Skip to main content

Neuronal Electrical Behavior Modeling of Solar Panels

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10334))

Included in the following conference series:

  • 2511 Accesses

Abstract

In this paper authors model the electrical behavior of a commercial solar panel composed of solar cells connected in series through an Artificial Neural Network (ANN) with one hidden layer. The real solar panel that has been used as proof of concept is of the commercial model ATERSA A55, and it is placed at the Faculty of Engineering of Vitoria-Gasteiz (Basque Country University, Spain). The resulting model consists on one input (\(V_{PV}\)) and one output (\(I_{PV}\)), since the standard deviation of the temperature and irradiance magnitudes in the used dataset was residual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, G.K.: Solar power generation by pv (photovoltaic) technology: a review. Energy 53, 1ā€“13 (2013). http://www.sciencedirect.com/science/article/pii/S0360544213001758

    ArticleĀ  Google ScholarĀ 

  2. Kilkis, B.: District energy systems: theory and applications. J. Polytech. 14(2), 149ā€“154 (2011)

    Google ScholarĀ 

  3. Ramos Hernanz, J.A., Lopez Guede, J., Belver, I.Z., Lopez, P.E., Zulueta, E., Barambones, O., Echavarri, F.O.: Modelling of a photovoltaic panel based on their actual measurements. Int. J. Tech. Phys. Prob. Eng. (IJTPE) 6(4), 37ā€“41 (2014)

    Google ScholarĀ 

  4. Miceli, R., Orioli, A., Gangi, A.D.: A procedure to calculate the i-v characteristics of thin-film photovoltaic modules using an explicit rational form. Appl. Energy 155, 613ā€“628 (2015). http://www.sciencedirect.com/science/article/pii/S0306261915007953

    ArticleĀ  Google ScholarĀ 

  5. Elbaset, A.A., Ali, H., Sattar, M.A.-E.: Novel seven-parameter model for photovoltaic modules. Sol. Energy Mater. Sol. Cells 130, 442ā€“455 (2014). http://www.sciencedirect.com/science/article/pii/S0927024814003778

    ArticleĀ  Google ScholarĀ 

  6. Muhsen, D.H., Ghazali, A.B., Khatib, T., Abed, I.A.: Parameters extraction of double diode photovoltaic module model based on hybrid evolutionary algorithm. Energy Convers. Manag. 105, 552ā€“561 (2015). http://www.sciencedirect.com/science/article/pii/S0196890415007694

    ArticleĀ  Google ScholarĀ 

  7. Bastidas-Rodriguez, J., Petrone, G., Ramos-Paja, C., Spagnuolo, G.: A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel. Math. Comput. Simul. (2015). http://www.sciencedirect.com/science/article/pii/S0378475415002220

  8. Villalva, M., Gazoli, J., Filho, E.: Modeling and circuit-based simulation of photovoltaic arrays. In: Brazilian Power Electronics Conference: COBEP 2009, pp. 1244ā€“1254 (2009)

    Google ScholarĀ 

  9. Soto, W.D., Klein, S., Beckman, W.: Improvement and validation of a model for photovoltaic array performance. Sol. Energy 80(1), 78ā€“88 (2006). http://www.sciencedirect.com/science/article/pii/S0038092X05002410

    ArticleĀ  Google ScholarĀ 

  10. Gonzaez-Longatt, F.: Model of photovoltaic in matlabtm. In: 2do Congreso Iberoamericano de Estudiantes de IngenierĆ­a ElĆ©ctrica, ElectrĆ³nica y ComputaciĆ³n (II CIBELEC 2005), Puerto la Cruz-Venezuela (2006)

    Google ScholarĀ 

  11. Bandou, F., Arab, A.H., Belkaid, M.S., Logerais, P.-O., Riou, O., Charki, A.: Evaluation performance of photovoltaic modules after a long time operation in saharan environment. Int. J. Hydrogen Energy 40(39), 13839ā€“13848 (2015). http://www.sciencedirect.com/science/article/pii/S0360319915010034

    ArticleĀ  Google ScholarĀ 

  12. Ramos-Hernanz, J., Campayo, J., Larranaga, J., Zulueta, E., Barambones, O., Motrico, J., Gamiz, U.F., Zamora, I.: Two photovoltaic cell simulation models in matlab/simulink. Int. J. Tech. Phys. Prob. Eng. (IJTPE) 4(1), 45ā€“51 (2012)

    Google ScholarĀ 

  13. Karamirad, M., Omid, M., Alimardani, R., Mousazadeh, H., Heidari, S.N.: Ann based simulation and experimental verification of analytical four-and five-parameters models of pv modules. Simul. Model. Pract. Theory 34, 86ā€“98 (2013). http://www.sciencedirect.com/science/article/pii/S1569190X13000166

    ArticleĀ  Google ScholarĀ 

  14. Gow, J., Manning, C.: Development of a photovoltaic array model for use in power-electronics simulation studies. IEE Proc. Electr. Power Appl. 146(2), 193ā€“200 (1999)

    ArticleĀ  Google ScholarĀ 

  15. Widrow, B., Lehr, M.: 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proc. IEEE 78(9), 1415ā€“1442 (1990)

    ArticleĀ  Google ScholarĀ 

  16. Narendra, K., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4ā€“27 (1990)

    ArticleĀ  Google ScholarĀ 

  17. Fang, W., Quan, S., Xie, C., Tang, X., Wang, L., Huang, L.: Maximum power point tracking with dichotomy and gradient method for automobile exhaust thermoelectric generators. J. Electron. Mater. 45(3), 1613ā€“1624 (2016). http://dx.doi.org/10.1007/s11664-015-4130-9

    ArticleĀ  Google ScholarĀ 

  18. Gautam, A., Soh, Y.C.: Stabilizing model predictive control using parameter-dependent dynamic policy for nonlinear systems modeled with neural networks. J. Process Control 36, 11ā€“21 (2015). http://www.sciencedirect.com/science/article/pii/S0959152415001870

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgments

The research was supported by the Computational Intelligence Group of the Basque Country University (UPV/EHU) through Grant IT874-13 of Research Groups Call 2013ā€“2017 (Basque Country Government).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Manuel Lopez-Guede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lopez-Guede, J.M., Ramos-Hernanz, J.A., Estevez, J., Garmendia, A., GraƱa, M. (2017). Neuronal Electrical Behavior Modeling of Solar Panels. In: MartĆ­nez de PisĆ³n, F., Urraca, R., QuintiĆ”n, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2017. Lecture Notes in Computer Science(), vol 10334. Springer, Cham. https://doi.org/10.1007/978-3-319-59650-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59650-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59649-5

  • Online ISBN: 978-3-319-59650-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics