Skip to main content

Towards a Deep Learning Model of Retina: Retinal Neural Encoding of Color Flash Patterns

  • Conference paper
  • First Online:
Natural and Artificial Computation for Biomedicine and Neuroscience (IWINAC 2017)

Abstract

The retina is the first stage of visual neural information coding on the visual system, and several challenges remain on its functioning. Overcoming these challenges would suppose both a step further in the general understanding of the biological neural systems and a potential way to enhance millions of people’s lives that suffer from visual degeneration or impairment. In this work, a data-driven deep learning approach is applied to learn the behavior of mice’s retinal ganglion cells in response to light, as a step towards the development of a system able to mimic a real retina in terms of neural coding of visual stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J., Simoncelli, E.P.: Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454, 995–999 (2008)

    Article  Google Scholar 

  2. Burkitt, A.: A review of the integrate-and-fire neuron model. Biol. Cybern. 95(1–19), 97–112 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chichilnisky, E.J.: A simple white noise analysis of neuronal light responses. Comput. Neural Syst. 12, 199–213 (2001)

    Article  MATH  Google Scholar 

  4. Mcintosh, L., Maheswaranathan, N., Nayebi, A., Ganguli, S., Stephen, A.: Deep learning models of the retinal response to natural scenes. Adv. Neural Inf. Process. Syst. 29, 1369–1377 (2016)

    Google Scholar 

  5. Crespo-Cano, R., Martínez-Álvarez, A., Díaz-Tahoces, A., Cuenca-Asensi, S., Ferrández, J.M., Fernández, E.: On the automatic tuning of a retina model by using a multi-objective optimization genetic algorithm. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015 Part I. LNCS, vol. 9107, pp. 108–118. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_12

    Chapter  Google Scholar 

  6. Turcsany, D., Bargiela, A., Maul, T.: Modelling retinal feature detection with deep belief networks in a simulated enviroment. In: Proceedings of the ECMS 2014 (2014)

    Google Scholar 

  7. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the 2015 IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Geoffrey, E.: Imagenet classification with deep convolutional neural networks. In: 25th Proceedings of the Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  10. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  11. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 34(4), 193–202 (1980)

    Article  MATH  Google Scholar 

  12. Díaz-Tahoces, A., Martínez-Álvarez, A., García-Moll, A., Humphreys, L., Bolea, J.Á., Fernández, E.: Towards the reconstruction of moving images by populations of retinal ganglion cells. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 220–227. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_23

    Chapter  Google Scholar 

  13. Fernández, E., Ferrández, J.M., Ammermuller, J., Normann, R.: Population coding in spike trains of simultaneously recorded retinal ganglion cells. Brain Res. 887(1), 222–229 (2000)

    Article  Google Scholar 

  14. Bongard, M., Micol, D., Fernández, E.: NEV2lkit: a new open source tool for handling neural event files from multi-electrode recordings. Int. J. Neural Syst. 24(04) (2014)

    Google Scholar 

  15. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998). doi:10.1007/3-540-49430-8_2

    Chapter  Google Scholar 

  16. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, S., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. In: Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Learning (2016)

    Google Scholar 

  17. Chollet, F.: Keras 2015. https://github.com/fchollet/keras. Accessed March 2017

  18. Barbieri, R., Quirk, C.M., Frank, L.M., Wilson, M.A., Brown, E.N.: Construction and analysis of non-poisson stimulus-response models of neural spiking activity. J. Neurosci. Methods 105(1), 25–37 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

We want to acknowledge Programa de Ayudas a Grupos de Excelencia de la Región de Murcia, from Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Garrigós .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lozano, A., Garrigós, J., Martínez, J.J., Ferrández, J.M., Fernández, E. (2017). Towards a Deep Learning Model of Retina: Retinal Neural Encoding of Color Flash Patterns. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59740-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59739-3

  • Online ISBN: 978-3-319-59740-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics