Skip to main content

Delta-Theta Intertrial Phase Coherence Increases During Task Switching in a BCI Paradigm

  • Conference paper
  • First Online:
Biomedical Applications Based on Natural and Artificial Computing (IWINAC 2017)

Abstract

A broad variety of perceptual, sensorimotor and cognitive operations have shown to be linked to electroencephalographic (eeg) oscillatory activity. For instance, movement preparation or cognitive processing were linked to delta band (1–5 Hz) oscillations. Such link could be exploited in brain-computer interface (bci) paradigms translating modulations of brain activity into control signals of external devices or computers. However, current bcis are often driven by fast rhythmic brain activity, e.g. in the alpha (9–15 Hz) or beta band (15–30 Hz). Introducing slower oscillations, such as delta or theta (4–8 Hz) band activity, might extent the spectrum of bci applications, particularly in the context of bci-related restoration of movements. To detect voluntary modulations of motor cortical activity in such paradign, an active interval during which users are instructed to e.g. imagine hand movements becomes compared to a task-free interval during which users are instructed to relax. We report that cortical oscillations of eeg in delta and theta frequencies clearly synchronize at the onset and at the end of a bci task, what might be a physiological marker for task switching that could be useful for improving bci control. We also found that inter-trial-phase coherence (itpc) significantly increased at the end of reference intervals during which participants were instructed to relax. This may indicate that during initial phases of bci learning, users are actively relaxing, a finding with important implications for monitoring bci learning and control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fries, P., Womelsdorf, T., Oostenveld, R., Desimone, R.: The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area v4. J. Neurosci.: Off. J. Soc. Neurosci. 28, 4823–4835 (2008)

    Article  Google Scholar 

  2. Lakatos, P., Karmos, G., Mehta, A.D., Ulbert, I., Schroeder, C.E.: Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320, 110–113 (2008)

    Article  Google Scholar 

  3. Saleh, M., Reimer, J., Penn, R., Ojakangas, C.L., Hatsopoulos, N.G.: Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues. Neuron 65, 461–471 (2010)

    Article  Google Scholar 

  4. Gntekin, B., Baar, E.: Review of evoked and event-related delta responses in the human brain. Int. J. Psychophysiol.: Off. J. Int. Organ. Psychophysiol. 103, 43–52 (2016)

    Article  Google Scholar 

  5. Harmony, T.: The functional significance of delta oscillations in cognitive processing. Front. Integr. Neurosci. 7, 83 (2013)

    Article  Google Scholar 

  6. Kornhuber, H.H., Deecke, L.: Hirnpotentialanderungen beim menschen vor und nach willkurbewegungen dargestellt mit magnetbandspeicherung und ruckwartsanalyse. Pflug. Arch.-Eur. J. Physiol. 281, 52 (1964). Springer Verlag 175 Fifth Ave., New York, NY 10010

    Google Scholar 

  7. Nagamine, T., Kajola, M., Salmelin, R., Shibasaki, H., Hari, R.: Movement-related slow cortical magnetic fields and changes of spontaneous MEG-and EEG-brain rhythms. Electroencephalogr. Clin. Neurophysiol. 99, 274–286 (1996)

    Article  Google Scholar 

  8. Mansfield, E.L., Karayanidis, F., Cohen, M.X.: Switch-related and general preparation processes in task-switching: evidence from multivariate pattern classification of EEG data. J. Neurosci. 32, 18253–18258 (2012)

    Article  Google Scholar 

  9. Nácher, V., Ledberg, A., Deco, G., Romo, R.: Coherent delta-band oscillations between cortical areas correlate with decision making. Proc. Nat. Acad. Sci. 110, 15085–15090 (2013)

    Article  Google Scholar 

  10. Prada, L., Barcel, F., Herrmann, C.S., Escera, C.: EEG delta oscillations index inhibitory control of contextual novelty to both irrelevant distracters and relevant task-switch cues. Psychophysiology 51, 658–672 (2014)

    Article  Google Scholar 

  11. Waldert, S., Preissl, H., Demandt, E., Braun, C., Birbaumer, N., Aertsen, A., Mehring, C.: Hand movement direction decoded from MEG and EEG. J. Neurosci. 28, 1000–1008 (2008)

    Article  Google Scholar 

  12. Presacco, A., Goodman, R., Forrester, L., Contreras-Vidal, J.L.: Neural decoding of treadmill walking from noninvasive electroencephalographic signals. J. Neurophysiol. 106, 1875–1887 (2011)

    Article  Google Scholar 

  13. Garipelli, G., Chavarriaga, R., del R Millán, J.: Single trial analysis of slow cortical potentials: a study on anticipation related potentials. J. Neural Eng. 10, 036014 (2013)

