β

snd (, y) = y

elem :: α→ [α]→ Bool
elem x [] = False
elem x (y:ys) = x==y || elem x ys

map :: (α→ β)→ [α]→ [β]
map f [] = []
map f (x:xs) = (f x):(map f xs)

foldl :: (β→α→β)→β→[α]→β

foldl h z [] = z
foldl h z (x:xs) = foldl h (h z x) xs

concatMap :: (α→ [β])→ [α]→ [β]
concatMap xs = concat (map f xs)

filter :: (α→ Bool)→ [α]→ [α]
filter p [] = []
filter p (x:xs) = if p x

then x:(filter p xs) else filter p xs

Fig. 1. Basic functions

Chaoticmap ! shuffles the result ofmap randomly,concatMap ! concatenates the shuf-
fled result ofmap . For instance,map ! even [0, 1] evaluates to[False , True] or [True ,
False]; concatMap ! fact [2, 3] evaluates to[1, 2, 1, 3] or [1, 3, 1, 2] wherefact computes
a sorted list of factors (note that the two sub-sequences[1,2] and[1,3] are kept intact).
repartition ! :: [α]→ [[α]]
repartition ! xs = let ys = shuffle ! xs ...

in yss −− ys == concat yss

The functionrepartition ! shuffles a given list and partitions the shuffled list into several
non-empty lists. For instance,repartition ! [0, 1] results in[[0], [1]], [[1], [0]], [[0, 1]], or
[[1, 0]]. The chaotic function can be implemented by a random monad easily; its precise
definition is omitted here.

3 Spark Aggregation

Resilient Distributed Datasets (RDDs)are the basic data abstraction in Spark. An RDD
is a collection of partitions of immutable data; data in different partitions can be pro-
cessed concurrently. We formalize partitions by lists, andRDDs by lists of partitions.

type Partition α = [α] type RDD α = [Partition α]

The Sparkaggregate combinator computessub-resultsof every partitions in an
RDD, and returns the aggregated result by combining sub-results.
aggregate :: β → (β → α→ β)→ (β → β → β)→ RDD α→ β

aggregate z seq comb rdd = let presults = map ! (foldl seq z) rdd
in foldl comb z presults

More concretely, letz be a default aggregated value.aggregate appliesfoldl seq z to
every partition ofrdd. Hence the sub-result of each partition is accumulated by folding
elements in the partition withseq. The combinator then combines sub-results by another
folding usingcomb.

Note that the chaoticmap ! function is used to model non-deterministic interleav-
ings of sub-results. To exploit concurrency, Spark createsa task to compute the sub-
result for each partition. These tasks are executed concurrently and hence induce non-
deterministic computation. We use the chaoticmap ! function to designate non-deter-
minism explicitly.

A related combinator isreduce . Instead offoldl , the combinator usesreducel to
aggregate data in an RDD.
reduce :: (α→ α→ α)→ RDD α→ α

reduce comb rdd = let presults = map ! (reducel comb) rdd
in reducel comb presults

Similar to theaggregate combinator,reduce computes sub-results concurrently. The
chaoticmap ! function is again used to model non-deterministic computation.

Sub-results of different partitions are computed in parallel, but theaggregate com-
binator still combines sub-results sequentially. This canbe further parallelized. Observe
that several sub-results may be available simultaneously from distributed computation.
The SparktreeAggregate combinator appliescomb to pairs of sub-results concurrently
until the final result is obtained. In addition to concurrentcomputation of sub-results,
treeAggregate also combines sub-results from different partitions in parallel.

In our specification, two chaotic functions are used to modelnon-deterministic com-
putation on two different levels. Themap ! function models non-determinism in comput-
ing sub-results of partitions. Theapply ! function (introduced below) models concurrent
combination of sub-results from different partitions. It combines two consecutive sub-
results picked chaotically, and repeats such chaotic combinations until the final result is
obtained. Observe that the computation has a binary-tree structure withcomb as internal
nodes and sub-results from different partitions as leaves.
apply ! :: (β → β → β)→ [β]→ β

apply ! comb [r] = r
apply ! comb [r, r’] = comb r r’
apply ! comb rs = let (ls’, l’, r’, rs’) = ... −− rs == ls’ ++ [l’, r’] ++ rs’

in apply ! comb (ls’ ++ [comb l’ r’] ++ rs’)

treeAggregate :: β → (β→α→β)→ (β→β→β)→ RDD α→ β

treeAggregate z seq comb rdd = let presults = map ! (foldl seq z) rdd
in apply ! comb presults

ThetreeReduce combinator optimizesreduce by combining sub-results in parallel.
Similar to treeAggregate , two levels of non-deterministic computation can occur.
treeReduce :: (α→ α→ α)→ RDD α→ α

treeReduce comb rdd = let presults = map ! (reducel comb) rdd
in apply ! comb presults

Pair RDDs. Key-value pairs are widely used in data parallel computation. If the data
type of an RDD is a pair, we say that the RDD is apair RDD. The first and second
elements in a pair are called thekeyand thevalueof the pair respectively.

type PairRDD α β = RDD (α, β)

In a pair RDD, different pairs can have the same key. Spark provides combinators to ag-
gregate values associated with the same key. TheaggregateByKey combinator returns
an RDD by aggregating values associated with the same key. Weuse the following
functions to formalizeaggregateByKey :

hasKey :: α→ Partition (α, β)→ Bool
hasKey k ps = case (lookup k ps) of

Just → True
Nothing → False

hasValue :: α→ β → Partition (α, β)→ β

hasValue k val ps = case (lookup k ps) of
Just v→ v
Nothing → val

addTo :: α→ β → Partition (α, β)→ Partition (α, β)
addTo key val ps = foldl (λr (k, v)→ if key == k then r else (k, v):r) [(key, val)] ps

The expressionhasKey k ps checks ifkey appears in a partition of pairs.hasValue k
val ps finds a value associated withkey in a partition of pairs. It evaluates to the default
valueval if key does not appear in the partition. The expressionaddTo key val ps adds
the pair(key, val) to the partitionps, and removes other pairs with the same key.

The aggregateByKey combinator first aggregates all pairs with the valuez and
the functionmergeComb in each partition. If valuesvs are associated with the same
key in a partition, the valuefoldl mergeComb z vs for the key is pre-aggregated. Since
a key may appear in several partitions, all pre-aggregated values associated with the key
across different partitions are merged usingmergeValue.

aggregateByKey :: γ → (γ → β → γ)→ (γ → γ → γ)→ PairRDD α β → PairRDD α γ

aggregateByKey z mergeComb mergeValue pairRdd =
let mergeBy fun left (k, v) = addTo k (fun (hasValue k z left) v) left

preAgg = concatMap ! (foldl (mergeBy mergeComb) []) pairRdd
in repartition ! (foldl (mergeBy mergeValue) [] preAgg)

In the specification, we accumulate values associated with the same key bymergeComb
in each partition, keeping a list of pairs of a key and the partially aggregated value for the
key. Since accumulation in different partitions runs in parallel, the chaoticconcatMap !
function is used to model such non-deterministic computation. After all partitions fin-
ish their accumulation,mergeValue merges values associated with the same key across
different partitions. The final pair RDD can have a default oruser-defined partition-
ing. Since a user-defined partitioning may shuffle a pair RDD arbitrarily, it is in our
specification modeled by the chaoticrepartition ! function.

Pair RDDs have a combinator corresponding toreduce called reduceByKey . re-
duceByKey merges all values associated with a key bymergeValue, following a sim-
ilar computational pattern asaggregateByKey . Note that every key is associated with
at most one value in resultant pair RDDs ofaggregateByKey or reduceByKey .
reduceByKey :: (β → β → β)→ PairRDD α β → PairRDD α β

reduceByKey mergeValue pairRdd =
let merge left (k, v) = case lookup k left of Just v’→ addTo k (mergeValue v’ v) left

Nothing → addTo k v left
preAgg = concatMap ! (foldl merge []) pairRdd

in repartition ! (foldl merge [] preAgg)

Spark also provides a library, called GraphX, for a distributed analysis of graphs. See
App. A for a formalization of some of its key functions.

4 Deterministic Aggregation

Having deterministic outcomes is desired from all aggregation functions. If a function
may return different values on different executions, the function is often not imple-
mented correctly. A program with explicit assumptions on the input data is also de-
sirable. Otherwise, the program may work correctly on certain data sets but produce
unexpected outcomes on others where implicit assumptions do not hold [28]. We now
investigate conditions under which Spark aggregation combinators always produce de-
terministic outcomes. Proofs of the given lemmas can be found in App. C. Proofs of
some crucial lemmas have also been formalized using Agda [4].

We first show how to deal with non-deterministic behaviors intheaggregate com-
binator. Consider a variant of the formalization ofaggregate from Section 3:
aggregate ’::β → (β → α→ β)→ (β → β → β)→ RDD α→ β

aggregate ’ z seq comb rdd = let presults = perm (map (foldl seq z) rdd)
in foldl comb z presults

Observe that we changed the application of the chaoticmap ! function with an applica-
tion of the permutationperm after the regularmap function. The function composition
perm(map ...) is a concrete instantiation ofmap !, that is, a function that permutes its
list argument. Notice thatperm can be pushed insidemap :

perm (map f xs) == map f (perm xs).

Assume thatrdd was obtained from a listxs by splitting and permuting, that is,rdd
== perm’ (split xs) wheresplit :: [α] → [[α]] satisfiesxs == (concat . split) xs. We can
therefore rewrite the computation ofpresults in aggregate ’ to
let pres = perm (map (foldl seq z) (perm’ (split xs))),

After pushingperm insidemap, we obtain
let pres = map (foldl seq z) ((perm . perm’) (split xs)).

Sinceperm . perm’ is also a permutationperm”, we have
let pres = map (foldl seq z) rdd’

where rdd’ is another RDD obtained fromxs by splitting and shuffling. Let us call
(deterministic) instances ofrepartition ! aspartitionings. As a consequence, we focus
only on proving if calls toaggregate D defined below have deterministic outcomes for
different partitionings of a list into RDDs:
aggregate D:: β → (β → α→ β)→ (β → β → β)→ RDD α→ β

aggregate D z seq comb rdd = let pres = map (foldl seq z) rdd
in foldl comb z pres

Moreover, we define deterministic versions ofreduce

reduce D :: (α→ α→ α)→ RDD α→ α

reduce D comb rdd = let presults = perm (map (reducel comb) rdd)
in reducel comb presults

and alsotreeAggregate D andtreeReduce D in a similar way.
In the following, given a functionf that takes an RDD as one of its parameters and

contains a single occurrence of the chaoticmap ! (respectivelyconcatMap !) function,
we usefD to denote the function obtained fromf by replacing the chaoticmap ! (respec-
tively concatMap !) with a regularmap (respectivelyconcatMap). A similar reasoning

can show that it suffices to check whether calls tofD have deterministic outcomes for
different partitionings on a list into RDDs.

For better readability, standard mathematical notation offunctions is used in the rest
of this section. We represent a Haskell function application f x1 . . . xn asf(x1, . . . , xn).

4.1 aggregate
In this section, we give conditions for deterministic outcomes of calls to the aggregate
combinatoraggregate (z, seq,⊕, rdd) for z :: β, seq :: β × α → β, ⊕ :: β × β → β,
andrdd :: RDD α. We first define what it means for calls to theaggregate combinator
to have deterministic outcomes.
Definition 1. Calls toaggregate (z, seq,⊕, rdd) havedeterministic outcomesif

aggregate D(z, seq,⊕, part(L)) = foldl (seq , z, L) (1)

for all lists L and partitioningspart .

Conventionally,aggregate is regarded as a parallelized counterpart offoldl . For
example, the sequentialaggregate function in the standard Scala library ignores the
⊕ operator and is implemented byfoldl . This is why we characterize deterministic
aggregate as foldl in Definition 1. Our characterization, however, does not cover all
aggregate calls that always give the same outputs. In particular, it does not cover an
aggregate call where⊕ is a constant function, which is, however, quite suspiciousin
a distributed data-parallel computation and should be reported.

We give necessary and sufficient conditions foraggregate calls to have determi-
nistic outcomes in several lemmas, culminating in Corollary 1. The first lemma al-
lows us to check only conditions onseq and⊕ over all possible pairs of lists in-
stead of enumerating all possible partitionings on lists. For brevity, we use〈p1〉 for
foldl (seq , z, p1), andimg(foldl (seq , z)) for the image offoldl (seq, z, L) for any listL.
That is,img(foldl (seq , z)) = {y | there is a listL such thatfoldl (seq , z, L) = y}.

Lemma 1. Calls toaggregate (z, seq,⊕, rdd) have deterministic outcomes iff:
1. (img(foldl (seq , z)),⊕, z) is a commutative monoid, and
2. for all listsp1, p2 :: [α], 〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉 .

Note that condition 2 in Lemma 1 is equivalent to saying that〈·〉 is a list homomor-
phism to the monoid(img(foldl (seq , z)),⊕, z) [6].

The lemma below further helps us reduce the need of testing conditions over all
possible pairs of lists to conditions over elements ofα× img(foldl (seq, z)).

Lemma 2. Let⊕ be associative onγ = img(foldl (seq, z)) andz be the identity of⊕
onγ. The following are equivalent:

1. for all listsp1, p2 :: [α],
〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉, (2)

2. for all elementsd :: α ande :: γ,
seq(e, d) = e⊕ seq(z, d). (3)

Summarizing the lemmas, we get the following corollary:

Corollary 1. Calls toaggregate (z, seq,⊕, rdd) have deterministic outcomes iff
1. (img(foldl (seq , z)),⊕, z) is a commutative monoid and
2. for all d :: α ande :: img(foldl (seq , z)), it holds thatseq(e, d) = e ⊕ seq(z, d).

4.2 reduce
This section explores conditions for deterministic outcomes of calls toreduce (⊕, rdd)
for ⊕ :: α × α → α and rdd :: RDD α. We use the functionreduce D defined in
the introduction of Section 4. Forreduce , we assume that for any non-empty list, all
partitions of its partitioning are non-empty (otherwise the result ofreduce is undefined).

We define deterministic outcomes forreduce as follows.

Definition 2. Calls to reduce (⊕, rdd) havedeterministic outcomesif
reduce D(⊕, part(L)) = reducel (⊕, L) (4)

for all lists L and partitioningspart .
We reduce the problem of checking ifreduce has deterministic outcomes to the

problem of checking ifaggregate has deterministic outcomes by the following lemma.
Lemma 3. Calls toreduce (⊕, rdd) have deterministic outcomes iff calls toaggregate (
Nothing , seq ′,⊕′, rdd) have deterministic outcomes, whereseq ′ and⊕′ are as follows:

seq’ x y = case x of
Nothing → Just y
Just x’→ Just (x’ ⊕ y)

(⊕’) x y = case (x, y) of (Nothing , y’)→ y’
(x’, Nothing)→ x’
(Just x’, Just y’)→ Just (x’ ⊕ y’) .

Combining Corollary 1 and Lemma 3, we get the condition for deterministic out-
comes ofreduce (⊕, rdd) calls.

Corollary 2. Calls toreduce (⊕, rdd) have deterministic outcomes iff(α,⊕) is a com-
mutative semigroup.

4.3 treeAggregate and treeReduce
This section gives conditions for deterministic outcomes of calls to the following two
aggregate combinators:

1. treeAggregate (z, seq,⊕, rdd) for z :: β, seq :: β × α → β, ⊕ :: β × β → β, and
rdd :: RDD α; and

2. treeReduce (⊕, rdd) for ⊕ :: α× α → α, rdd :: RDD α.

Different fromaggregate andreduce , the tree variants have another level of non-deter-
minism modeled byapply !. The chaotic function effectively simulates non-deterministic
computation with a binary-tree structure (Section 3).

To define calls totreeAggregate andtreeReduce to have deterministic outcomes,
we use the functionstreeAggregate T andtreeReduce T obtained by adding an explicit
deterministic instantiation ofapply ! to treeAggregate D andtreeReduce D.

Definition 3. Calls to treeAggregate (z, seq,⊕, rdd) and treeReduce (⊕, rdd) have
deterministic outcomesif

treeAggregate T(apply , z, seq,⊕, part(L)) = foldl (seq, z, L) (5)

and
treeReduce T(apply ,⊕, part(L)) = reducel (⊕, L) (6)

respectively for all listsL, partitioningspart , and instantiationsapply of apply !.

The following two propositions state necessary and sufficient conditions for the
treeAggregate andtreeReduce combinators to have deterministic outcomes.
Proposition 1. Calls totreeAggregate (z, seq,⊕, rdd) have deterministic outcomes iff
calls toaggregate (z, seq,⊕, rdd) have deterministic outcomes.

Proposition 2. Calls to treeReduce (⊕, rdd) have deterministic outcomes iff calls to
reduce (⊕, rdd) have deterministic outcomes.

4.4 aggregateByKey and reduceByKey

We proceed by investigating conditions for the following combinators on pair RDDs:

1. aggregateByKey (z, seq,⊕, prdd) for z :: γ, seq :: γ × β → γ, ⊕ :: γ × γ → γ,
andprdd :: PairRDD α β; and

2. reduceByKey (⊕, prdd) for ⊕ :: β × β → β andprdd :: PairRDD α β.

We define an auxiliary functionfilterkey that obtains a list of all values associated with
the given key from a list of pairs.

filterkey :: α→ [(α, β)]→ [β]
filterkey [] = []
filterkey k (k, v):xs = v:(filterkey k xs)
filterkey k (,):xs = filterkey k xs

Deterministic outcomes of calls toaggregateByKey are now defined using the function
aggregateByKey D as follows.

Definition 4. Calls toaggregateByKey (z, seq,⊕, prdd) havedeterministic outcomes
if

lookup (k, aggregateByKey D(z, seq,⊕, part(L))) = foldl (z, seq, filterkey (k, L))

for all lists L of pairs, partitioningspart , and keysk.

Finally, the following proposition states the conditions that need to hold for calls to
aggregateByKey to have deterministic outcomes.

Proposition 3. Calls toaggregateByKey (z, seq,⊕, prdd) have deterministic outcomes
iff calls to aggregate (z, seq,⊕, rdd) have deterministic outcomes.

We define when calls toreduceByKey have deterministic outcomes viareduceByKey D.

Definition 5. Calls to reduceByKey (⊕, prdd) havedeterministic outcomesif

lookup (k, reduceByKey D(⊕, part(L))) = reducel (⊕, filterkey (k, L))

for all list L of pairs, partitioningpart , and keyk.

Proposition 4. Calls to reduceByKey (⊕, prdd) have deterministic outcomes iff calls
to reduce (⊕, rdd) have deterministic outcomes.

4.5 Discussion

Our conditions for deterministic outcomes are more generalthan it appears. In addition
to scalar data, such as integers, they are also applicable toRDDs containing non-scalar
data, such as lists or sets. In our extended set of case studies, we will prove deterministic
outcomes from a distributed Spark program using non-scalardata (App. B).

Corollary 1 gives necessary and sufficient conditions for calls to aggregate to have
deterministic outcomes. Instead of checking whetheraggregate computes the same

result on all possible partitionings on any list for givenz, seq , andcomb, the corol-
lary, instead, allows us to investigate properties for all elements ofimg(foldl (seq , z))×
img(foldl (seq , z)) andα× img(foldl (seq, z)). Our precise conditions reduce the need
of checking all partitionings to checking all elements of Cartesian products. It appears
that deterministic outcomes from calls to combinators can be verified automatically.
The problem, however, remains difficult for the following reasons:

(a) The domainimg(foldl (seq , z)) can be infinite and in general not computable.
(b) Even if α and img(foldl (seq , z)) are computable,seq and⊕ may not be com-

putable. Naı̈vely enumerating elements inα andimg(foldl (seq , z))would not work.
(c) Testing equality between elements ofimg(foldl (seq , z)) can be undecidable.

Given seq :: β × α → β, recall thatimg(foldl (seq , z)) is a subset ofβ. A sound but
incomplete way to avoid (a) in practice is to test the properties of⊕ on all elements ofβ
instead. If a counterexample is found for some elements ofβ, the counterexample may
not be valid in a realaggregate call because it may not belong toimg(foldl (seq, z)).
In practical cases, the setsα andβ are finite (such as machine integers) and equal-
ity between their elements is decidable. Even for such cases, checking if outcomes of
aggregate are deterministic is still difficult sinceseq and⊕ might not terminate for
some input. In many real Spark programs, however,seq and⊕ are very simple and thus
computable (for instance, with only bounded loops or recursion). A semi-procedure to
test these conditions might work on such practical examples.

5 Case Studies

We evaluated advantages of our PURESPARK specification on several case studies. In
this section, we first analyze a Spark implementation of linear classification. Using the
treeAggregate specification and its criteria for deterministic outcomes,we construct
inputs yielding non-deterministic outcomes from the Sparkimplementation. Second, we
analyze an implementation of a standard scaler and find a non-deterministic behavior
there, too. Yet more case studies are provided in App. B.

5.1 Linear Classification
Linear classification is a well-known machine learning technique to classify data sets.
Fix a set offeatures. A data pointis a vector of numerical feature values. Alabeleddata
point is a data point with a discrete label. Given a labeled data set, theclassification
problemis to classify (new) unlabeled data points by the labeled data set. A particularly
useful subproblem is thebinaryclassification problem. Consider, for instance, a data set
of vital signs of some population; each data point is labeledby the diagnosis of a disease
(positive or negative). The binary classification problem can be used to predict whether
a person has the particular disease. Linear classification solves the binary classification
problem by finding an optimal hyperplane to divide the labeled data points. After a
hyperplane is obtained, linear classification predicts an unlabeled data point by the half-
space containing the point. Logistic regression and linearSupport Vector Machines
(SVMs) are linear classification algorithms.

Consider a data set{(#‰x i, yi) : 1 ≤ i ≤ n} of data points#‰x i ∈ R
d labeled by

yi ∈ {0, 1}. Linear classification can be expressed as a numerical optimization problem:

min
#‰w∈Rd

f(#‰w) with f(#‰w) = ξR(#‰w) +
1

n

n
∑

i=1

L(#‰w; #‰x i, yi)

whereξ ≥ 0 is a regularization parameter, R(#‰w) is a regularizer, andL(#‰w; #‰x i, yi) is
a loss function. A vector #‰w corresponds to a hyperplane in the data point space. The
vector #‰wopt attaining the optimum hence classifies unlabeled data points with criteria
defined by the objective functionf(#‰w). Logistic regression and linear SVM are but
two instances of the optimization problem with objective functions defined by different
regularizers and loss functions.

In the Spark machine learning library, the numerical optimization problem is solved
by gradient descent. Very roughly, gradient descent finds a local minimum off(#‰w) by
“walking” in the opposite direction of the gradient off(#‰w). The mean of subgradients
at data points is needed to compute the gradient off(#‰w). The Spark machine learning
library invokestreeAggregate to compute the mean. Floating-point addition is used as
the comb parameter of the aggregate combinator. Since floating-point addition is not
associative, we expect to observe non-deterministic outcomes (Proposition 1).

Consider the following three labeled data points:−1020 labeled with1, 600 labeled
with 0, and1020 labeled with1. We create a 20-partition RDD with an equal number of
the three labeled data points. The Spark machine learning library functionLogisticRe-
gressionWithSGD.train is used to generate a logistic regression model to predict the data
points−1020, 600, and1020 in each run. Among 49 runs, 19 of them classify the three
data points into two different classes: the two positive data points are always classified
in the same class, while the negative data point in the other.The other 30 runs, how-
ever, classify all three data points into the same class. We observe similar predictions
from SVMWithSGD.train with the same labeled data points. 37 out of 46 runs classify
the data points into two different classes; the other 9 runs classify them into one class.
Interestingly, the data points are always classified into two different classes by both lo-
gistic regression and linear SVM when the input RDD has only three partitions. As we
expected from our analysis of the function, non-deterministic outcomes were witnessed
in our Spark distributed environment.

5.2 Standard Scaler
Standardization of data sets is a common pre-processing step in machine learning. Many
machine learning algorithms tend to perform better when thetraining set is similar to
the standard normal distribution. In the Spark machine learning library, the classStan-
dardScaler is provided to standardize data sets. The functionStandardScaler.fit takes
an RDD of raw data and returns an instance ofStandardScalerModel to transform data
points. Two transformations are available inStandardScalerModel. One standardizes
a data point by mean, and the other normalizes by variance of raw data. If data points
in raw data are transformed by mean, the transformed data points have the mean equal
to 0. Similarly, if they are transformed by variance, the transformed data points have
the variance1.

TheStandardScaler implementation usestreeAggregate to compute statistical in-
formation. It uses floating-point addition to combine meansof raw data in different
partitions. As in the previous use case, since floating-point addition is not associative,
StandardScaler does not produce deterministic outcomes (Section 4.3). In our experi-
ment, we create a 100-partition RDD with values−1020, 600, 1020 of the same number

of occurrences. The mean of the data set is(−1020×n+600×n+1020×n)/(3n) = 200
wheren is the number of occurrences of each value. The data point200 should there-
fore be after standardization transformed to0. In 50 runs on the same data set in our
distributed Spark platform,StandardScaler transforms200 to a range of values from
−944 to 1142, validating our prediction of a non-deterministic outcome.

6 Related Work

MapReduce modeling and optimization.In the MapReduce (MR) computation, var-
ious cost and performance models have been proposed [26,17,15,32]. These models
estimate the execution time and resource requirements of MRjobs. Karloff et al. devel-
oped a formal computation model for MR [20] and showed how a variety of algorithms
can exploit the combination of sequential and parallel computation in MR. We are not
aware of a similar work in the context of Spark. To the best of our knowledge, our work
is the first to address the problem of formal, functional specification of Spark aggrega-
tion. Verifying the correctness of a MR program involves checking the commutativity
and associativity of the reduce function. Xu et al. propose various semantic criteria
to model commonly held assumptions on MR programs [29], including determinism,
partition isolation, commutativity, and associativity ofmap/reduce combinators. Their
empirical survey shows that these criteria are often overlooked by programmers and
violated in practice. A recent survey [28] has found that a large number of industrial
MR programs are, in fact, non-commutative. Recent work has proposed techniques for
checking commutativity of bounded reducers automatically[12]. Because it is non-
trivial to implement high-level algorithms using the MR framework, various approaches
to compute optimized MR implementations have been proposed[16,23,25]. Emoto et
al. [16] formalize the algebraic conditions using semiringhomomorphism, under which
an efficient program based on the generate-test-aggregate programming model can be
specified in the MR framework. Given a monolithicreducefunction, the work in [23]
tries to decomposereduceinto partial aggregation functions (similar toseqandcomb
in this paper) using program inversion techniques. MOLD [25] translates imperative
Java code into MR code by transforming imperative loops intofold combinators using
semantic-preserving program rewrite rules.
Numerical Stability under MapReduce.Several works try to scale up machine learn-
ing algorithms for large datasets using MapReduce [13,26].To achieve numerically
stable results across multiple runs [5,27], for example, preventing overflow, underflow
and round-off errors due to finite-precision arithmetic, a variety of techniques are pro-
posed [27]: generalizing sequential numerical stability techniques to distributed set-
tings, shifting data values by constants, divide-and-conquer, etc. We showed that sim-
ulating machine learning algorithms using our specification enables early detection of
points of numerical instability.
Relational Query Optimization. Relational query optimization is an extensively re-
searched topic [11,19]: the goal is to obtain equivalent butmore efficient query expres-
sions by exploiting the algebraic properties of the constituent operators, for instance,
join, select, together with statistics on relations and indices. For example, while inner
joins commute independent of data, left joins commute only in specific cases. Query
optimization for partitioned tables has received less attention [18,2]: because the key
relational operators are not partition-aware, most work has focused on necessary but
not sufficient conditions for query equivalence. In contrast, we investigate determinism

of Spark aggregate expressions, constructed using partition-awareseqandcombcombi-
nators. We describe necessary and sufficient conditions under which these computations
yield deterministic results independent of the data partitions.
Deterministic Parallel Programming. In order to enable deterministic-by-default par-
allel programming [7,10,8,9,21], researchers have developed several programming ab-
stractions and logical specification languages to ensure that programs produce the same
output for the same input independent of thread scheduling.For example, Determinis-
tic Parallel Java [7,8] ensures exclusive writes to shared memory regions by means of
verified, user-provided annotations over memory regions. In contrast, deterministic out-
comes from Spark aggregation depend on algebraic properties like commutativity and
associativity ofseqandcombfunctions and their interplay

7 Conclusion
In this paper, we give a Haskell specification for various Spark aggregate combinators.
We focus on aggregation of RDDs representing general sets, sets of pairs, and graphs.
Based on our specification, we derive necessary and sufficient conditions that guarantee
deterministic outcomes of the considered Spark aggregate combinators. We investigate
several case studies and use the conditions to predict non-deterministic outcomes. Our
executable specification can be used by developers for more detailed analysis and effi-
cient development of distributed Spark programs. We also believe that our specifications
are valuable resources for research communities to understand Spark better.

There are several future directions. The conditions for deterministic outcomes of
aggregate combinators could be used for: (i) creating fullymechanized proofs for prop-
erties about data-parallel programs; (ii) developing automatic techniques for detect-
ing non-deterministic outcomes of data-parallel programs; and (iii) synthesizing deter-
ministic concurrent programs from sequential specifications. We have formalized the
proofs of some crucial lemmas in Agda [4]. Using Scalaz [3], verified Haskell specifi-
cations can be translated to Spark programs to ensure determinism by construction.

Acknowledgement.This work was supported by the Czech Science Foundation (project
17-12465S), the BUT FIT project FIT-S-17-4014, the IT4IXS:IT4Innovations Excel-
lence in Science project (LQ1602), and Ministry of Science and Technology, R.O.C.
(MOST projects 103-2221-E-001-019-MY3 and 103-2221-E-001-020-MY3).

References

1. Apache Spark,https://github.com/apache/spark
2. IBM DB2 Version 9.7. Partitioned Tables,https://ibm.biz/BdHyYR
3. The Scalaz project,https://github.com/scalaz
4. PURESPARK,https://github.com/guluchen/purespark
5. Bennett, J., Grout, R., Pebay, P., Roe, D., Thompson, D.: Numerically stable, single-pass,

parallel statistics algorithms. In: CLUSTER. pp. 1–8 (2009)
6. Bird, R.S.: An introduction to the theory of lists. In: theNATO Advanced Study Institute on

Logic of programming and calculi of discrete design. pp. 5–42. Springer (1987)
7. Bocchino, Jr., R.L., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli, R., Overbey,

J., Simmons, P., Sung, H., Vakilian, M.: A type and effect system for deterministic parallel
Java. In: OOPSLA. pp. 97–116 (2009)

8. Bocchino, Jr., R.L., Heumann, S., Honarmand, N., Adve, S.V., Adve, V.S., Welc, A., Shpeis-
man, T.: Safe nondeterminism in a deterministic-by-default parallel language. SIGPLAN
Not. 46(1), 535–548 (2011)

https://github.com/apache/spark
https://ibm.biz/BdHyYR
https://github.com/scalaz
https://github.com/guluchen/purespark

9. Budimlic, Z., Burke, M.G., Cavé, V., Knobe, K., Lowney, G., Newton, R., Palsberg, J.,
Peixotto, D.M., Sarkar, V., Schlimbach, F., Tasirlar, S.: Concurrent collections. Scientific
Programming 18(3-4), 203–217 (2010)

10. Burnim, J., Sen, K.: Asserting and checking determinismfor multithreaded programs. Com-
mun. ACM 53(6), 97–105 (2010)

11. Chaudhuri, S.: An overview of query optimization in relational systems. PODS ’98 (1998)
12. Chen, Y., Hong, C., Sinha, N., Wang, B.: Commutativity ofreducers. In: Proc. of TACAS’15.

pp. 131–146. LNCS, Springer (2015)
13. Chu, C., Kim, S.K., Lin, Y., Yu, Y., Bradski, G.R., Ng, A.Y., Olukotun, K.: Map-Reduce for

machine learning on multicore. In: NIPS. pp. 281–288 (2006)
14. Dean, J., Ghemawat, S.: MapReduce: A flexible data processing tool. Commun. ACM 53(1),

72–77 (2010)
15. Dörre, J., Apel, S., Lengauer, C.: Modeling and optimizing MapReduce programs. Concur-

rency and Computation: Practice and Experience 27(7), 1734–1766 (2015)
16. Emoto, K., Fischer, S., Hu, Z.: Generate, test, and aggregate: A calculation-based framework

for systematic parallel programming with MapReduce. In: ESOP. pp. 254–273 (2012)
17. Herodotou, H., Babu, S.: Profiling, what-if analysis, and cost-based optimization of MapRe-

duce programs. Proceedings of the VLDB Endowment 4(11), 1111–1122 (2011)
18. Herodotou, H., Borisov, N., Babu, S.: Query optimization techniques for partitioned tables.

pp. 49–60. SIGMOD ’11
19. Ioannidis, Y.E.: Query optimization. ACM Comput. Surv.28(1), 121–123 (1996)
20. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In: SODA.

pp. 938–948 (2010)
21. Leijen, D., Fähndrich, M., Burckhardt, S.: Prettier concurrency: Purely functional concurrent

revisions. In: Haskell. pp. 83–94 (2011)
22. Leith, D., Clifford, P.: Convergence of distributed learning algorithms for optimal wireless

channel allocation. In: IEEE Conference on Decision and Control. pp. 2980–2985 (2006)
23. Liu, C., Zhang, J., Zhou, H., McDirmid, S., Guo, Z., Moscibroda, T.: Automating distributed

partial aggregation. In: SoCC. pp. 1:1–1:12 (2014)
24. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.:

Pregel: A system for large-scale graph processing. In: ACM SIGMOD. pp. 135–146 (2010)
25. Radoi, C., Fink, S.J., Rabbah, R.M., Sridharan, M.: Translating imperative code to MapRe-

duce. In: OOPSLA. pp. 909–927 (2014)
26. Sakr, S., Liu, A., Fayoumi, A.G.: The family of MapReduceand large-scale data processing

systems. ACM Comput. Surv. 46(1), 11:1–11:44 (2013)
27. Tian, Y., Tatikonda, S., Reinwald, B.: Scalable and numerically stable descriptive statistics

in SystemML. In: ICDE. pp. 1351–1359 (2012)
28. Xiao, T., Zhang, J., Zhou, H., Guo, Z., McDirmid, S., Lin,W., Chen, W., Zhou, L.: Nonde-

terminism in MapReduce considered harmful? an empirical study on non-commutative ag-
gregators in MapReduce programs. In: Companion Proceedings of ICSE. pp. 44–53 (2014)

29. Xu, Z., Hirzel, M., Rothermel, G.: Semantic characterization of MapReduce workloads. In:
IISWC. pp. 87–97 (2013)

30. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M.J.,
Shenker, S., Stoica, I.: Resilient distributed datasets: Afault-tolerant abstraction for in-
memory cluster computing. In: NSDI. pp. 15–28 (2012)

31. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J.,
Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache
Spark: A unified engine for big data processing. Commun. ACM 59(11), 56–65 (Oct 2016)

32. Zhang, Z., Cherkasova, L., Verma, A., Loo, B.T.: Performance modeling and optimization
of deadline-driven Pig programs. ACM Trans. Auton. Adapt. Syst. 8(3), 14:1–14:28 (2013)

A Graph RDDs

Using RDDs, Spark provides a framework to analyze graphs distributively. In the Spark
GraphX library, each vertex in a graph is designated by aVertexId, and associated with
a vertex attribute. Each edge on the other hand is represented by VertexIds of its source
and destination vertices. An edge is also associated with anedge attribute.
type VertexId = Int
type VertexRDD α = PairRDD VertexId α

type EdgeRDD β = RDD (VertexId, VertexId, β)
data GraphRDD α β = Graph { vertexRdd :: VertexRDD α, edgeRdd :: EdgeRDD β }

Let graphRdd be a graph RDD. Its vertex RDD(vertexRdd graphRdd) contains pairs
of vertex identifiers and attributes. Different from conventional pair RDDs, each vertex
identifier can appear at most once in the vertex RDD since a vertex is associated with
exactly one attribute. If, for instance, two pairs with the same vertex identifier are gen-
erated during computation, their associated attributes must be merged to obtain a valid
vertex RDD. The edge RDD(edgeRdd graphRdd) consists of triples of source and des-
tination vertex identifiers, and edge attributes. Multi-edged directed graphs are allowed.
In a graph RDD, the vertex and edge RDDs need to be consistent.That is, the source
and destination vertex identifiers of any edge from the edge RDD must appear in the
vertex RDD of the graph RDD.

The Spark GraphX library provides aggregate combinators for graph RDDs. We be-
gin with an informal description of a slightly more generalaggregateMessagesWith-
ActiveSet combinator (Algorithm 1). The combinator takes functionssendMsg and
mergeMsg, and a listactive of vertices as its parameters. The listactive determinesac-
tiveedges, that is, edges with source or destination vertex identifiers inactive. For each
active edge, the functionaggregateMessagesWithActiveSet invokessendMsg to send
messages to its vertices. Messages sent to each vertex are merged bymergeMsg. Since
a vertex is associated with at most one message after merging, the result is a valid vertex
RDD.

foreach active edgee do
call sendMsg one to send messages to vertices ofe;

end
foreach vertexv receiving messagesdo

call mergeMsg to merge all messages sent tov;
end
return a vertex RDD with merged messages;

Algorithm 1: aggregateMessagesWithActiveSet
Formally, the functionsendMsg accepts source and destination vertex identifiers,

attributes of the vertices, and the edge attribute of an edgeas inputs. It sends messages
to the source or destination vertex, both, or none. In our specification,lookup is used to
obtain vertex attributes from a vertex RDD. We generate a pair RDD of vertex identifiers
and messages by invokingsendMsg on every active edge. The messages associated with
the same vertex are then merged by applyingreduceByKey on the pair RDD. The re-
sultant vertex RDD contains merged messages as vertex attributes. We call it amessage
RDD for clarity. Note that if a vertex from the input graph RDDdoes not receive any
message, it is not present in the output message RDD. The combinatoraggregateMes-
sages in the Spark GraphX library is defined byaggregateMessagesWithActiveSet .

It invokesaggregateMessagesWithActiveSet by passing the list of all vertex identi-
fiers as theactive list. The combinator effectively appliessendMsg to every edge in a
graph RDD.

aggregateMessagesWithActiveSet ::
(VertexId→ α→ VertexId→ α→ β → [(VertexId, γ)])
→ (γ → γ → γ)→ [VertexId]→ GraphRDD α β → VertexRDD γ

aggregateMessagesWithActiveSet sendMsg mergeMsg active graphRdd =
let isActive (srcId, dstId,) = srcId ‘elem ‘ active || dstId ‘elem ‘ active

vAttrs = concat (vertexRdd graphRdd)
f edge = if isActive edge then

let (srcId, dstId, edgeAttr) = edge
srcAttr = fromJust (lookup srcId vAttrs)
dstAttr = fromJust (lookup dstId vAttrs)

in sendMsg srcId srcAttr dstId dstAttr edgeAttr
else []

pairRdd = map (concatMap f) (edgeRdd graphRdd)
in reduceByKey mergeMsg pairRdd

aggregateMessages :: (VertexId→ α→ VertexId→ α→ β → [(VertexId, γ)])
→ (γ → γ → γ)→ GraphRDD α β → VertexRDD γ

aggregateMessages sendMsg mergeMsg graphRdd =
let vertices = concatMap (map fst) (vertexRdd graphRdd)
in aggregateMessagesWithActiveSet sendMsg mergeMsg vertices graphRdd

Many graph algorithms perform fixed point computation. The Spark GraphX library
hence provides a Pregel-like function to applyaggregateMessages on a graph RDD
repetitively [24]. The Sparkpregel function takes four input parametersinitMsg, vprog,
sendMsg, andmergeMsg (Algorithm 2). At initialization, it updates vertex attributes of
the graph RDD by invokingvprog with the initial messageinitMsg. Thepregel function
then callsaggregateMessages to obtain a message RDD. If a vertex receives a mes-
sage, its attribute is updated byvprog with the message. After updating vertex attributes,
pregel obtains a new message RDD by invokingaggregateMessagesWithActiveSet
with the active list equal to message-receiving vertices. Subsequently, only edges con-
necting to such vertices can send new messages.

foreach vertexv in G do
call vprog on v with initMsg to obtain its initial vertex attribute;

end
msgRdd← call aggregateMessages on G;
while msgRdd is not emptydo

foreach vertexv with messagem in msgRdddo
call vprog on v with m to update its vertex attribute on G;

end
msgRdd← call aggregateMessagesWithActiveSet with active equal to the
vertices in msgRdd;

end
return G;

Algorithm 2: pregel

We use several auxiliary functions to specify the Sparkpregel function. Given a
function computing an attribute from a vertex identifier andan attribute, the auxil-
iary function mapVertexRDD applies the function to every vertex in a vertex RDD
and obtains another vertex RDD with new attributes. ThemapVertexRDD function is
used inmapVertices to update vertex attributes in graph RDDs. Moreover, recallthat
aggregateMessagesWithActiveSet returns a message RDD. The auxiliary function
joinGraph updates a graph RDD with messages in a message RDD. For each vertex
in the graph RDD, its attribute is joined with the message in the message RDD. If
there is no message, the vertex attribute is left unchanged.Thepregel function sets up
the initial graph RDD bymapVertices . It then computes the initial message RDD by
aggregateMessages . In each iteration, a new graph RDD is obtained by joining the
graph RDD with a message RDD.aggregateMessagesWithActiveSet is then invoked
to compute a new message RDD for the next iteration. Thepregel function terminates
when no more message is sent.

mapVertexRDD :: (VertexId→ α→ β)→ VertexRDD α→ VertexRDD β

mapVertexRDD f vRdd = map (map (λ(i, attr)→ (i, f i attr))) vRdd

mapVertices :: (VertexId→ α→ γ)→ GraphRDD α β → GraphRDD γ β

mapVertices updater gRdd = Graph {
vertexRdd = mapVertexRDD updater (vertexRdd gRdd),
edgeRdd = edgeRdd gRdd }

joinGraph :: (VertexId→ α→ γ → α)→ GraphRDD α β

→ VertexRDD γ → GraphRDD α β

joinGraph joiner gRdd msgRdd = let assoc = concat msgRdd
updt i attr = case lookup i assoc of Just v→ joiner i attr v

Nothing → attr
in mapVertices updt gRdd

pregel :: γ → (VertexId→ α→ γ → α)→
(VertexId→ α→ VertexId→ α→ β → [(VertexId, γ)])
→ (γ → γ → γ)→ GraphRDD α β → GraphRDD α β

pregel initMsg vprog sendMsg mergeMsg graphRdd =
let initG = let init f i attr = vprog i attr initMsg

in mapVertices init f graphRdd
initMsgRdd = aggregateMessages sendMsg mergeMsg initG
loop curG [] = curG
loop curG msgRdd = let newG = joinGraph vprog curG msgRdd

active = concatMap (map fst) msgRdd
msgRdd’ = aggregateMessagesWithActiveSet

sendMsg mergeMsg active newG
in loop newG msgRdd’

in loop initG initMsgRdd

A.1 Deterministic Aggregation in Graph Rdds

In this section, we explore necessary and sufficient conditions for aggregation in graph
RDDs. In particular, we investigate deterministic outcomes of calls to the function

aggregateMessages (send ,⊕, graphRdd) for send :: VertexID × α × VertexID ×
α × β → [(VertexID , γ)], ⊕ :: γ × γ → γ, andgraphRdd :: GraphRDD α β. We
define deterministic outcomes first.

Definition 6. Calls to the functionaggregateMessages (send,⊕,graphRdd) havede-
terministic outcomesif for any two graph RDD representations of the same graph

graphRdd1, graphRdd2 :: GraphRDD α β,

we have for all vertex identifiersv :: VertexID,

lookup (v, aggregateMessages (send ,⊕, graphRdd1)) =

lookup (v, aggregateMessages (send ,⊕, graphRdd2)).

The following proposition gives a sufficient condition foraggregateMessages to
have deterministic outcomes.

Proposition 5. It holds that if calls to the functionreduceByKey (⊕, rdd) have deter-
ministic outcomes, then calls to the functionaggregateMessages (send ,⊕, graphRdd)
also have deterministic outcomes.

B Extended Set of Case Studies

This section of the appendix gives yet more case studies thatwe explored when analyz-
ing Spark’s machine learning and graph libraries.

B.1 Vertex Coloring

Let Γ = {1, ..., k} denote the set ofk colors. Given an undirected graphG = (V,E),
a k-coloring of G is a mapC : V → Γ such thatC(v) 6= C(u) for any{v, u} ∈ E.
In this case study, we will implement the Communication-Free Learning (CFL) algo-
rithm [22] to find ak-coloring using the Spark GraphX library. Let0 < β < 1. The
algorithm computes ak-coloring by iterations. We say a vertexv is inactiveif all ver-
tices adjacent tov have colors different from the color ofv. Otherwise,v is active.
At then-th iteration, the CFL algorithm randomly chooses a colorCn(v) ∈ Γ by the
color distributionPn(v, •) of v. The color distributionPn(v, •) is defined as follows.
Forn = 0, P0(v, c) = 1/k for all v ∈ V andc ∈ Γ . Each vertex hence chooses one of
thek colors uniformly at random. Forn > 0, let c = Cn−1(v) be the color ofv in the
previous iteration.

– If v is inactive, definePn(v, c) = 1 andPn(v, d) = 0 for d 6= c. Thusv does not
change its color.

– Otherwise, define

Pn(v, d) =

{

(1 − β) · Pn−1(v, c) if d = c

(1 − β) · Pn−1(v, d) + β/(k − 1) if d 6= c

Thusv is more likely to choose a color different fromc.

Observe thatCn stabilizes if and only if it is ak-coloring.
We implement the CFL algorithm usingpregel in PURESPARK. For each vertexv,

its attribute consists of the vertex colorCn(v), the color distributionPn(v, •), the vertex
state (active or not), and a random number generator. As in Section B.3, an edge(u, v,
) with u ≥ v in an edge RDD represents{u, v} ∈ E. Given a graph RDDgraphRdd,

we construct its base graphbaseG with initial vertex attributes.

initDist = map (λ → 1.0 / fromIntegral k) [1..k]

baseG = mapVertices (λi → let (c, g) = randomR (1, k) (mkStdGen i)
in (c, initDist, True , g)) graphRdd

whereinitDist is the uniform distribution overk colors.
Consider the followingsendMsg function:

sendMsg srcId (srcColor, , srcActive,) dstId (dstColor, , dstActive,) =
if srcColor == dstColor then [(srcId, True), (dstId, True)]
else (if srcActive then [(srcId, False)] else []) ++

(if dstActive then [(dstId, False)] else [])
mergeMsg msg1 msg2 = msg1 || msg2

If the source and destination vertices of an edge have the same color,sendMsg
sendsTrue to both vertices to update vertex attributes. If they have different colors and
the source vertex is active,False is sent to the source vertex. Similarly,False is sent to
the destination vertex if the vertex is active.mergeMsg is the disjunction of messages.
After applyingaggregateMessagesWithActiveSet with sendMsg and mergeMsg, a
vertex may receive a Boolean message. If a vertex receivesTrue , it becomes active
since one of its neighbors has the same color. Otherwise, thevertex becomes inactive.

We usevprog to update vertex attributes. For each vertex receiving a message, its
vertex state, color, and color distribution are updated according to the CFL algorithm.
The auxiliary functionsampleColor chooses a color randomly by the color distribu-
tion. Thehelper function invprog computes the color distributionPn(v, •) for the next
iteration.

sampleColor dist p = let f (color, mass) weight =
(if m < p then succ color else color, m)

where m = mass + weight
in fst (foldl f (1, 0.0) dist)

vprog (c, dist, , g) active = let helper (i, res) weight =
let decay = weight ∗ (1 − beta)

d = decay + (if c == i then 0 else beta / fromIntegral (numColors−1))
e = if c == i then 1.0 else 0.0

in (succ i, if active then res ++ [d] else res ++ [e])
dist’ = snd (foldl helper (1, []) dist)
(p, g’) = random g
c’ = if active then sampleColor dist’ p else c

in (c’, dist’, active, g’)

Finally, we invokepregel to compute ak-coloring:

coloring = pregel True vprog sendMsg mergeMsg baseG

We test our executable Haskell specification on a typical Linux server. Since our Spark
specification PURESPARK is faithful to Spark APIs, we realize it in the GraphX library
with little manual effort. Our implementation works as intended on the distributed Spark
platform.

B.2 Connected Components

The Spark GraphX library implements a connected component algorithm for direct
graphs. The documentation however does not explain what connected components are
in directed graphs. We will find out what the implementation does here. Consider the
following PURESPARK specification extracted from the Spark implementation:

connectedComponent graphRdd =
let baseG = mapVertices (λi → i) graphRdd

initMsg = maxBound :: Int
sendMsg src srcA dst dstA =

if srcA < dstA then [(dst, srcA)]
else if dstA < srcA then [(src, dstA)]
else []

vprog attr msg = min attr msg
in pregel initMsg vprog sendMsg min baseG

Given a graph RDDgraphRdd, its base graphbaseG is obtained by setting the attribute
of a vertex to the identifier of the vertex.sendMsg compares the attributes of the source
and destination vertices of an edge. The smaller attribute is sent to the vertex with the
larger attribute. If both attributes are equal, no message is sent. If a number of messages
are sent to a vertex, only the minimal message remains after applying aggregateMes-
sagesWithActiveSet with sendMsg andmin . When a vertex receives a message, its
attribute is set to the minimum of its attribute and the message.

Consider a graphG = (V,E) with E ⊆ V × V . We useattr(v) for the attribute
of the vertexv ∈ V . Two verticesu andv arelinked if (u, v) ∈ E or (v, u) ∈ E. Us-
ing our specification ofpregel , it is not hard to see that the PURESPARK specification
implements Algorithm 3. Note that the two for-each loops essentially propagate mini-
mal attributes to linked vertices. When the setactive is empty, the attributes of every
linked vertices are equal and the algorithm terminates. We say two verticesu andv are
connectedif there arew0 = u,w1, . . . , wk = v such thatwi andwi+1 are linked for
0 ≤ i < k. WhenconnectedComponent terminates, connected vertices have the same
attribute equal to the minimal vertex identifier among them.Hence the Spark implemen-
tation returns a graph RDD whose vertex attributes are the minimal vertex identifiers of
connected vertices.

One can informally reason that the PURESPARK connected component specification
has deterministic outcomes. Note that(VertexId, min) is a commutative semigroup. This
allows us to derive a similar proposition foraggregateMessagesWithActiveSet . The
calls toaggregateMessages andaggregateMessagesWithActiveSet in pregel there-
fore have deterministic outcomes (Proposition 5). Examining thevprog in our connected
component specification, the functionsmapVertices andjoinGraph also have determi-
nistic outcomes. All potential sources of non-determinismin pregel have deterministic

attr (v)← the vertix identifier ofv;
active ← V ;
while active 6= ∅ do

active
′← ∅;

foreachv ∈ active do
if attr (u) < attr (v) for someu linked withv then

sendattr(u) to v and addv to active
′

if attr (v) < attr (u) for someu linked withv then
sendattr(v) to u and addu to active

′

end
foreachv ∈ active

′ do
attr (v)← the minimal attribute sent tov

end
active ← active

′;
end

Algorithm 3: connectedComponents

outcomes. The connected component specification consequently has deterministic out-
comes. Experiments in a distributed Spark environment confirm our reasoning.

B.3 Triangle Count

LetG = (V,E) be an undirected graph without self-loops or multiple edges. Foru, v ∈
V , {u, v} ∈ E denotes thatu andv are adjacent. Atriangle in G is formed byu, v, w ∈
V such that{u, v}, {u,w}, {v, w} ∈ E. Counting the number of triangles is important
to, for example, network analysis. The Spark GraphX libraryimplements the triangle
counting algorithm usingaggregateMessages .

In the GraphX implementation, an undirected graph is represented by a graph RDD
where the source vertex identifier of every edge is greater than its destination vertex
identifier. An edge{u, v} ∈ E with u > v is thus represented by(u, v,) in an edge
RDD. Below is the PURESPARK specification extracted from the Spark GraphX imple-
mentation.
sendMsg src dst = [(dst, singleton src), (src, singleton dst)]
adjacentVRdd = aggregateMessages sendMsg (union) graphRdd

newGRdd = let adjacents = concat adjacentVRdd
updt v = case lookup v adjacents of

Just adj→ delete v adj
Nothing → empty

in mapVertices updt graphRdd

sendMsg2 src srcA dst dstA =
let num = size (intersection srcA dstA)
in [(dst, num),(src,num)]

sumTriangles = aggregateMessages sendMsg2 (+) newGRdd

triangleCount = mapVertexRDD (λ y→ quot y 2) sumTriangles

For each edge{u, v} ∈ E, sendMsg sends{u} and{v} to verticesv andu re-
spectively. Multiple messages to a vertex are merged by union. After applyingaggre-
gateMessages with sendMsg andunion , adjacentVRdd is a vertex RDD where the
attribute of the vertexv is {u : {u, v} ∈ E}.

The implementation updates vertex attributes of the input graph to obtainnewGRdd.
If the setA of vertices adjacent tov is not empty, the attribute ofv is updated toA\{v}.
If v does not have any adjacent vertices, its attribute is set to the empty set. Hence the
attribute of a vertex innewGRdd contains its adjacent vertices but not itself. Recall that
we assume the input graph does not have self-loops. A vertex cannot be adjacent to
itself. Removing a vertex from the set of its adjacent vertices is redundant.

For each edge{u, v} ∈ E in newGRdd, sendMsg2 sends the message|U ∩ V | to u
andv whereU andV are the sets of vertices adjacent tou andv respectively. Observe
that for everyw ∈ U ∩ V , we have{w, u}, {w, v}, {u, v} ∈ E. Let △{u,v} denote
the number of triangles containing the edge{u, v}. △{u,v} is sent to bothu andv.
Messages are moreover merged by summation. Hence the attribute of each vertexv in
sumTriangles is

∑

{u,v}∈E △{u,v}.
Now consider a vertexv in a triangle ofu, v, w. The triangle is counted in both

△{u,v} and△{w,v}. Since a triangle is always counted twice, the attribute given as
1

2

∑

{u,v}∈E △{u,v} of vertexv in triangleCount is the the number of triangles con-
tainingv. Both calls toaggregateMessages have deterministic outcomes because the
algebras(Set, (union)) and (Int, (+)) are commutative semigroups (Propositions 4, 5,
and Corollary 2).

B.4 In-Degrees

The Spark GraphX library implements several graph algorithms using aggregation. We
show how our specification helps to understand and analyze Spark programs utilizing
aggregate combinators.

Let G = (V,E) with E ⊆ V × V be a directed graph. We define thein-degree
of a vertexv ∈ V as |{(u, v) : (u, v) ∈ E}|. The GraphX library uses the function
aggregateMessages to compute in-degrees of vertices in a graph RDD. Consider the
following PURESPARK specification for the GraphX implementation:

inDegrees graphRdd =
let sendMsg dst = [(dst, 1)]
in aggregateMessages sendMsg (+) graphRdd

By our specification,aggregateMessages invokessendMsg on every edge ingraphRdd.
ThesendMsg function sends the message1 to the destination vertex of an edge. If sev-
eral messages are sent to a vertex, they are summed up. HenceinDegree returns a vertex
RDD where each vertex has the number of its incoming edges as the attribute. They are
in-degrees of vertices ingraphRdd. The call toaggregateMessages has a determi-
nistic outcome because(Int , (+)) is a commutative semigroup (Propositions 4, 5, and
Corollary 2).

C Missing Proofs

We start with proving the following auxiliary lemma.

Lemma 4.
foldl (f, z, p1 ++ p2) = foldl (f, foldl (f, z, p1), p2) (7)

Proof. By induction on the length ofp1.

– for p1 = []:

foldl (f, foldl (f, z, []), p2) = foldl (f, z, p2) (def. of foldl)

= foldl (f, z, [] ++ p2) (def. of++)

– suppose the lemma holds for allp1 of lengthn. Now consider the listx : p1. It follows that

foldl (f, z, x : p1 ++ p2) = foldl (f, f(z, x), p1 ++ p2) (def. of foldl)

= foldl (f, foldl (f, f(z, x), p1), p2) (IH)

= foldl (f, foldl (f, z, x : p1), p2) (def. of foldl) ⊓⊔

In the following we use the following function:

aggregateList part z seq comb xs = aggregate D z seq comb (part xs)

Lemma 5. The following are necessary (though not sufficient) conditions for a callaggregate (z, seq,⊕, part(L)) to be determi-
nistic:

1. z is the identity of⊕ onγ = img(foldl (seq , z)),
2. ⊕ is closed onγ,
3. ⊕ is commutative onγ, and
4. ⊕ is associative onγ.

Proof. 1. We assume thataggregate (z, seq,⊕, part(L)) is deterministic and show thatz is both the left and the right identity of
⊕ onγ. First, assume the following partitioning:part1(L) = [L]. From the assumption that theaggregate is deterministic, it
follows that

〈L〉 = aggregateList (part1, z, seq,⊕, L)

= foldl (⊕, z, [〈L〉]) (def. ofaggregateList)

= foldl (⊕, z ⊕ 〈L〉, []) (def. of foldl)

= z ⊕ 〈L〉 (def. of foldl)

Therefore,z is the left identity of⊕ onγ.
Second, assume the following partitioning:part2(L) = [L, []]. From the assumption that theaggregate is deterministic, it
follows that

〈L〉 = aggregateList (part2, z, seq,⊕, L)

= foldl (⊕, z, [〈L〉, 〈[]〉]) (def. ofaggregateList)

= foldl (⊕, z, [〈L〉, z]) (def. of〈·〉 andfoldl)

= foldl (⊕, z ⊕ 〈L〉, [z]) (def. of foldl)

= foldl (⊕, 〈L〉, [z]) (z is the left id. of⊕)

= foldl (⊕, 〈L〉 ⊕ z, []) (def. of foldl)

= 〈L〉 ⊕ z (def. of foldl)

Therefore,z is also the right identity of⊕ onγ.

2. We assume thataggregate (z, seq,⊕, rdd(L)) is deterministic and show that⊕ is closed onγ. First, we assume thatL =
p1 ++ p2 and consider the following partitioning:part(p1 ++ p2) = [p1, p2]. From the assumption that theaggregate is
deterministic, it follows that

〈p1 ++ p2〉 = aggregateList (part , z, seq,⊕, L)

= foldl (⊕, z, [〈p1〉, 〈p2〉]) (def. ofaggregateList)

= foldl (⊕, z ⊕ 〈p1〉, [〈p2〉]) (def. of foldl)

= foldl (⊕, 〈p1〉, [〈p2〉]) (z is the id. of⊕)

= foldl (⊕, 〈p1〉 ⊕ 〈p2〉, []) (def. of foldl)

= 〈p1〉 ⊕ 〈p2〉 (def. of foldl)

Therefore⊕ is closed onγ.
3. We assume thataggregate (z, seq,⊕, rdd(L)) is deterministic and show that⊕ is commutative onγ. First, we assume that

L = p1 ++ p2 and consider the following two partitionings:part1(p1 ++ p2) = [p1, p2] andpart2(p1 ++ p2) = [p2, p1]). From
the assumption that theaggregate is deterministic, it follows that

aggregateList (part1, z, seq,⊕, L) = aggregateList (part2, z, seq,⊕, L)

⇐⇒ foldl (⊕, z, [〈p1〉, 〈p2〉]) = foldl (⊕, z, [〈p2〉, 〈p1〉]) (def. ofaggregateList)

⇐⇒ foldl (⊕, z ⊕ 〈p1〉, [〈p2〉]) = foldl (⊕, z ⊕ 〈p2〉, [〈p1〉]) (def. of foldl)

⇐⇒ foldl (⊕, 〈p1〉, [〈p2〉]) = foldl (⊕, 〈p2〉, [〈p1〉]) (z is the id. of⊕)

⇐⇒ foldl (⊕, 〈p1〉 ⊕ 〈p2〉, []) = foldl (⊕, 〈p2〉 ⊕ 〈p1〉, []) (def. of foldl)

⇐⇒ 〈p1〉 ⊕ 〈p2〉 = 〈p2〉 ⊕ 〈p1〉) (def. of foldl)

Therefore,⊕ is commutative onγ.
4. We assume thataggregate (z, seq,⊕, rdd(L)) is deterministic and show that⊕ is associative onγ. First, we assume that

L = p1++p2++p3 and consider the following two partitionings:part1(p1++p2++p3) = [p1, p2, p3] andpart2(p1++p2++p3) =
[p2, p3, p1]). From the assumption that theaggregate is deterministic, it follows that

aggregateList (part1, z, seq,⊕, L) = aggregateList (part2, z, seq,⊕, L)

⇐⇒ foldl (⊕, z, [〈p1〉, 〈p2〉, 〈p3〉]) = foldl (⊕, z, [〈p2〉, 〈p3〉, 〈p1〉]) (def. ofaggregateList)

⇐⇒ foldl (⊕, z ⊕ 〈p1〉, [〈p2〉, 〈p3〉]) = foldl (⊕, z ⊕ 〈p2〉, [〈p3〉, 〈p1〉]) (def. of foldl)

⇐⇒ foldl (⊕, 〈p1〉, [〈p2〉, 〈p3〉]) = foldl (⊕, 〈p2〉, [〈p3〉, 〈p1〉]) (z is the id. of⊕)

⇐⇒ foldl (⊕, 〈p1〉 ⊕ 〈p2〉, [〈p3〉]) = foldl (⊕, 〈p2〉 ⊕ 〈p3〉, [〈p1〉]) (def. of foldl)

⇐⇒ foldl (⊕, (〈p1〉 ⊕ 〈p2〉)⊕ 〈p3〉, []) = foldl (⊕, (〈p2〉 ⊕ 〈p3〉)⊕ 〈p1〉, []) (def. of foldl)

⇐⇒ (〈p1〉 ⊕ 〈p2〉)⊕ 〈p3〉 = (〈p2〉 ⊕ 〈p3〉)⊕ 〈p1〉 (def. of foldl)

⇐⇒ (〈p1〉 ⊕ 〈p2〉)⊕ 〈p3〉 = 〈p1〉 ⊕ (〈p2〉 ⊕ 〈p3〉) (comm. of⊕)

Therefore,⊕ is associative onγ. ⊓⊔

Lemma 6. For all functionsh : [A] → B, the following are equivalent:

1. h is a list homomorphism to(B,⊙,⊥),
2. ∀xss ∈ [[A]] : foldl (⊙,⊥,map(h, xss)) = h(concat (xss)).

Proof. (1 ⇒ 2): By induction on the length ofxss :
• for xss = []:

foldl (⊙,⊥,map(h, [])) = foldl (⊙,⊥, []) (def. ofmap)

= ⊥ (def. of foldl)

= h([]) (assumption)

= h(concat ([])) (def. ofconcat)

• Consider the following induction hypothesis forxssn of the lengthn:

IH : foldl (⊙,⊥,map(h, xssn)) = h(concat (xssn)). (8)

Forxssn ++ [xs] we proceed as follows:

foldl (⊙,⊥,map(h, xssn ++ [xs])) = foldl (⊙,⊥,map(h, xssn) ++ map(h, [xs])) (def. ofmap)

= foldl (⊙, foldl (⊙,⊥,map(h, xssn)),map(h, [xs])) (Lemma 4)

= foldl (⊙, foldl (⊙,⊥,map(h, xssn)), [h(xs)]) (def. ofmap)

= foldl (⊙, h(concat (xssn)), [h(xs)]) (IH)

= h(concat (xssn))⊙ h(xs) (def. of foldl)

= h(concat (xssn) ++ xs) (assumption)

= h(concat (xssn ++ [xs])) (def. ofconcat)

(2 ⇒ 1): We prove that the two properties of a list homomorphism hold:
• Fromfoldl (⊙,⊥,map(h, [])) = h(concat ([])) it follows thath([]) = ⊥.
• To prove thath(xs ++ ys) = h(xs)⊙ h(ys), first we consider the listxss = [xs]:

foldl (⊙,⊥,map(h, [xs])) = h(concat ([xs]))

⇐⇒ foldl (⊙,⊥, [h(xs)]) = h(xs) (def. ofmap , def. ofconcat)

⇐⇒ foldl (⊙,⊥⊙ h(xs), []) = h(xs) (def. of foldl)

⇐⇒ ⊥⊙ h(xs) = h(xs) (def. of foldl) (9)

Then we consider the listxss = [xs, ys]:

foldl (⊙,⊥,map(h, [xs, ys])) = h(concat ([xs , ys]))

⇐⇒ foldl (⊙,⊥, [h(xs), h(ys)]) = h(xs ++ ys) (def. ofmap , def. ofconcat)

⇐⇒ foldl (⊙,⊥⊙ h(xs), [h(ys)]) = h(xs ++ ys) (def. of foldl)

⇐⇒ foldl (⊙, (⊥⊙ h(xs))⊙ h(ys), []) = h(xs ++ ys) (def. of foldl)

⇐⇒ (⊥⊙ h(xs))⊙ h(ys) = h(xs ++ ys) (def. of foldl)

⇐⇒ h(xs)⊙ h(ys) = h(xs ++ ys) ((9)) ⊓⊔

Lemma 1. Calls toaggregate (z, seq,⊕, rdd) have deterministic outcomes iff:

1. (img(foldl (seq , z)),⊕, z) is a commutative monoid, and
2. for all listsp1, p2 :: [α], 〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉 .

Proof. ⇒: (a) Proving 1: Follows from Lemma 5.
(b) Proving 2: consider the listxs ++ ys and its partitioningpart(xs ++ ys) = [xs, ys].

aggregateList (part , z, seq,⊕, xs ++ ys) = 〈xs ++ ys〉 (def. of det.aggregate)

⇐⇒ foldl (⊕, z, [〈xs〉, 〈ys〉]) = 〈xs ++ ys〉 (def. ofaggregateList)

⇐⇒ foldl (⊕, z ⊕ 〈xs〉, [〈ys〉]) = 〈xs ++ ys〉 (def. of foldl)

⇐⇒ foldl (⊕, 〈xs〉, [〈ys〉]) = 〈xs ++ ys〉 (z is the id. of⊕)

⇐⇒ foldl (⊕, 〈xs〉 ⊕ 〈ys〉, []) = 〈xs ++ ys〉 (def. of foldl)

⇐⇒ 〈xs〉 ⊕ 〈ys〉 = 〈xs ++ ys〉 (def. of foldl)

⇐: Consider an arbitrary partitioningpart(L) of L and its permutationperm s.t.L = concat (perm(part(L))). From the defini-
tion of 〈·〉, it follows that〈[]〉 = foldl (seq , z, []) = z, and, therefore,〈·〉 is a list homomorphism to(img(foldl (seq , z)),⊕, z).
From Lemma 6 it follows that

foldl (⊕, z,map(〈·〉, perm(part(L)))) = 〈concat (perm(part(L)))〉

⇐⇒ foldl (⊕, z,map(〈·〉, perm(part(L)))) = 〈L〉 (def. ofperm andpart)

⇐⇒ aggregateList (perm ◦ part , z, seq,⊕, L) = 〈L〉 (def. ofaggregateList)

Because⊕ is associative and commutative, it follows thataggregateList (permx ◦ part , z, seq,⊕, L) = 〈L〉 for anypermx.
Therefore,aggregate (z, seq,⊕, rdd(L)) is deterministic. ⊓⊔

Lemma 2. Let⊕ be associative onγ = img(foldl (seq , z)) andz be the identity of⊕ onγ. The following are equivalent:

1. for all listsp1, p2 :: [α],
〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉, (2)

2. for all elementsd :: α ande :: γ,
seq(e, d) = e⊕ seq(z, d). (3)

Proof. 1 =⇒ 2: This is a special case. We pickp1 such that〈p1〉 = e andp2 = [d]. When we substitute into (2), we get

〈p1 ++ [d]〉 = e⊕ 〈[d]〉. (10)

For the left-hand side, according to Lemma 4, it holds that

〈p1 ++ [d]〉 = foldl (seq , z, p1 ++ [d]) = foldl (seq , foldl (seq , z, p1), [d]) = foldl (seq , 〈p1〉, [d]). (11)

After substitution, we getfoldl (seq, e, [d]), which is (from the definition offoldl) equal toseq(e, d). For the right-hand side
of (10), we just notice that〈[d]〉 = foldl (seq , z, [d]) = seq(z, d).

2 =⇒ 1: Setx = foldl (seq , z, p1) = 〈p1〉 and substitute into (2) to obtain a new target for proving:

〈p1 ++ p2〉 = 〈p1〉 ⊕ 〈p2〉

⇐⇒ foldl (seq , z, p1 ++ p2) = 〈p1〉 ⊕ 〈p2〉 (def. of〈·〉)

⇐⇒ foldl (seq, foldl (seq, z, p1), p2) = 〈p1〉 ⊕ 〈p2〉 (Lemma 4)

⇐⇒ foldl (x, seq , p2) = x⊕ 〈p2〉 (subst. ofx) (12)

We prove (12) using induction on the lengthn of p2.
n = 0: for p2 = [], we get to prove the following:

foldl (seq , x, []) = x⊕ foldl (seq , z, [])). (13)

From the definition offoldl , we get an equivalent formula

x = x⊕ z, (14)

which is true due toz being the identity of⊕ onγ.
n = i+ 1: We assume (12) holds forp2 of lengthi, i.e.

IH : foldl (seq , x, pi) = x⊕ foldl (seq , z, pi) (15)

and prove that, for anyh ∈ α,

foldl (seq , x, pi ++ [h]) = x⊕ foldl (seq , z, pi ++ [h]). (16)

We do it in the following way:

foldl (seq , x, pi ++ [h])

= foldl (seq , foldl (seq , x, pi), [h]) (Lemma 4)

= foldl (seq , seq(foldl (seq, x, pi), h), []) (def. of foldl)

= seq(foldl (seq, x, pi), h) (def. of foldl)

= foldl (seq , x, pi)⊕ seq(z, h) (appl. of (3))

= (x⊕ foldl (seq , z, pi))⊕ seq(z, h) (IH)

= x⊕ (foldl (z, seq, pi)⊕ seq(z, h)) (assoc. of⊕)

= x⊕ seq(foldl (seq, z, pi), h) (appl. of (3))

= x⊕ foldl (seq , seq(foldl (seq, z, pi), h), []) (def. of foldl)

= x⊕ foldl (seq , foldl (seq , z, pi), [h])) (def. of foldl)

= x⊕ foldl (seq , z, pi ++ [h])) (Lemma 4) ⊓⊔

Lemma 7.
reducel (f, xs) = reducel ′(f, xs) (17)

where

reducel ’ f xs = fromJust (foldl f’ Nothing xs)
where f’ x y = case x of

Nothing → Just y
Just x’→ Just (f x’ y)

Proof. by induction on the length ofxs:

1. for xs = [], bothreduce andreducel are undefined.
2. for xs = [x]:

reducel (f, [x]) = foldl (f, x, []) = x

and

reducel ′(f, [x]) = fromJust (foldl (f ′,Nothing , [x]) (def. of reducel ′)

= fromJust (foldl (f ′, f ′(Nothing , x), []) (def. of foldl)

= fromJust (foldl (f ′, Just (x), []) (def. off ′)

= fromJust (Just (x)) (def. of foldl)

= x (def. of fromJust)

3. assume the following induction hypothesis:

reducel (f, x : xs) = reducel ′(f ′, x : xs) = R (18)

We now prove that the lemma holds forx : xs ++ [a]. First, we compute the result forreducel (f, x : xs ++ [a]):

reducel (f, x : xs ++ [a]) = foldl (f, x, xs ++ [a]) (def. of reducel)

= foldl (f, foldl (f, x, xs), [a]) (Lemma 4)

= foldl (f, reducel (f, x : xs), [a]) (def. of reducel)

= foldl (f,R, [a]) (IH)

= foldl (f, f(R, a), []) (def. of foldl)

= f(R, a) (def. of foldl)

We proceed by computing the result forreducel ′(f, x : xs ++ [a]):

reducel ′(f, x : xs ++ [a])

= fromJust (foldl (f ′,Nothing , x : xs ++ [a])) (def. of reducel ′)

= fromJust (foldl (f ′, foldl (f ′,Nothing , x : xs), [a])) (Lemma 4)

= fromJust (foldl (f ′, f ′(foldl (f ′,Nothing , x : xs), a), [])) (def. of foldl)

= fromJust (f ′(foldl (f ′,Nothing , x : xs), a)) (def. of foldl)

〈f ′ is applied at least once onx : xs =⇒ the result of the nestedfoldl cannot beNothing 〉

= fromJust (Just (f(fromJust (foldl (f ′,Nothing , x : xs)), a)) (def. off ′)

= f(fromJust (foldl (f ′,Nothing , x : xs)), a) (def. of fromJust)

= f(reducel ′(f ′, x : xs), a) (def. of reducel ′)

= f(R, a) (IH) ⊓⊔

Lemma 3. Calls toreduce (⊕, rdd) have deterministic outcomes iff calls toaggregate (Nothing , seq ′,⊕′, rdd) have deterministic
outcomes, whereseq ′ and⊕′ are as follows:

seq’ x y = case x of
Nothing → Just y
Just x’→ Just (x’ ⊕ y)

(⊕’) x y = case (x, y) of (Nothing , y’)→ y’
(x’, Nothing)→ x’
(Just x’, Just y’)→ Just (x’ ⊕ y’) .

Proof. We show that given the following definition of the functionreduce ′′,

reduce ’’ :: (α→ α→ α)→ RDD α→ α

reduce ’’ (⊕) rdd = fromJust (aggregate Nothing seq’ (⊕’) rdd) ,

it holds thatreduce ′′(⊕, rdd) = reduce D(⊕, rdd) for all ⊕ andrdd . In caserdd is a partitioning of an empty list, the result of
bothreduce ′ andreduce ′′ is undefined. For a non-empty list:

reduce ′′(⊕′, xs : xss)

= fromJust (aggregate (Nothing , seq ′,⊕′, xs : xss)) (def. of reduce ′′)

= fromJust (foldl (⊕′,Nothing ,map(λys . foldl (seq ′,Nothing , ys), xs : xss))) (def. ofaggregate)

〈 from the assumption on partitionings, no element ofxs : xss is empty〉

= fromJust (foldl (⊕′,Nothing ,map(λys . Just (fromJust (foldl (seq ′,Nothing , ys))), xs : xss))) (def. of fromJust)

= fromJust (foldl (⊕′,Nothing ,map(λys . Just (reducel (⊕, ys)), xs : xss))) (Lemma 7)

= fromJust (foldl (⊕′,Nothing , Just (reducel (⊕, xs)) : map(λys . Just (reducel (⊕, ys)), xss))) (def. ofmap)

= fromJust (foldl (⊕′,Nothing ⊕′ Just (reducel (⊕, xs)),map(λys . Just (reducel (⊕, ys)), xss))) (def. of foldl)

= fromJust (foldl (⊕′, Just (reducel (⊕, xs)),map(λys . Just (reducel (⊕, ys)), xss))) (def. of⊕′)

= fromJust (Just (foldl (⊕, reducel (⊕, xs),map(λys . reducel (⊕, ys), xss)))) (def. of⊕′)

= foldl (⊕, reducel (⊕, xs),map(λys . reducel (⊕, ys), xss)) (def. of fromJust)

= reducel (⊕, reducel (⊕, xs) : map(λys . reducel (⊕, ys), xss)) (def. of reducel)

= reducel (⊕,map(λys . reducel (⊕, ys), xs : xss)) (def. ofmap)

= reduce D(⊕, xs : xss) (def. of reduce D) ⊓⊔

Corollary 2. Calls to reduce (⊕, rdd) have deterministic outcomes iff(α,⊕) is a commutative semigroup.

Proof. From Lemma 3, it follows that we can investigate the functionaggregate (Nothing , seq ′,⊕′, rdd) instead ofreduce (⊕, rdd).
From Corollary 1, we obtain thataggregate (Nothing , seq ′,⊕′, rdd) has deterministic outcome iff the following two conditions
hold:

1. (img(foldl (seq ′,Nothing)),⊕′,Nothing) is a commutative monoid,
2. ∀d ∈ α, e ∈ img(foldl (seq ′,Nothing)) : seq ′(e, d) = e⊕′ seq ′(Nothing , d).

We start with investigating condition 2:

– For the casee = Nothing :

seq ′(e, d) = e⊕′ seq ′(Nothing , d)

⇐⇒ seq ′(Nothing , d) = Nothing ⊕′ seq ′(Nothing , d) (subst. ofe = Nothing)

⇐⇒ Just (d) = Nothing ⊕′ Just (d) (def. ofseq ′)

⇐⇒ Just (d) = Just (d) (def. of⊕′)

– For the casee = Just (x):

seq ′(e, d) = e⊕′ seq ′(Nothing , d)

⇐⇒ seq ′(Just (x), d) = Just (x) ⊕′ seq ′(Nothing , d) (subst. ofe = Just (x))

⇐⇒ Just (x⊕ d) = Just (x) ⊕′ Just (d) (def. ofseq ′)

⇐⇒ Just (x⊕ d) = Just (x⊕ d) (def. of⊕′)

We can observe that the condition is a tautology. Therefore,the condition 1 is a sufficient and necessary condition for a call to
aggregate (Nothing , seq ′,⊕′, rdd) to have a deterministic outcome.

We proceed by investigating the conditions for(img(foldl (seq ′,Nothing)),⊕′,Nothing) to be a commutative monoid. First,
we observe that for⊕ : α× α → α, it holds thatimg(foldl (seq ′,Nothing)) = Maybe(α).

– Identity: From the definition,Nothing is the identity of⊕′.
– Commutativity: From the definition,⊕′ is commutative iff⊕ is commutative.
– Associativity: Consider elementsa, b, c ∈ Maybe(α). We explore when(a⊕′ b)⊕′ c = a⊕′ (b⊕′ c):

• If any member of{a, b, c} is Nothing , the condition holds becauseNothing is the (left and right) identity of⊕′.
• Fora = Just (a′), b = Just (b′), andc = Just (c′), it holds that:

(Just (a)⊕′ Just (b))⊕′ Just (c) = Just (a)⊕′ (Just (b)⊕′ Just (c))

⇐⇒ Just (a⊕ b)⊕′ Just (c) = Just (a)⊕′ Just (b⊕ c) (def. of⊕′)

⇐⇒ Just ((a⊕ b)⊕ c) = Just (a⊕ (b⊕ c)) (def. of⊕′)

Therefore,⊕′ is associative iff⊕ is associative.
– Closed: It is easy to observe that⊕′ is closed onMaybe(α).

From the previous conditions, we infer thataggregate (Nothing , seq ′,⊕′, rdd) has deterministic outcome iff(α,⊕) is a com-
mutative semiring. ⊓⊔

Proposition 1. Calls to treeAggregate (z, seq,⊕, rdd) have deterministic outcomes iff calls toaggregate (z, seq,⊕, rdd) have
deterministic outcomes.

Proof. ⇒: Consider the following function:

dividel :: [α]→ ([α], α, α, [α])
dividel x1:x2:xs = ([], x1, x2, xs) .

Obviously,dividel is one possible way howdivide ! can function. We further consider the following modification of apply:

applyl :: (β → β → β)→ [β]→ β

applyl comb [r] = r
applyl comb [r, r’] = comb r r’
applyl comb rs = let (ls’, l’, r’, rs’) = dividel rs in applyl comb (ls’ ++ [comb l’ r’] ++ rs’)

After inlinining dividel to applyl , we can modify it to obtain yet futher modification:

applyl ’ :: (β → β → β)→ [β]→ β

applyl ’ comb [r] = r
−− applyl’ comb [r, r’] = comb r r’
applyl ’ comb r1:r2:rs = applyl ’ comb ((comb r1 r2):rs)

Note that the case for a list of length 2 is reduntant now. Clearly it holds thatapplyl ’(f, xs) = reducel(f, xs). If we substitute
reducel for apply in the definition oftreeAggregate , and further use the property of a partitioning that it is never an empty
list, we obtain the definition ofaggregate .

⇐: From Lemma 5, it follows that⊕ is associative and commutative. Therefore, any sequence ofdivide !-apply operations in
apply will yield the same outcome as if we consider the (deterministic) dividel . ⊓⊔

Proposition 2. Calls to treeReduce (⊕, rdd) have deterministic outcomes iff calls toreduce (⊕, rdd) have deterministic out-
comes.

Proof. Follows the same structure as the proof of Proposition 1. ⊓⊔

When inferring conditions for a deterministic outcome of the call toaggregateByKey , we make use of the following auxiliary
function:

aggregateWithKey :: α→ γ → (γ → β → γ)→ (γ → γ → γ)→ PairRDD α β → γ

aggregateWithKey k z seq comb pairRdd =
let select p = key p == k

vrdd = filter (not . null)
(map ((map value) . (filter select)) pairRdd)

in aggregate z seq comb vrdd

We also use the following version ofaggregateByKey with the partitioning given explicitly:

aggregateListByKey :: ([(α, β)]→ [[(α, β)]])→ γ → (γ→β→γ)
→ (γ→γ→γ)→ [(α, β)]→ PairRDD α γ

aggregateListByKey part z mergeComb mergeValue list = aggregateByKey z mergeComb mergeValue (part list)

Lemma 8. It holds that

lookUp (k, aggregateByKey (z, seq,⊕, prdd)) = aggregateWithKey (k, z, seq,⊕, prdd)),

wherelookUp searches the first value with a given key in an RDD:

lookUp (k, xss) = headz(concat (map(map(value ◦ filterkey k), xss))),

andheadz returnsz when the input is empty.

Proof. To avoid too many parentheses, we use curried functions for the proof of this lemma. We need a number of additional
lemmas. The following property allows one to swapfilterkey k andfoldl (mergeBy (⊕)) []:

filterkey k ◦ foldl (mergeBy (⊕)) [] = foldl (mergeBy (⊕)) [] ◦ filterkey k. (19)

The next property says that, given a keyk and a binary operator(⊙), filtering the list withk and performingfoldl (mergeBy(⊙)) []
gives you a single value:

headz ◦ map value ◦ foldl (mergeBy (⊙)) [] ◦ filterkey k = foldl ⊙ z ◦ map value ◦ filterkey k, (20)

whereheadz returnsz when the input is empty. Finally, in the equation below, given a RDD and any binary operator(⊙), the
LHS computesfoldl (mergeBy (⊙)) []) on each partition, pick those with keyk, and concatenates their values. The RHS filters
the values with keyk, and computesfoldl (⊙) z for each partition.

concat ◦ map (map value ◦ filterkey k ◦ foldl (mergeBy (⊙)) [])

= map (foldl (⊙) z) ◦ filter (not ◦ null) ◦ map (map value ◦ filterkey k). (21)

All the lemmas above can be proved by induction. The proof of this lemma follows:

lookUp k ◦ aggregateByKey z (⊗) (⊕)

= headz ◦ concat ◦ map (map value ◦ filterkey k) ◦ repartition ◦

foldl (mergeBy (⊕)) [] ◦ concat ◦ map (foldl (mergeBy (⊗)) []) ◦ perm (def. ofaggregateByKey)

= headz ◦ map value ◦ filterkey k ◦ foldl (mergeBy (⊕)) [] ◦

concat ◦ map (foldl (mergeBy (⊗)) []) ◦ perm (naturality)

= headz ◦ map value ◦ foldl (mergeBy (⊕)) [] ◦ filterkey k ◦

concat ◦ map (foldl (mergeBy (⊗)) []) ◦ perm (by (19))

= foldl (⊕) z ◦ map value ◦ filterkey k ◦ concat ◦ map (foldl (mergeBy (⊗)) []) ◦ perm (by (20))

= foldl (⊕) z ◦ concat ◦ map (map value ◦ filterkey k ◦ foldl (mergeBy (⊗) [])) ◦ perm (naturality)

= foldl (⊕) z ◦ map (foldl (⊗) z) ◦ filter (not ◦ null) ◦ map (map value ◦ filterkey k) ◦ perm (by (21))

= foldl (⊕) z ◦ map (foldl (⊗) z) ◦ perm ◦ filter (not ◦ null) ◦ map (map value ◦ filterkey k) (naturality)

= aggregateWithKey k z (⊗) (⊕) (def. ofaggregateWithKey) ⊓⊔

Proposition 3. Calls to aggregateByKey (z, seq,⊕, prdd) have deterministic outcomes iff calls toaggregate (z, seq,⊕, rdd)
have deterministic outcomes.

Proof. From Lemma 8, it follows thataggregateByKey (z, seq,⊕, prdd) has deterministic outcome iff for all keysk ∈ α and
partitioningspart :

aggregateWithKey (k, z, seq,⊕, part(L)) = foldl (z, seq, filterkey (k, L)). (22)

From the defition ofaggregateWithKey , we infer that this is equivalent to

aggregate (z, seq,⊕, part(filterkey (k, L))) = foldl (z, seq, filterkey (k, L))

⇐⇒ aggregate (z, seq,⊕, part(L′)) = foldl (z, seq, L′), (subst.L′ = filterkey (k, L))

which is the condition foraggregate (z, seq,⊕, part(L′)) to have a deterministic outcome. ⊓⊔

Consider the following function.

reduceWithKey :: α→ (β → β → β)→ PairRDD α β → β

reduceWithKey k mergeValue pairRdd =
let select p = key p == k

vrdd = filter (not . null)
(map ((map value) . (filter select)) pairRdd)

in reduce mergeValue vrdd

Lemma 9. It holds that

lookup (k, reduceByKey (⊕, prdd)) = reduceWithKey (k,⊕, prdd)).

Proof. Similar to that of Lemma 8. ⊓⊔

Proposition 4. Calls to reduceByKey (⊕, prdd) have deterministic outcomes iff calls toreduce (⊕, rdd) have deterministic out-
comes.

Proof. Folows the same structure as the proof of Proposition 3. ⊓⊔

Proposition 5. It holds that if calls to the functionreduceByKey (⊕, rdd) have deterministic outcomes, then calls to the function
aggregateMessages (send ,⊕, graphRdd) also have deterministic outcomes.

Proof. When reduceByKey has deterministic outcome, then it holds (from definition) that for all verticesv ∈ VertexID, lists
L ∈ [α], and partitioningspart :

lookup (v, reduceListWithKey (part ,⊕, L)) = reducel (⊕, filterkey (v, L)).

When applyinglookup (v, aggregateMessages (send ,⊕, graphRdd(V,E))), the result will be the same as if thelookup is ap-
plied to the last line of functionaggregateMessagesWithActiveSet :

lookup (v, reduceByKey (⊕, pairRdd)) .

SincereduceByKey (⊕, pairRdd) has deterministic outcome, it follows that

lookup (v, reduceByKey (⊕, pairRdd)) = reducel (⊕, filterkey (v, pairRdd)). (23)

This is a sufficent condition to conclude thataggregateMessages (send ,⊕, graphRdd(V,E))) has a deterministic outcome.⊓⊔

	An Executable Sequential Specification for Spark Aggregation -3mm