    Article  Google Scholar 

  14. Bradberry, T.J., Gentili, R.J., Contreras-Vidal, J.L.: Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals. J. Neurosci. 30, 3432–3437 (2010)

    Article  Google Scholar 

  15. Kolev, V., Yordanova, Y., Başar, E.: Phase locking of oscillatory responses an informative approach for studying evoked brain activity. In: Kolev, V., Yordanova, Y., Başar, E. (eds.) Brain Function and Oscillations, pp. 123–128. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  16. Tallon-Baudry, C., Bertrand, O., Delpuech, C., Pernier, J.: Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J. Neurosci. 16, 4240–4249 (1996)

    Google Scholar 

  17. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004)

    Article  Google Scholar 

  18. Popovych, S., Rosjat, N., Toth, T., Wang, B., Liu, L., Abdollahi, R., Viswanathan, S., Grefkes, C., Fink, G., Daun, S.: Movement-related phase locking in the delta-theta frequency band. NeuroImage 139, 439–449 (2016)

    Article  Google Scholar 

  19. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: Bci2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004)

    Article  Google Scholar 

  20. Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398, 297–298 (1999)

    Article  Google Scholar 

  21. Shibasaki, H., Hallett, M.: What is the Bereitschaftspotential? Clin. Neurophysiol. 117, 2341–2356 (2006)

    Article  Google Scholar 

  22. Steriade, M., Contreras, D., Dossi, R.C., Nunez, A.: The slow (\(<\)1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J. Neurosci. 13, 3284–3299 (1993)

    Google Scholar 

  23. Amzica, F., Steriade, M.: Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex. J. Neurosci. 20, 6648–6665 (2000)

    Google Scholar 

  24. Schall, J.D.: Neural basis of deciding, choosing and acting. Nat. Rev. Neurosci. 2, 33–42 (2001)

    Article  Google Scholar 

  25. Emek-Savaş, D.D., Güntekin, B., Yener, G.G., Başar, E.: Decrease of delta oscillatory responses is associated with increased age in healthy elderly. Int. J. Psychophysiol. 103, 103–109 (2016)

    Article  Google Scholar 

  26. Schmiedt-Fehr, C., Basar-Eroglu, C.: Event-related delta and theta brain oscillations reflect age-related changes in both a general and a specific neuronal inhibitory mechanism. Clin. Neurophysiol. 122, 1156–1167 (2011)

    Article  Google Scholar 

  27. Maurits, N.M., Scheeringa, R., van der Hoeven, J.H., de Jong, R.: EEG coherence obtained from an auditory oddball task increases with age. J. Clin. Neurophysiol. 23, 395–403 (2006)

    Article  Google Scholar 

  28. Başar, E., Başar-Eroglu, C., Rosen, B., Schütt, A.: A new approach to endogenous event-related potentials in man relation between EEG and p300-wave. Int. J. Neurosc. 24, 1–21 (1984)

    Article  Google Scholar 

  29. Stefanics, G., Hangya, B., Hernádi, I., Winkler, I., Lakatos, P., Ulbert, I.: Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. J. Neurosci. 30, 13578–13585 (2010)

    Article  Google Scholar 

  30. Kösem, A., Gramfort, A., van Wassenhove, V.: Encoding of event timing in the phase of neural oscillations. NeuroImage 92, 274–284 (2014)

    Article  Google Scholar 

  31. Baker, S., Olivier, E., Lemon, R.: Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J. Physiol. 501, 225–241 (1997)

    Article  Google Scholar 

  32. Antelis, J.M., Montesano, L., Ramos-Murguialday, A., Birbaumer, N., Minguez, J.: On the usage of linear regression models to reconstruct limb kinematics from low frequency EEG signals. PLoS ONE 8, e61976 (2013)

    Article  Google Scholar 

  33. Cravo, A.M., Rohenkohl, G., Wyart, V., Nobre, A.C.: Endogenous modulation of low frequency oscillations by temporal expectations. J. Neurophysiol. 106, 2964–2972 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Commission through the project AIDE: “Adaptive Multimodal Interfaces to Assist Disabled People in Daily Activities” (Grant agreement no: 645322), through the project HOMEREHAB: “Development of Development of Robotic Technology for Post-Stroke Home Tele-Rehabilitation—Echord++” (Grant agreement no: 601116) and by the Ministry of Economy and Competitiveness through the project DPI2015-70415-C2-2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Barios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Barios, J.A. et al. (2017). Delta-Theta Intertrial Phase Coherence Increases During Task Switching in a BCI Paradigm. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Biomedical Applications Based on Natural and Artificial Computing. IWINAC 2017. Lecture Notes in Computer Science(), vol 10338. Springer, Cham. https://doi.org/10.1007/978-3-319-59773-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59773-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59772-0

  • Online ISBN: 978-3-319-59773-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics